首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-six monoclonal antibodies (MAbs) (14 neutralizing and 12 nonneutralizing) were used to examine the antigenic structure, biological properties, and natural variation of the fusion (F) glycoprotein of human type 3 parainfluenza virus (PIV3). Analysis of laboratory-selected antigenic variants and of PIV3 clinical isolates indicated that the panel of MAbs recognizes at least 20 epitopes, 14 of which participate in neutralization. Competitive binding assays indicated that the 14 neutralization epitopes are organized into three nonoverlapping antigenic sites (A, B, and C) and one bridge site (AB) and that the 6 nonneutralization epitopes form four sites (D, E, F, and G). Most of the neutralizing MAbs were involved in nonreciprocal competitive binding reactions, suggesting that they induce conformational changes in other neutralization epitopes. Fusion-inhibition and complemented-enhanced neutralization assays indicated that antigenic sites AB, B, and C may correspond to functional domains of the F molecule. Our results indicated that antibody binding alone is not sufficient for virus neutralization and that many anti-F MAbs neutralize by mechanisms not involving fusion-inhibition. The degree of antigenic variation in the F epitopes of clinical strains was examined by binding and neutralization tests. It appears that PIV3 frequently develops mutations that produce F epitopes which efficiently bind antibodies, but are completely resistant to neutralization by these antibodies.  相似文献   

2.
Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Fusion is mediated by the viral fusion (F) protein, and it undergoes large irreversible conformational changes to cause membrane merger. The C terminus of PIV5 F contains a membrane-proximal 7-residue external region (MPER), followed by the transmembrane (TM) domain and a 20-residue cytoplasmic tail. To study the sequence requirements of the F protein C terminus for fusion, we constructed chimeras containing the ectodomain of parainfluenza virus 5 F (PIV5 F) and either the MPER, the TM domain, or the cytoplasmic tail of the F proteins of the paramyxoviruses measles virus, mumps virus, Newcastle disease virus, human parainfluenza virus 3, and Nipah virus. The chimeras were expressed, and their ability to cause cell fusion was analyzed. The chimeric proteins were variably expressed at the cell surface. We found that chimeras containing the ectodomain of PIV5 F with the C terminus of other paramyxoviruses were unable to cause cell fusion. Fusion could be restored by decreasing the activation energy of refolding through introduction of a destabilizing mutation (S443P). Replacing individual regions, singly or doubly, in the chimeras with native PIV5 F sequences restored fusion to various degrees, but it did not have an additive effect in restoring activity. Thus, the F protein C terminus may be a specific structure that only functions with its cognate ectodomain. Alanine scanning mutagenesis of MPER indicates that it has a regulatory role in fusion since both hyperfusogenic and hypofusogenic mutations were found.  相似文献   

3.
Parainfluenza virus 5 (PIV5) activates and is neutralized by the alternative pathway (AP) in normal human serum (NHS) but not by heat-inactivated (HI) serum. We have tested the relationship between the fusion activity within the PIV5 F protein, the activation of complement pathways, and subsequent complement-mediated virus neutralization. Recombinant PIV5 viruses with enhanced fusion activity were generated by introducing point mutations in the F fusogenic peptide (G3A) or at a distal site near the F transmembrane domain (S443P). In contrast to wild-type (WT) PIV5, the mutant G3A and S443P viruses were neutralized by both NHS and HI serum. Unlike WT PIV5, hyperfusogenic G3A and S443P viruses were potent C4 activators, C4 was deposited on NHS-treated mutant virions, and the mutants were neutralized by factor B-depleted serum but not by C4-depleted serum. Antibodies purified from HI human serum were sufficient to neutralize both G3A and S443P viruses in vitro but were ineffective against WT PIV5. Electron microscopy data showed greater deposition of purified human antibodies on G3A and S443P virions than on WT PIV5 particles. These data indicate that single amino acid changes that enhance the fusion activity of the PIV5 F protein shift the mechanism of complement activation in the context of viral particles or on the surface of virus-infected cells, due to enhanced binding of antibodies. We present general models for the relationship between enhanced fusion activity in the paramyxovirus F protein and increased susceptibility to antibody-mediated neutralization.  相似文献   

