首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Latrophilin 3 (LPHN3) is a brain‐specific member of the G‐protein coupled receptor family associated to both attention‐deficit/hyperactivity disorder (ADHD) genetic susceptibility and methylphenidate (MPH) pharmacogenetics. Interactions of LPHN3 variants with variants harbored in the 11q chromosome improve the prediction of ADHD development and medication response. The aim of this study was to evaluate the role of LPHN3 variants in childhood ADHD susceptibility and treatment response in a naturalistic clinical cohort. The association between LPHN3 and ADHD was evaluated in 523 children and adolescents with ADHD and 132 controls. In the pharmacogenetic study, 172 children with ADHD were investigated. The primary outcome measure was the parent‐rated Swanson, Nolan and Pelham Scale – version IV applied at baseline, first and third months of treatment with MPH. The results reported herein suggest the CGC haplotype derived from single nucleotide polymorphisms (SNPs) rs6813183, rs1355368 and rs734644 as an ADHD risk haplotype (P = 0.02, OR = 1.46). Although non‐significant after multiple testing correction, its interaction with the 11q chromosome SNP rs965560 slightly increases risk (P = 0.03, OR = 1.55). Homozygous individuals for the CGC haplotype showed faster response to MPH treatment as a significant interaction effect between CGC haplotype and treatment over time was observed (P < 0.001). Homozygous individuals for the GT haplotype derived from SNPs rs6551665 and rs1947275 showed a nominally significant interaction with treatment over time (P = 0.04). Our findings replicate previous findings reporting that LPHN3 confers ADHD susceptibility, and moderates MPH treatment response in children and adolescents with ADHD.  相似文献   

2.
Objectives: The purpose of this study was to investigate oxidative stress in children with attention deficit hyperactivity disorder (ADHD).

Methods: Total oxidant status (TOS), total antioxidant status (TAS), paraxonase-1 (PON-1) and arylesterase (ARE) activity were measured in 76 children (44 boys, 32 girls) diagnosed with ADHD according to the DSM-IV and 78 healthy children (46 boys, 32 girls).

Results: Age and sex were similar between the groups (P?>?0.05). TOS and the oxidative stress index (OSI) were higher in the patient group than the control group (P?<?0.001). PON-1 (P?=?0.002), ARE (P?=?0.010) activity and TAS (P?<?0.001) were lower in the patient group than the control group.

Discussion: We found decreased PON-1, ARE activity and TAS, and increased TOS and OSI in children with ADHD. Our study showed that there is significantly increased oxidative stress in children with ADHD.  相似文献   

3.
目的

分析注意缺陷多动障碍(ADHD)儿童肠道菌群特点与行为问题的相关性。

方法

选取2022年1月到2023年5月我院收治的96例ADHD患儿和健康体检的96例儿童,分别作为研究组和对照组。对所有儿童粪便样本进行宏基因组测序并分析肠道菌群特点。采用Conners儿童行为问卷-家长版(PSQ)评估两组儿童的行为。采用Pearson相关性分析肠道菌群分布与行为问题的相关性。

结果

研究组患儿肠道菌群α−多样性低于对照组,肠杆菌属、气味杆菌属和枸橼酸杆菌属相对丰度均高于对照组,韦荣球菌属、拟杆菌属、双歧杆菌属和普氏栖粪杆菌相对丰度均低于对照组,差异均具有统计学意义(P<0.05)。研究组患儿Conners PSQ问卷评分高于对照组(P<0.05)。研究组患儿Conners PSQ问卷各因子评分与肠道肠杆菌属、气味杆菌属和枸橼酸杆菌属均呈正相关(P<0.05),与韦荣球菌属、拟杆菌属、双歧杆菌属和普氏栖粪杆菌均呈负相关(P<0.05)。

