首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
The holococcolith Calyptrosphaera sphaeroidea Schiller was collected at Miyake‐jima Island, Japan and unialgal cultures established. Alternation of the holococcolith and heterococcolith phases was induced using new culture media (MNK, TR, and LO). Cells synchronized in the holococcolith phase were transferred into TR medium to induce a life cycle change. The heterococcolith phase, which has never been reported before, appeared after more than 40 days. The heterococcoliths were very small elliptical discs, about 0.5 μm wide and 1 μm long. Typical diploid‐type organic scales on the cell surface were observed. This phase was very stable in culture and was tolerant of unfavorable conditions. To reverse the life phase, cells in the heterococcolith phase were transferred into cold LO medium and exposed to low temperature (4°C) and low light (2 μmol photons·m?2·s?1) for 30 min before culturing at normal conditions (22.5°C and 20 μmol photons· m?2·s?1). The swimming behavior of the holococcolith cells seemed to be an indicator of the life cycle phase transition. This article reports for the first time a set of conditions that could control the transition of a coccolithophorid from one life phase to the other. Selected vitamins and trace metals induced the heterococcolith phase, whereas a slightly higher concentration of components in the basic medium along with concomitant stresses of light and temperature induced the holococcolith phase. Based on the results, we propose a hypothesis that the alternation of coccolithophorid life phases is regulated by changes between pelagic and coastal environments coupled with changes in seasonal conditions.  相似文献   

2.
We investigated the effects of zinc or lead on growth and on exudation of fluorescent dissolved organic matter (FDOM) by the marine toxic dinoflagellate Alexandrium catenella (Whedon & Kofoid) Balech. The species was exposed to increasing free zinc (1.34 × 10?7 M–3.98 × 10?6 M) or lead (5.13 × 10?9 M–1.82 × 10?7 M) concentra‐tions. Low metal levels ([Zn2+] = 1.34 × 10?7 M; [Pb2+] = 5.13 × 10?9 M) had no effect on cell growth. Toxic effects were observed from higher metal contamination ([Zn2+] = 3.98 × 10?6 M; [Pb2+] = 6.54 × 10?8 M), as a conversion of vegetative cells into cysts. Analysis of the released FDOM by three‐dimensional (3‐D) fluorescence spectroscopy was achieved, using the parallel factor analysis (PARAFAC). The PARAFAC modeling revealed four components associated with two contributions: one related to the biological activity; the other linked to the organic matter decomposition in the culture medium. The C1 component combined a tryptophan peak and characteristics of humic substances, whereas the C2 component was considered as a tryptophan protein fluorophore. The two others C3 and C4 components were associated with marine organic matter production. Relea‐sed fluorescent substances were induced by low ([Zn2+]= 1.34 × 10?7 M; [Pb2+] = 5.13 × 10?9 M) and moderate ([Zn2+] = 6.21 × 10?7 M; [Pb2+] = 2.64× 10?9 M) metal concentrations, suggesting the activation of cellular mechanisms in response to metal stress, to exudate FDOM that could complex metal cations and reduce their toxicity toward A. catenella cells.  相似文献   