4.
Many human parainfluenza type 3 virus (PIV3) strains isolated from children with respiratory illness are resistant to neutralization by monoclonal antibodies (MAbs) which recognize epitopes in antigenic site A or B of the fusion (F) protein of the prototype 1957 PIV3 strain. The F protein genes of seven PIV3 clinical isolates were sequenced to determine whether their neutralization-resistant phenotypes were associated with specific differences in amino acids which are recognized by neutralizing MAbs. Several clinical strains which were resistant to neutralization by site A or B MAbs had amino acid differences at residues 398 or 73, respectively. These specific changes undoubtedly account for the neutralization-resistant phenotype of these isolates, since identical substitutions at residues 398 or 73 in MAb-selected escape mutants confer resistance to neutralization by site A or B MAbs. The existence of identical changes in naturally occurring and MAb-selected neutralization-resistant PIV3 strains raises the possibility that antigenically different strains may arise by immune selection during replication in partially immune children. Three of the seven clinical strains examined had differences in their F protein cleavage site sequence. Whereas the prototype PIV3 strain has the cleavage site sequence Arg-Thr-Lys-Arg, one clinical isolate had the sequence Arg-Thr-Arg-Arg and two isolates had the sequence Arg-Thr-Glu-Arg. The different cleavage site sequences of these viruses did not affect their level of replication in either continuous simian or bovine kidney cell monolayers (in the presence or absence of exogenous trypsin or plasmin) or in the upper or lower respiratory tract of rhesus monkeys. We conclude that two nonconsecutive basic residues within the F protein cleavage site are sufficient for efficient replication of human PIV3 in primates.  相似文献   

5.
For most parainfluenza viruses, a virus type-specific interaction between the hemagglutinin-neuraminidase (HN) and fusion (F) proteins is a prerequisite for mediating virus-cell fusion and cell-cell fusion. The molecular basis of this functional interaction is still obscure partly because it is unknown which region of the F protein is responsible for the physical interaction with the HN protein. Our previous cell-cell fusion assay using the chimeric F proteins of parainfluenza virus 5 (PIV5) and simian virus 41 (SV41) indicated that replacement of two domains in the head region of the PIV5 F protein with the SV41 F counterparts bestowed on the PIV5 F protein the ability to induce cell-cell fusion on coexpression with the SV41 HN protein while retaining its ability to induce fusion with the PIV5 HN protein. In the study presented here, we furthered the chimeric analysis of the F proteins of PIV5 and SV41, finding that the PIV5 F protein could be converted to an SV41 HN-specific chimeric F protein by replacing five domains in the head region with the SV41 F counterparts. The five SV41 F-protein-derived domains of this chimera were then divided into 16 segments; 9 out of 16 proved to be not involved in determining its specificity for the SV41 HN protein. Finally, mutational analyses of a chimeric F protein, which harbored seven SV41 F-protein-derived segments, revealed that replacement of at most 21 amino acids of the PIV5 F protein with the SV41 F-protein counterparts was enough to convert its HN protein specificity.  相似文献   

6.
Paramyxovirus membrane glycoproteins F (fusion protein) and HN, H, or G (attachment protein) are critical for virus entry, which occurs through fusion of viral and cellular envelopes. The F protein folds into a homotrimeric, metastable prefusion form that can be triggered by the attachment protein to undergo a series of structural rearrangements, ultimately folding into a stable postfusion form. In paramyxovirus-infected cells, the F protein is activated in the Golgi apparatus by cleavage adjacent to a hydrophobic fusion peptide that inserts into the target membrane, eventually bringing the membranes together by F refolding. However, it is not clear how the attachment protein, known as HN in parainfluenza virus 5 (PIV5), interacts with F and triggers F to initiate fusion. To understand the roles of various F protein domains in fusion triggering and metastability, single point mutations were introduced into the PIV5 F protein. By extensive study of F protein cleavage activation, surface expression, and energetics of fusion triggering, we found a role for an immunoglobulin-like (Ig-like) domain, where multiple hydrophobic residues on the PIV5 F protein may mediate F-HN interactions. Additionally, destabilizing mutations of PIV5 F that resulted in HN trigger-independent mutant F proteins were identified in a region along the border of F trimer subunits. The positions of the potential HN-interacting region and the region important for F stability in the lower part of the PIV5 F prefusion structure provide clues to the receptor-binding initiated, HN-mediated F trigger.  相似文献   