结论

ADHD儿童肠道菌群构成与健康儿童不同,不同肠道菌群与患儿行为问题有相关性。

  相似文献   

4.
Different analytic strategies, including linkage, association and meta-analysis support a role of CDH13 in the susceptibility to attention deficit/hyperactivity disorder (ADHD). CDH13 codes for cadherin 13 (or H-cadherin), which is a member of a family of calcium-dependent cell-cell adhesion proteins and a regulator of neural cell growth. We tested the association between CDH13 on three executive functioning tasks that are promising endophenotypes of ADHD. An adjusted linear regression analysis was performed in 190 ADHD-affected Dutch probands of the IMAGE project. Three executive functions were examined: inhibition, verbal and visuo-spatial working memory (WM). We tested 2632 single nucleotide polymorphisms (SNPs) within CDH13 and 20 kb up- and downstream of the gene (capturing regulatory sequences). To adjust for multiple testing within the gene, we applied stringent permutation steps. Intronic SNP rs11150556 is associated with performance on the Verbal WM task. No other SNP showed gene-wide significance with any of the analyzed traits, but a 72-kb SNP block located 446 kb upstream of SNP rs111500556 showed suggestive evidence for association (P-value range 1.20E-03 to 1.73E-04) with performance in the same Verbal WM task. This study is the first to examine CDH13 and neurocognitive functioning. The mechanisms underlying the associations between CDH13 and the clinical phenotype of ADHD and verbal WM are still unknown. As such, our study may be viewed as exploratory, with the results presented providing interesting hypotheses for further testing.  相似文献   

5.
ABSTRACT

Children and adolescents with Attention De?cit Hyperactivity Disorder (ADHD) have a high prevalence of obesity, but the relationship between these two problems is not clear. Chronotype preferences may be one of the possible mechanisms underlying the link between ADHD and obesity. This is the ?rst study to investigate whether chronotype preferences are a mechanism linking ADHD symptoms to obesity in children and adolescents. This cross-sectional study included 110 drug-naive children and adolescents aged 7–17 years with ADHD. The Kiddie Schedule for Affective Disorders and Schizophrenia‐Present and Lifetime Version (K‐SADS‐PL) was used to diagnose ADHD or to exclude psychiatric comorbidity. The Conners’ Parents Rating Scale-Revised Short Version (CPRS-RS) and Children’s Chronotype Questionnaire (CCQ) were used to assess the severity of ADHD symptoms and chronotype preferences. Body mass index (BMI) was calculated and classified according to national age- and gender-specific reference values. The participants were divided into three groups as normal weight (<85%, n = 38), overweight (85%-95%, n = 30) and obesity (>95%, n = 42) according to their BMI percentile. There were statistically significant differences between the three groups in terms of chronotype preference (p = .000). Morningness preference was 86.84% in the normal BMI group and 26.19% in the obese BMI group. Eveningness preference was 7.89% in the normal BMI group and 61.90% in the obese BMI group. There was a correlation between the BMI percentile scores and the morningness/eveningness scale (M/E) scores. Moreover, there was a correlation between the BMI percentile scores and the oppositional and ADHD index scores. According to logistic regression analysis, the odds ratio of having evening type for obesity was 5.66 and the odds ratio of having morning type for normal weight was 13.03. Independently from ADHD symptoms, eveningness was directly related to obesity and morningness was directly related to normal weight. Prospective studies should be performed to better understand the relationship between ADHD, overweight/obesity and chronotype.  相似文献   

6.
Psychiatric phenotypes are multifactorial and polygenic, resulting from the complex interplay of genes and environmental factors that act cumulatively throughout an organism's lifetime. Adverse life events are strong predictors of risk for a number of psychiatric disorders and a number of studies have focused on gene–environment interactions (GxEs) occurring at genetic loci involved in the stress response. Such a locus that has received increasing attention is the gene encoding FK506 binding protein 51 (FKBP5), a heat shock protein 90 cochaperone of the steroid receptor complex that among other functions regulates sensitivity of the glucocorticoid receptor. Interactions between FKBP5 gene variants and life stressors alter the risk not only for mood and anxiety disorders, but also for a number of other disease phenotypes. In this review, we will focus on molecular and system‐wide mechanisms of this GxE with the aim of establishing a framework that explains GxE interactions. We will also discuss how an understanding of the biological effects of this GxE may lead to novel therapeutic approaches .  相似文献   

7.
The adenosine A2A receptor (ADORA2A) is linked to the dopamine neurotransmitter system and is also implicated in the regulation of alertness, suggesting a potential association with attention‐deficit hyperactivity disorder (ADHD) traits. Furthermore, animal studies suggest that the ADORA2A may influence ADHD‐like behavior. For that reason, the ADORA2A gene emerges as a promising candidate for studying the etiology of ADHD traits. The aim of this study was to examine the relationship between ADORA2A gene polymorphisms and ADHD traits in a large population‐based sample. This study was based on the Child and Adolescent Twin Study in Sweden (CATSS), and included 1747 twins. Attention‐deficit hyperactivity disorder traits were assessed through parental reports, and samples of DNA were collected. Associations between six single nucleotide polymorphisms (SNPs) and ADHD traits were examined, and results suggested a nominal association between ADHD traits and three of these SNPs: rs3761422, rs5751876 and rs35320474. For one of the SNPs, rs35320474, results remained significant after correction for multiple comparisons. These results indicate the possibility that the ADORA2A gene may be involved in ADHD traits. However, more studies replicating the present results are warranted before this association can be confirmed .  相似文献   