3.
It has long been stated that the K+‐Cl? cotransporters (KCCs) are activated during cell swelling through dephosphorylation of their cytoplasmic domains by a protein phosphatase (PP) but that other enzymes are involved by targeting this PP or the KCCs directly. To date, however, the role of signaling intermediates in KCC regulation has been deduced from indirect evidence rather than in vitro phosphorylation studies, and examined after simulation of ion transport through cell swelling or N‐ethylmaleimide treatment. In this study, the oocyte expression system was used to examine the effects of changes in cell volume (CVOL) and intracellular [Cl?] ([Cl?]i) on the activity and phosphorylation levels (PLEV) of KCC4, and determine whether these effects are mediated by PP1 or phorbol myristate acetate (PMA)‐sensitive effectors. We found that (1) low [Cl?]i or low CVOL leads to decreased activity but increased PLEV, (2) high CVOL leads to increased activity but no decrease in PLEV and (3) calyculin A (Cal A) or PMA treatment leads to decreased activity but no increase in PLEV. Thus, we have shown for the first time that one of the KCCs can be regulated through direct phosphorylation, that changes in [Cl?]i or CVOL modify the activity of signaling enzymes at carrier sites, and that the effectors directly involved do not include a Cal A‐sensitive PP in contrast to the widely held view. J. Cell. Physiol. 219: 787–796, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Recently, we reported that reduction of intracellular Cl? concentration ([Cl?]i) inhibited proliferation of MKN28 gastric cancer cells by diminishing the transition rate from G1 to S cell‐cycle phase through upregulation of p21, cyclin‐dependent kinase inhibitor, in a p53‐independent manner. However, it is still unknown how intracellular Cl? regulates p21 expression level. In this study, we demonstrate that mitogen‐activated protein kinases (MAPKs) are involved in the p21 upregulation and cell‐cycle arrest induced by reduction of [Cl?]i. Culture of MKN28 cells in a low Cl? medium significantly induced phosphorylation (activation) of MAPKs (ERK, p38, and JNK) and G1/S cell‐cycle arrest. To clarify the involvement of MAPKs in p21 upregulation and cell growth inhibition in the low Cl? medium, we studied effects of specific MAPKs inhibitors on p21 upregulation and G1/S cell‐cycle arrest in MKN28 cells. Treatment with an inhibitor of p38 or JNK significantly suppressed p21 upregulation caused by culture in a low Cl? medium and rescued MKN28 cells from the low Cl?‐induced G1 cell‐cycle arrest, whereas treatment with an ERK inhibitor had no significant effect on p21 expression or the growth of MKN28 cells in the low Cl? medium. These results strongly suggest that the intracellular Cl? affects the cell proliferation via activation of p38 and/or JNK cascades through upregulation of the cyclin‐dependent kinase inhibitor (p21) in a p53‐independent manner in MKN28 cells. J. Cell. Physiol. 223:764–770, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Herein, P′2‐type Na0.67[Ni0.1Fe0.1Mn0.8]O2 is introduced as a promising new cathode material for sodium‐ion batteries (SIBs) that exhibits remarkable structural stability during repetitive Na+ de/intercalation. The O? Ni? O? Mn? O? Fe? O bond in the octahedra of transition‐metal layers is used to suppress the elongation of the Mn? O bond and to improve the electrochemical activity, leading to the highly reversible Na storage mechanism. A high discharge capacity of ≈220 mAh g?1 (≈605 Wh kg?1) is delivered at 0.05 C (13 mAg?1) with a high reversible capacity of ≈140 mAh g?1 at 3 C and excellent capacity retention of 80% over 200 cycles. This performance is associated with the reversible P′2–OP4 phase transition and small volume change upon charge and discharge (≈3%). The nature of the sodium storage mechanism in a full cell paired with a hard carbon anode reveals an unexpectedly high energy density of ≈542 Wh kg?1 at 0.2 C and good capacity retention of ≈81% for 500 cycles at 1 C (260 mAg?1).  相似文献   

6.
Cycads were a dominant plant functional type during the Mesozoic Era when atmospheric carbon dioxide [CO2] greatly exceeded current conditions. Cycads, now rare and endangered, are slow‐growing perennial gymnosperms that develop carbon‐rich structural biomass, such as sclerophyllous leaves, dense stems and massive reproductive cones. Is cycad carbon partitioning to specific organs a constraint of their high [CO2] evolutionary history (CO2 legacy hypothesis, CLH)? To explore changes in cycad growth, carbon partitioning and assimilation responses that could be expected during the CO2 depletion of the Cenozoic Era, individuals of the cycad species Encephalartos villosus plants were grown at four CO2 levels: 400, 550, 750 and 1000 μmol mol?1. The CLH predicts that cycad biomass and growth rates would increase in elevated [CO2] due to increased net assimilation rates, and that carbon‐dense structures would provide sufficient carbohydrate sinks to prevent photosynthetic down‐regulation even under super‐ambient [CO2] of 1000 μmol mol?1. Both hypotheses were confirmed, though the latter less strongly. Plant relative growth rates increased 23% and biomass accumulation increased 65% in 1000 μmol mol?1relative to 400 μmol mol?1 treatment groups. Mean net assimilation rates increased 130% at 1000 μmol mol?1 relative to 400 μmol mol?1 CO2, though there was some down‐regulation of maximum rate of carboxylation (Vcmax). Assimilation rates, relative growth rates, biomass and mean leaf sugar content were linearly related to [CO2] over the entire experimental range. Photosynthesis appears to be regulated by stomata at low CO2 levels and by non‐stomatal (i.e. biochemical limitations) at greater concentrations. In general, our results suggest that growth and physiological performance of cycads have been severely compromised by declining [CO2] during the Cenozoic Era, possibly contributing to the current rare and endangered status of this functional type.  相似文献   