7.
We have previously identified 11 epitopes located in two topologically nonoverlapping antigenic sites (A and B) and a third bridging site (C) on the human type 3 parainfluenza virus (PIV3) hemagglutinin-neuraminidase (HN) glycoprotein by using monoclonal antibodies (MAbs) which inhibit hemagglutination and virus infectivity (K. L. Coelingh, C. C. Winter, and B. R. Murphy, Virology 143:569-582, 1985). We have identified three additional antigenic sites (D, E, and F) on the HN molecule by competitive-binding assays of anti-HN MAbs which have no known biological activity. Epitopes in sites A, D, and F are conserved on the bovine PIV3 HN glycoprotein and also among a wide range of human isolates. The dideoxy method was used to identify nucleotide substitutions in the HN genes of antigenic variants selected with neutralizing MAbs representing epitopes in site A which are shared by human and bovine PIV3. The deduced amino acid substitutions in the variants were located in separate hydrophilic stretches of HN residues which are conserved in the primary structures of the HN proteins of both human and bovine PIV3 strains.  相似文献   

8.
The fusion (F) protein of simian virus 5 (SV5) strain W3A is known to induce cell fusion in the absence of hemagglutinin-neuraminidase (HN) protein. In contrast, the F protein of SV5 strain WR induces cell fusion only when coexpressed with the HN protein, the same as do other paramyxovirus F proteins. When Leu-22 in the subunit F2 of the WR F protein is replaced with the counterpart (Pro) in the W3A F protein, the resulting mutant L22P induces extensive cell fusion by itself. In the present study, we obtained anti-L22P monoclonal antibodies (MAbs) 21-1 and 6-7, whose epitopes were located in the middle (amino acids [aa] 227 to 320) of subunit F1. The amino-terminal region (aa 20 to 47) of subunit F2 was also involved in the formation of MAb 21-1 epitope. Flow cytometric analysis revealed that both the MAbs reacted very faintly with native WR F protein that was expressed on the cell surface whereas they reacted efficiently with native L22P irrespective of whether it is cleaved into F1 and F2. However, by heating the cells at 47 degrees C after mild formaldehyde fixation, the epitopes for MAb 6-7 and mAb 21-1 in the WR F protein were exposed and the reactivity of the MAbs with the WR F protein became comparable to their reactivity with L22P. Thus, the two MAbs seem to distinguish the difference in native conformation between fusogenic mutant L22P and its parental nonfusogenic WR F protein. The native conformation of L22P may represent an intermediate between native and postfusion conformations of a typical paramyxovirus F protein.  相似文献   

9.
The fusion (F) protein of simian virus 5 (strain W3A) induced extensive cell fusion in BHK cells when expressed alone, while that of strain WR did not. Mutational analysis demonstrated that the fusing activity can be transferred to the WR F protein by a proline residue at position 22 of subunit W3A F2.  相似文献   

10.
Electron cryomicrographs of intact parainfluenza virus 5 (PIV5) virions revealed two different surface structures, namely, a continuous layer and distinct individual spikes. The structure of these spikes reconstructed from intact virions was compared with known F ectodomain structures and was found to be different from the prefusion PIV5 F0 structure but, surprisingly, very similar to the human PIV3 F postfusion structure. Hence, we conclude that the individual F1+F2 spikes in intact PIV5 virions also correspond to the postfusion state. Since the observed fusion activity of PIV5 virions has to be associated with prefusion F1+F2 proteins, they have necessarily to be localized in the continuous surface structure. The data therefore strongly suggest that the prefusion state of the F1+F2 protein requires stabilization, most probably by the association with hemagglutinin-neuraminidase. The conversion of F1+F2 proteins from the prefusion toward the postfusion state while embedded in the virus membrane is topologically difficult to comprehend on the basis of established models and demands reconsideration of our current understanding.  相似文献   