8.
Social isolation in male rats at weaning results in reduced basal levels of the neuroactive steroid 3α,5α‐tetrahydroprogesterone (3α,5α‐TH PROG) in the brain and plasma as well as increased anxiety‐like behavior. We now show that socially isolated female rats also manifest a reduced basal cerebrocortical concentration of 3α,5α‐TH PROG as well as an anxiety‐like profile in the elevated plus‐maze and Vogel conflict tests compared with group‐housed controls. In contrast, despite the fact that they were raised under normal conditions, adult male offspring of male and female rats subjected to social isolation before mating exhibited an increased basal cerebrocortical level of 3α,5α‐TH PROG but no difference in emotional reactivity compared with the offspring of group‐housed parents. These animals also showed an increased basal activity of the hypothalamic‐pituitary‐adrenal axis as well as reduced abundance of corticotropin‐releasing factor in the hypothalamus and of corticotropin‐releasing factor receptor type 1 in the pituitary. Moreover, negative feedback regulation of hypothalamic‐pituitary‐adrenal axis activity by glucocorticoid was enhanced in association with up‐regulation of glucocorticoid receptor expression in the hippocampus. There was also attenuation of corticosterone release induced by foot‐shock stress in the offspring of socially isolated parents. The increase in the brain concentration of 3α,5α‐TH PROG induced by acute stress was also blunted in these animals. Our results thus show that a stressful experience before mating can influence neuroendocrine signaling in the next generation.  相似文献   

9.
Twin, family and recent molecular studies support the hypothesis of genetic overlapping between schizophrenia and bipolar disorder. Brain structural features shared by both psychiatric disorders might be the phenotypic expression of a common genetic risk background. Interleukin‐1 (IL‐1) cluster (chromosome 2q13) genetic variability, previously associated with an increased risk both for schizophrenia and for bipolar disorder, has been also associated with gray matter (GM) deficits, ventricular enlargement and hypoactivity of prefrontal cortex in schizophrenia. The aim of the present study was to analyze the influence of IL‐1 cluster on brain morphology in bipolar disorder. Genetic variability at IL‐1B and IL‐1RN genes was analyzed in 20 DSM‐IV ( Diagnostic and Statistical Manual of Mental Disorders ‐Fourth Edition) bipolar patients. Magnetic resonance imaging (MRI) measurements were obtained for whole‐brain GM and white matter, dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus, hippocampus and lateral ventricles. MRI data were corrected for age and cranial size using regression parameters from a group of 45 healthy subjects. A ?511C/T polymorphism (rs16944) of IL‐1B gene was associated with whole‐brain GM deficits (P = 0.031) and left DLPFCGM deficits (P = 0.047) in bipolar disorder patients. These findings support the hypothesis of IL‐1 cluster variability as a shared genetic risk factor contributing to GM deficits both in bipolar disorder and in schizophrenia. Independent replication in larger samples would be of interest to confirm these results.  相似文献   

10.
Metabolic syndrome (MetS), a cluster of metabolic disturbances that increase the risk for cardiovascular disease and diabetes, was because of genetic susceptibility and environmental risk factors. To identify the genetic variants associated with MetS and metabolic components, we conducted a genome‐wide association study followed by replications in totally 12,720 participants from the north, north‐eastern and eastern China. In combined analyses, independent of the top known signal at rs651821 on APOA5, we newly identified a secondary triglyceride‐associated signal at rs180326 on BUD13 (Pcombined = 2.4 × 10−8). Notably, by an integrated analysis of the genotypes and the serum levels of APOA5, BUD13 and triglyceride, we observed that BUD13 was another potential mediator, besides APOA5, of the association between rs651821 and serum triglyceride. rs671 (ALDH2), an east Asian‐specific common variant, was found to be associated with MetS (Pcombined = 9.7 × 10−22) in Han Chinese. The effects of rs671 on metabolic components were more prominent in drinkers than in non‐drinkers. The replicated loci provided information on the genetic basis and mechanisms of MetS and metabolic components in Han Chinese.  相似文献   