7.
Xenopus follicles are endowed with specific receptors for ATP, ACh, and AII, transmitters proposed as follicular modulators of gamete growth and maturation in several species. Here, we studied ion‐current responses elicited by stimulation of these receptors and their activation mechanisms using the voltage‐clamp technique. All agonists elicited Cl? currents that depended on coupling between oocyte and follicular cells and on an increase in intracellular Ca2+ concentration ([Ca2+]i), but they differed in their activation mechanisms and in the localization of the molecules involved. Both ATP and ACh generated fast Cl? (FCl) currents, while AII activated an oscillatory response; a robust Ca2+ influx linked specifically to FCl activation elicited an inward current (Iiw,Ca) which was carried mainly by Cl? ions, through channels with a sequence of permeability of SCN? > I? > Br? > Cl?. Like FCl, Iiw,Ca was not dependent on oocyte [Ca2+]i; instead both were eliminated by preventing [Ca2+]i increase in the follicular cells, and also by U73122 and 2‐APB, drugs that inhibit the phospolipase C (PLC) pathway. The results indicated that FCl and Iiw,Ca were produced by the expected, PLC‐stimulated Ca2+‐release and Ca2+‐influx, respectively, and by the opening of ICl(Ca) channels located in the follicular cells. Given their pharmacological characteristics and behavior in conditions of divalent cation deprivation, Ca2+‐influx appeared to be driven through store‐operated, calcium‐like channels. The AII response, which is also known to require PLC activation, did not activate Iiw,Ca and was strictly dependent on oocyte [Ca2+]i increase; thus, ATP and ACh receptors seem to be expressed in a population of follicular cells different from that expressing AII receptors, which were coupled to the oocyte through distinct gap‐junction channels. J. Cell. Physiol. 227: 3457–3470, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
The K+‐Cl? cotransporters (KCCs) belong to the cation‐Cl? cotransporter family and consist of four isoforms and many splice variants. Their main role is to promote electroneutral efflux of K+ and Cl? ions across the surface of many cell types and, thereby, to regulate intracellular ion concentration, cell volume, and epithelial salt movement. These transport systems are induced by an increase in cell volume and are less active at lower intracellular [Cl?] (Cli), but the mechanisms at play are still ill‐defined. In this work, we have exploited the Xenopus laevis expression system to study the role of lysine‐deficient protein kinases (WNKs), protein phosphatases 1 (PP1s), and SPS1‐related proline/alanine‐rich kinase (SPAK) in KCC4 regulation during cell swelling. We have found that WNK4 and PP1 regulate KCC4 activity as part of a common signaling module, but that they do not exert their effects through SPAK or carrier dephosphorylation. We have also found that the phosphatases at play include PP1α and PP1γ1, but that WNK4 acts directly on the PP1s instead of the opposite. Unexpectedly, however, both cell swelling and a T926A substitution in the C‐terminus of full‐length KCC4 led to higher levels of heterologous K+‐Cl? cotransport and overall carrier phosphorylation. These results imply that the response to cell swelling must also involve allosteric‐sensitive kinase‐dependent phosphoacceptor sites in KCC4. They are thus partially inconsistent with previous models of KCC regulation.  相似文献   

9.
Calcium‐activated chloride channel (CaCC) plays an important role in modulating epithelial secretion. It has been suggested that in salivary tissues, sustained fluid secretion is dependent on Ca2+ influx that activates ion channels such as CaCC to initiate Cl? efflux. However direct evidence as well as the molecular identity of the Ca2+ channel responsible for activating CaCC in salivary tissues is not yet identified. Here we provide evidence that in human salivary cells, an outward rectifying Cl? current was activated by increasing [Ca2+]i, which was inhibited by the addition of pharmacological agents niflumic acid (NFA), an antagonist of CaCC, or T16Ainh‐A01, a specific TMEM16a inhibitor. Addition of thapsigargin (Tg), that induces store‐depletion and activates TRPC1‐mediated Ca2+ entry, potentiated the Cl? current, which was inhibited by the addition of a non‐specific TRPC channel blocker SKF96365 or removal of external Ca2+. Stimulation with Tg also increased plasma membrane expression of TMEM16a protein, which was also dependent on Ca2+ entry. Importantly, in salivary cells, TRPC1 silencing, but not that of TRPC3, inhibited CaCC especially upon store depletion. Moreover, primary acinar cells isolated from submandibular gland also showed outward rectifying Cl? currents upon increasing [Ca2+]i. These Cl? currents were again potentiated with the addition of Tg, but inhibited in the presence of T16Ainh‐A01. Finally, acinar cells isolated from the submandibular glands of TRPC1 knockout mice showed significant inhibition of the outward Cl? currents without decreasing TMEM16a expression. Together the data suggests that Ca2+ entry via the TRPC1 channels is essential for the activation of CaCC. J. Cell. Physiol. 9999: 2848–2856, 2015. © 2015 Wiley Periodicals, Inc.
  相似文献   