11.
cDNA clones containing the complete coding sequences for the human parainfluenza virus type 3 (PIV3) fusion (F) and hemagglutinin-neuraminidase (HN) glycoprotein genes were inserted into the thymidine kinase gene of vaccinia virus (WR strain) under the control of the P7.5 early-late vaccinia virus promotor. The recombinant vaccinia viruses, designated vaccinia-F and vaccinia-HN, expressed glycoproteins in cell culture that appeared to be authentic with respect to glycosylation, disulfide linkage, electrophoretic mobility, cell surface expression, and, in the case of the HN protein, biological activity. Cotton rats inoculated intradermally with vaccinia-HN developed serum neutralizing antibody titers equal to that induced by respiratory tract infection with PIV3, whereas animals receiving vaccinia-F had threefold lower neutralizing antibody titers. A single immunization with either recombinant vaccinia virus induced nearly complete resistance in the lower respiratory tract of these animals. With regard to protection in the upper respiratory tract, animals immunized with vaccinia-HN or vaccinia-F exhibited reductions in PIV3 replication of greater than 3,000-fold and 6-fold, respectively. This large difference (greater than 500-fold) in reduction of PIV3 replication in the upper respiratory tract was in contrast to the relatively modest difference (3-fold) in serum neutralizing antibody titers induced by vaccinia-HN versus vaccinia-F. This dissociation between the level of neutralizing antibodies and protection suggested that immunity to PIV3 is complex, and that immune mechanisms other than serum neutralizing antibodies make important contributions to resistance to infection. Overall, under these experimental conditions, vaccinia-HN induced a substantially more protective immune response than did vaccinia-F.  相似文献   

12.
The hemagglutinin-neuraminidase (HN) gene sequence was determined for 16 antigenic variants of human parainfluenza virus type 3 (PIV3). The variants were selected by using monoclonal antibodies (MAbs) to the HN protein which inhibit neuraminidase, hemagglutination, or both activities. Each variant had a single-point mutation in the HN gene, coding for a single amino acid substitution in the HN protein. Operational and topographic maps of the HN protein correlated well with the relative positions of the substitutions. There was little correlation between the cross-reactivity of a MAb with the bovine PIV3 HN and the amount of amino acid homology between the human and bovine PIV3 HN proteins in the regions of the epitopes, suggesting that many of the epitopes are conformational in nature. Computer-assisted analysis of the HN protein predicted a secondary structure composed primarily of hydrophobic beta sheets interconnected by random hydrophilic coil structures. The HN epitopes were located in predicted coil regions. Epitopes recognized by MAbs which inhibit neuraminidase activity of the virus were located in a region which appears to be structurally conserved among several paramyxovirus HN proteins and which may represent the sialic cid-binding site of the HN molecule.  相似文献   

13.
WR1065 is an aminothiol with selective cytoprotective effects in normal cells compared with cancer cells. In a previous study (North, S., El-Ghissassi, F., Pluquet, O., Verhaegh, G., and Hainaut, P. (2000) Oncogene 19, 1206-1214), we have shown that WR1065 activates wild-type p53 in cultured cells. Here we show that WR1065 induces p53 to accumulate through escape from proteasome-dependent degradation. This accumulation is not prevented by inhibitors of phosphatidylinositol 3-kinases and is not accompanied by phosphorylation of Ser-15, -20, or -37, which are common targets of the kinases activated in response to DNA damage. Furthermore, WR1065 activates the JNK (c-Jun N-terminal kinase), decreases complex formation between p53 and inactive JNK, and phosphorylates p53 at Thr-81, a known site of phosphorylation by JNK. A dominant negative form of JNK (JNK-APF) reduces by 50% the activation of p53 by WR1065. Thus, WR1065 activates p53 through a JNK-dependent signaling pathway. This pathway may prove useful for pharmacological modulation of p53 activity through non-genotoxic mechanisms.  相似文献   