11.
The ultraviolet‐B (UV‐B) portion of the solar radiation functions as an environmental signal for which plants have evolved specific and sensitive UV‐B perception systems. The UV‐B‐specific UV RESPONSE LOCUS 8 (UVR8) and the multifunctional E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are key regulators of the UV‐B response. We show here that uvr8‐null mutants are deficient in UV‐B‐induced photomorphogenesis and hypersensitive to UV‐B stress, whereas overexpression of UVR8 results in enhanced UV‐B photomorphogenesis, acclimation and tolerance to UV‐B stress. By using sun simulators, we provide evidence at the physiological level that UV‐B acclimation mediated by the UV‐B‐specific photoregulatory pathway is indeed required for survival in sunlight. At the molecular level, we demonstrate that the wild type but not the mutant UVR8 and COP1 proteins directly interact in a UV‐B‐dependent, rapid manner in planta. These data collectively suggest that UV‐B‐specific interaction of COP1 and UVR8 in the nucleus is a very early step in signalling and responsible for the plant's coordinated response to UV‐B ensuring UV‐B acclimation and protection in the natural environment.  相似文献   

12.
Tryptophan hydroxylase‐2 (TPH2) synthesizes neuronal serotonin and is linked to numerous behavioral traits. We have previously characterized the functionality of polymorphisms (especially 2051A>C) in 3’‐untranslated region (3’‐UTR) of rhesus monkey TPH2 (rhTPH2). This study further assessed the functionality of additional polymorphisms (–1605T>C, –1491Tn, –1485(AT)n, –1454A>G, –1325In>Del and –363T>G) in rhTPH2 5’‐flanking region (5’‐FR), and evaluated the effects of rhTPH2 5’ and 3’ genotypes on central serotonin turnover, hypothalamic–pituitary–adrenal (HPA) axis function and self‐injurious behavior (SIB) in 32 unrelated adult male monkeys of Indian origin. Haplotypes of the rhTPH2 5’‐FR polymorphisms exert a significant, cell‐dependent effect on reporter gene expression, primarily conferred by –1485(AT)n. The –1485(AT)n and 2051A>C polymorphisms interact to influence cerebrospinal fluid (CSF) 5‐HIAA and plasma adrenocorticotropic hormone (ACTH) in the afternoon. While –1485(AT)n exerts significant main effects on the afternoon cortisol level and nocturnal HPA negative feedback, 2051A>C has significant main effects on the morning cortisol level and cortisol response to ACTH challenge, as well as marginally significant main effects on the daytime HPA negative feedback and self‐biting rate. In addition, the genotype/allele frequency of the 5’‐FR –1325Ins>Del differed significantly between the self‐wounders and non‐wounders, whereas 3’‐UTR 2128S>L polymorphism differed significantly in genotype/allele frequency between the high‐ and low‐frequency biters. This study shows the functionality of rhTPH2 5’‐FR polymorphisms, and provides evidence for the differential association of rhTPH2 5’‐FR and 3’‐UTR polymorphisms with HPA axis function and SIB. Our findings shed light on the role of TPH2 gene variance in physiology and behavioral traits, and also contribute to the understanding of the pathophysiology and genetics of SIB  相似文献   

13.
The Y1 and Y5 receptors for neuropeptide Y have overlapping functions in regulating anxiety. We previously demonstrated that conditional removal of the Y1 receptor in the Y5 receptor expressing neurons in juvenile Npy1rY5R?/? mice leads to higher anxiety but no changes in hypothalamus‐pituitary‐adrenocortical axis activity, under basal conditions or after acute restraint stress. In the present study, we used the same conditional system to analyze the specific contribution of limbic neurons coexpressing Y1 and Y5 receptors on the emotional and neuroendocrine responses to social chronic stress, using different housing conditions (isolation vs. group‐housing) as a model. We demonstrated that control Npy1r2lox male mice housed in groups show increased anxiety and hypothalamus‐pituitary‐adrenocortical axis activity compared with Npy1r2lox mice isolated for six weeks immediately after weaning. Conversely, Npy1rY5R?/? conditional mutants display an anxious‐like behavior but no changes in hypothalamus‐pituitary‐adrenocortical axis activity as compared with their control littermates, independently of housing conditions. These results suggest that group housing constitutes a mild social stress for our B6129S mouse strain and they confirm that the conditional inactivation of Y1 receptors specifically in Y5 receptor containing neurons increases stress‐related anxiety without affecting endocrine stress responses.  相似文献   