10.
Ozone (O3) damage to leaves can reduce plant photosynthesis, which suggests that declines in ambient O3 concentrations ([O3]) in the United States may have helped increase gross primary production (GPP) in recent decades. Here, we assess the effect of long‐term changes in ambient [O3] using 20 years of observations at Harvard forest. Using artificial neural networks, we found that the effect of the inclusion of [O3] as a predictor was slight, and independent of O3 concentrations, which suggests limited high‐frequency O3 inhibition of GPP at this site. Simulations with a terrestrial biosphere model, however, suggest an average long‐term O3 inhibition of 10.4% for 1992–2011. A decline of [O3] over the measurement period resulted in moderate predicted GPP trends of 0.02–0.04 μmol C m?2 s?1 yr?1, which is negligible relative to the total observed GPP trend of 0.41 μmol C m?2 s?1 yr?1. A similar conclusion is achieved with the widely used AOT40 metric. Combined, our results suggest that ozone reductions at Harvard forest are unlikely to have had a large impact on the photosynthesis trend over the past 20 years. Such limited effects are mainly related to the slow responses of photosynthesis to changes in [O3]. Furthermore, we estimate that 40% of photosynthesis happens in the shade, where stomatal conductance and thus [O3] deposition is lower than for sunlit leaves. This portion of GPP remains unaffected by [O3], thus helping to buffer the changes of total photosynthesis due to varied [O3]. Our analyses suggest that current ozone reductions, although significant, cannot substantially alleviate the damages to forest ecosystems.  相似文献   

11.
The influence of the bonding form distribution of Fe, Ni, Co and Mn and their potential bioavailability during the anaerobic degradation of maize straw was investigated. Two reactors were operated over 117 days at 37°C and different dosage strategies of mineral were studied in reactor (R2). Control reactor (R1) was metal‐limited over time. mineral supplementation (1 g L?1) once a week reported the highest methane yield (257 mL g?1 VS) with 30% of increment. Ni and Co predominated in their oxidizable bonding forms and Fe mainly existed as residual and oxidizable fractions. The potential bioavailability (Mn ?? Co ≈ Ni ? Fe) of R2 was higher comparing to R1. Metal deprivation in R1 led to depletion of both sequential extraction fractions and total metal concentrations until the end of the process. This study confirmed that the dosage strategy of mineral has a stimulatory effect on methane production from crop maize waste.  相似文献   

12.
While Ni‐rich cathode materials combined with highly conductive and mechanically sinterable sulfide solid electrolytes are imperative for practical all‐solid‐state Li batteries (ASLBs), they suffer from poor performance. Moreover, the prevailing wisdom regarding the use of Li[Ni,Co,Mn]O2 in conventional liquid electrolyte cells, that is, increased capacity upon increased Ni content, at the expense of degraded cycling stability, has not been applied in ASLBs. In this work, the effect of overlooked but dominant electrochemo‐mechanical on the performance of Ni‐rich cathodes in ASLBs are elucidated by complementary analysis. While conventional Li[Ni0.80Co0.16Al0.04]O2 (NCA80) with randomly oriented grains is prone to severe particle disintegration even at the initial cycle, the radially oriented rod‐shaped grains in full‐concentration gradient Li[Ni0.75Co0.10Mn0.15]O2 (FCG75) accommodate volume changes, maintaining mechanical integrity. This accounts for their different performance in terms of reversible capacity (156 vs 196 mA h g?1), initial Coulombic efficiency (71.2 vs 84.9%), and capacity retention (46.9 vs 79.1% after 200 cycles) at 30 °C. The superior interfacial stability for FCG75/Li6PS5Cl to for NCA80/Li6PS5Cl is also probed. Finally, the reversible operation of FCG75/Li ASLBs is demonstrated. The excellent performance of FCG75 ranks at the highest level in the ASLB field.  相似文献   