14.
For most paramyxoviruses, virus type-specific interaction between fusion (F) protein and attachment protein (hemagglutinin-neuraminidase [HN], hemagglutinin [H], or glycoprotein [G]) is a prerequisite for mediating virus-cell fusion and cell-cell fusion. Our previous cell-cell fusion assay using the chimeric F proteins of human parainfluenza virus 2 (HPIV2) and simian virus 41 (SV41) suggested that the middle region of the HPIV2 F protein contains the site(s) that determines its specificity for the HPIV2 HN protein. In the present study, we further investigated the sites of the F protein that could be critical for determining the HN protein specificity. By analyzing the reported structure of the F protein of parainfluenza virus 5 (PIV5), we found that four major domains (M1, M2, M3, and M4) and five minor domains (A to E) in the middle region of the PIV5 F protein were exposed on the trimer surface. We then replaced these domains with the SV41 F counterparts individually or in combination and examined whether the resulting chimeras could mediate cell-cell fusion when coexpressed with the SV41 HN protein. The results showed that a chimera designated M(1+2), which harbored SV41 F-derived domains M1 and M2, mediated cell-cell fusion with the coexpressed SV41 HN protein, suggesting that these domains are involved in determining the HN protein specificity. Intriguingly, another chimera which harbored the SV41 F-derived domain B in addition to domains M1 and M2 showed increased specificity for the SV41 HN protein compared to that of M(1+2), although it was capable of mediating cell-cell fusion by itself.  相似文献   

15.
We sought to develop a live attenuated parainfluenza virus type 2 (PIV2) vaccine strain for use in infants and young children, using reverse genetic techniques that previously were used to rapidly produce a live attenuated PIV1 vaccine candidate. The PIV1 vaccine candidate, designated rPIV3-1cp45, was generated by substituting the full-length HN and F proteins of PIV1 for those of PIV3 in the attenuated cp45 PIV3 vaccine candidate (T. Tao et al., J. Virol. 72:2955-2961, 1998; M. H. Skiadopoulos et al., Vaccine 18:503-510, 1999). However, using the same strategy, we failed to recover recombinant chimeric PIV3-PIV2 isolate carrying the full-length PIV2 glycoproteins in a wild-type PIV3 backbone. Viable PIV3-PIV2 chimeras were recovered when chimeric HN and F open reading frames (ORFs) rather than complete PIV2 F and HN ORFs were used to construct the full-length cDNA. The recovered viruses, designated rPIV3-2CT, in which the PIV2 ectodomain and transmembrane domain were fused to the PIV3 cytoplasmic domain, and rPIV3-2TM, in which the PIV2 ectodomain was fused to the PIV3 transmembrane and cytoplasmic tail domain, possessed similar in vitro and in vivo phenotypes. Thus, it appeared that only the cytoplasmic tail of the HN or F glycoprotein of PIV3 was required for successful recovery of PIV3-PIV2 chimeras. Although rPIV3-2CT and rPIV3-2TM replicated efficiently in vitro, they were moderately to highly attenuated for replication in the respiratory tracts of hamsters, African green monkeys (AGMs), and chimpanzees. This unexpected finding indicated that chimerization of the HN and F proteins of PIV2 and PIV3 itself specified an attenuation phenotype in vivo. Despite this attenuation, these viruses were highly immunogenic and protective against challenge with wild-type PIV2 in hamsters and AGMs, and they represent promising candidates for clinical evaluation as a vaccine against PIV2. These chimeric viruses were further attenuated by the addition of 12 mutations of PIV3cp45 which lie outside of the HN and F genes. The attenuating effects of these mutations were additive with that of the chimerization, and thus inclusion of all or some of the cp45 mutations provides a means to further attenuate the PIV3-PIV2 chimeric vaccine candidates if necessary.  相似文献   