14.
15.
16.
17.
Accumulating evidence indicates that abnormal deposition of amyloid‐β (Aβ) peptide in the brain is responsible for endothelial cell damage and consequently leads to blood–brain barrier (BBB) leakage. However, the mechanisms underlying BBB disruption are not well described. We employed an monolayer BBB model comprising bEnd.3 cell and found that BBB leakage was induced by treatment with Aβ1–42, and the levels of tight junction (TJ) scaffold proteins (ZO‐1, Claudin‐5, and Occludin) were decreased. Through comparisons of the effects of the different components of Aβ1–42, including monomer (Aβ1–42‐Mono), oligomer (Aβ1–42‐Oligo), and fibril (Aβ1–42‐Fibril), our data confirmed that Aβ1–42‐Oligo is likely to be the most important damage factor that results in TJ damage and BBB leakage in Alzheimer's disease. We found that the incubation of bEnd.3 cells with Aβ1–42 significantly up‐regulated the level of receptor for advanced glycation end‐products (RAGE). Co‐incubation of a polyclonal antibody to RAGE and Aβ1–42‐Oligo in bEnd.3 cells blocked RAGE suppression of Aβ1–42‐Oligo‐induced alterations in TJ scaffold proteins and reversed Aβ1–42‐Oligo‐induced up‐regulation of RAGE, matrix metalloproteinase (MMP)‐2, and MMP‐9. Furthermore, we found that these effects induced by Aβ1–42‐Oligo treatment were effectively suppressed by knockdown of RAGE using small interfering RNA (siRNA) transfection. We also found that GM 6001, a broad‐spectrum MMP inhibitor, partially reversed the Aβ1–42‐Oligo‐induced inhibitor effects in bEnd.3 cells. Thus, these results suggested that RAGE played an important role in Aβ‐induced BBB leakage and alterations of TJ scaffold proteins, through a mechanism that involved up‐regulation of MMP‐2 and MMP‐9.

  相似文献   


18.
The oxygen sensor histidine kinase AfGcHK from the bacterium Anaeromyxobacter sp. Fw 109‐5 forms a two‐component signal transduction system together with its cognate response regulator (RR). The binding of oxygen to the heme iron of its N‐terminal sensor domain causes the C‐terminal kinase domain of AfGcHK to autophosphorylate at His183 and then transfer this phosphate to Asp52 or Asp169 of the RR protein. Analytical ultracentrifugation revealed that AfGcHK and the RR protein form a complex with 2:1 stoichiometry. Hydrogen‐deuterium exchange coupled to mass spectrometry (HDX‐MS) suggested that the most flexible part of the whole AfGcHK protein is a loop that connects the two domains and that the heme distal side of AfGcHK, which is responsible for oxygen binding, is the only flexible part of the sensor domain. HDX‐MS studies on the AfGcHK:RR complex also showed that the N‐side of the H9 helix in the dimerization domain of the AfGcHK kinase domain interacts with the helix H1 and the β‐strand B2 area of the RR protein's Rec1 domain, and that the C‐side of the H8 helix region in the dimerization domain of the AfGcHK protein interacts mostly with the helix H5 and β‐strand B6 area of the Rec1 domain. The Rec1 domain containing the phosphorylable Asp52 of the RR protein probably has a significantly higher affinity for AfGcHK than the Rec2 domain. We speculate that phosphorylation at Asp52 changes the overall structure of RR such that the Rec2 area containing the second phosphorylation site (Asp169) can also interact with AfGcHK. Proteins 2016; 84:1375–1389. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
The physiological relevance of contacts in crystal lattices often remains elusive. This was also the case for the complex between the invasion protein internalin B (InlB) from Listeria monocytogenes and its host cell receptor, the human receptor tyrosine kinase (RTK) MET. InlB is a MET agonist and induces bacterial host cell invasion. Activation of RTKs generally involves ligand‐induced dimerization of the receptor ectodomain. The two currently available crystal structures of the InlB:MET complex show the same arrangement of InlB and MET in a 1:1 complex, but different dimeric 2:2 assemblies. Only one of these 2:2 assemblies is predicted to be stable by a computational procedure. This assembly is mainly stabilized by a contact between the Cap domain of InlB from one and the Sema domain of MET from another 1:1 complex. Here, we probe the physiological relevance of this interaction. We generated variants of the leucine‐rich repeat (LRR) protein InlB by inserting an additional repeat between the first and the second LRR. This should allow formation of the 1:1 complex but disrupt the potential 2:2 complex involving the Cap‐Sema contact due to steric distortions. A crystal structure of one of the engineered proteins showed that it folded properly. Binding affinity to MET was comparable to that of wild‐type InlB. The InlB variant induced MET phosphorylation and cell scatter like wild‐type InlB. These results suggest that the Cap‐Sema interaction is not physiologically relevant and support the previously proposed assembly, in which a 2:2 InlB:MET complex is built around a ligand dimer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号