16.
17.
18.
Aspartate aminotransferase has been known to undergo a significant conformational change, in which the small domain approaches the large domain, and the residues at the entrance of the active site pack together, on binding of substrates. Accompanying this conformational change is a two-unit increase in the pK(a) of the pyridoxal 5'-phosphate-Lys(258) aldimine, which has been proposed to enhance catalysis. To elucidate how the conformational change is coupled to the shift in the aldimine pK(a) and how these changes are involved in catalysis, we analyzed structurally and kinetically an enzyme in which Val(39) located at both the domain interface and the entrance of the active site was replaced with a bulkier residue, Phe. The V39F mutant enzyme showed a more open conformation, and the aldimine pK(a) was lowered by 0.7 unit compared with the wild-type enzyme. When Asn(194) had been replaced by Ala in advance, the V39F mutation did not decrease the aldimine pK(a), showing that the domain rotation controls the aldimine pK(a) via the Arg(386)-Asn(194)-pyridoxal 5'-phosphate linkage system. The maleate-bound V39F enzyme showed the aldimine pK(a) 0.9 unit lower than that of the maleate-bound wild-type enzyme. However, the positions of maleate, Asn(194), and Arg(386) were superimposable between the mutant and the wild-type enzymes; therefore, the domain rotation was not the cause of the lowered aldimine pK(a) value. The maleate-bound V39F enzyme showed an altered side-chain packing pattern in the 37-39 region, and the lack of repulsion between Gly(38) carbonyl O and Tyr(225) Oeta seemed to be the cause of the reduced pK(a) value. Kinetic analysis suggested that the repulsion increases the free energy level of the Michaelis complex and promotes the catalytic reaction.  相似文献   

19.
Paramyxovirus entry into cells requires the fusion protein (F) and a receptor binding protein (hemagglutinin-neuraminidase [HN], H, or G). The multifunctional HN protein of some paramyxoviruses, besides functioning as the receptor (sialic acid) binding protein (hemagglutinin activity) and the receptor-destroying protein (neuraminidase activity), enhances F activity, presumably by lowering the activation energy required for F to mediate fusion of viral and cellular membranes. Before or upon receptor binding by the HN globular head, F is believed to interact with the HN stalk. Unfortunately, until recently none of the receptor binding protein crystal structures have shown electron density for the stalk domain. Parainfluenza virus 5 (PIV5) HN exists as a noncovalent dimer-of-dimers on the surface of cells, linked by a single disulfide bond in the stalk. Here we present the crystal structure of the PIV5-HN stalk domain at a resolution of 2.65 Å, revealing a four-helix bundle (4HB) with an upper (N-terminal) straight region and a lower (C-terminal) supercoiled part. The hydrophobic core residues are a mix of an 11-mer repeat and a 3- to 4-heptad repeat. To functionally characterize the role of the HN stalk in F interactions and fusion, we designed mutants along the PIV5-HN stalk that are N-glycosylated to physically disrupt F-HN interactions. By extensive study of receptor binding, neuraminidase activity, oligomerization, and fusion-promoting functions of the mutant proteins, we found a correlation between the position of the N-glycosylation mutants on the stalk structure and their neuraminidase activities as well as their abilities to promote fusion.  相似文献   

20.
ATP hydrolysis by F1-ATPase is strongly inhibited by cationic rhodamines; neutral rhodamines are very poor inhibitors. Rhodamine 6G is a noncompetitive inhibitor of purified F0F1-ATPase and submitochondrial particles, however, an uncompetitive inhibitor of F1-ATPase (KI approximately equal to 2.4 microM for all three enzyme forms). Ethidium bromide is a noncompetitive inhibitor of F0F1-ATPase, submitochondrial particles and also F1-ATPase (KI approximately equal to 270 microM). Neither of the inhibitors affects the negative cooperativity (nH approximately equal to 0.7). The non-identical binding sites for rhodamine 6G and ethidium bromide are located on the F1-moiety and are topologically distinct from the catalytic site. Binding of the inhibitors prevents the conformational changes essential for energy transduction. It is concluded that the inhibitor binding sites are involved in proton translocation. In F1-ATPase, binding of MgATP at a catalytic site causes conformational changes, which allosterically induce the correct structure of the rhodamine 6G binding site. In F0F1-ATPase, this conformation of the F1-moiety exists a priori, due to allosteric interactions with F0-subunits. The binding site for ethidium bromide on F1-ATPase does not require substrate binding at the catalytic site and is not affected by F0F1-subunit interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号