13.
This study evaluated effects of foliar spraying 24‐epibrassinoide (24‐EBL) on the growth of salt‐stressed canola. Seedlings at the four‐leaf stage were treated with 150 mm NaCl and different concentrations of 24‐EBL (10?6, 10?8, 10?10, 10?12 m ) for 15 days. A concentration of 10?10 m 24‐EBL was chosen as optimal and used in a subsequent experiment on plant biomass and leaf water potential parameters. The results showed that 24‐EBL mainly promoted shoot growth of salt‐stressed plants and also ameliorated leaf water status. Foliar spraying of salt‐stressed canola with 24‐EBL increased osmotic adjustment ability in all organs, especially in younger leaves and roots. This was mainly due to an increase of free amino acid content in upper leaves, soluble sugars in middle leaves, organic acids and proline in lower leaves, all of these compounds in roots, as well as essential inorganic ions. Na+ and Cl? sharply increased in different organs under salt stress, and 24‐EBL reduced their accumulation. 24‐EBL improved the uptake of K+, Ca2+, Mg2+ and NO3? in roots, which were mainly transported to upper leaves, while NO3? was mainly transported to middle leaves. Thus, 24‐EBL improvements in ion homeostasis of K+/Na+, Ca2+/Na+, Mg2+/Na+ and NO3?/Cl?, especially in younger leaves and roots, could be explained. As most important parts, younger leaves and roots were the main organs protected by 24‐EBL via improvement in osmotic adjustment ability and ion homeostasis. Further, physiological status of growth of salt‐stressed canola was ameliorated after 24‐EBL treatment.  相似文献   

14.
Understanding the direct and indirect effects of elevated [CO2] and temperature on insect herbivores and how these factors interact are essential to predict ecosystem‐level responses to climate change scenarios. In three concurrent glasshouse experiments, we measured both the individual and interactive effects of elevated [CO2] and temperature on foliar quality. We also assessed the interactions between their direct and plant‐mediated effects on the development of an insect herbivore of eucalypts. Eucalyptus tereticornis saplings were grown at ambient or elevated [CO2] (400 and 650 μmol mol?1 respectively) and ambient or elevated ( + 4 °C) temperature for 10 months. Doratifera quadriguttata (Lepidoptera: Limacodidae) larvae were feeding directly on these trees, on their excised leaves in a separate glasshouse, or on excised field‐grown leaves within the temperature and [CO2] controlled glasshouse. To allow insect gender to be determined and to ensure that any sex‐specific developmental differences could be distinguished from treatment effects, insect development time and consumption were measured from egg hatch to pupation. No direct [CO2] effects on insects were observed. Elevated temperature accelerated larval development, but did not affect leaf consumption. Elevated [CO2] and temperature independently reduced foliar quality, slowing larval development and increasing consumption. Simultaneously increasing both [CO2] and temperature reduced these shifts in foliar quality, and negative effects on larval performance were subsequently ameliorated. Negative nutritional effects of elevated [CO2] and temperature were also independently outweighed by the direct positive effect of elevated temperature on larvae. Rising [CO2] and temperature are thus predicted to have interactive effects on foliar quality that affect eucalypt‐feeding insects. However, the ecological consequences of these interactions will depend on the magnitude of concurrent temperature rise and its direct effects on insect physiology and feeding behaviour.  相似文献   

15.
Marine calcifying eukaryotic phytoplankton (coccolithophores) is a major contributor to the pelagic production of CaCO3 and plays an important role in the biogeochemical cycles of C, Ca and other divalent cations present in the crystal structure of calcite. The geochemical signature of coccolithophore calcite is used as palaeoproxy to reconstruct past environmental conditions and to understand the underlying physiological mechanisms (vital effects) and precipitation kinetics. Here, we present the stable Sr isotope fractionation between seawater and calcite (Δ88/86Sr) of laboratory cultured coccolithophores in individual dependence of temperature and seawater carbonate chemistry. Coccolithophores were cultured within a temperature and a pCO2 range from 10 to 25°C and from 175 to 1,240 μatm, respectively. Both environmental drivers induced a significant linear increase in coccolith stable Sr isotope fractionation. The temperature correlation at constant pCO2 for Emiliania huxleyi and Coccolithus braarudii is expressed as Δ88/86Sr = ?7.611 × 10?3 T + 0.0061. The relation of Δ88/86Sr to pCO2 was tested in Emiliania huxleyi at 10 and 20°C and resulted in Δ88/86Sr = ?5.394 × 10?5 pCO2 – 0.0920 and Δ88/86Sr = ?5.742 × 10?5 pCO2 – 0.1351, respectively. No consistent relationship was found between coccolith Δ88/86Sr and cellular physiology impeding a direct application of fossil coccolith Δ88/86Sr as coccolithophore productivity proxy. An overall significant correlation was detected between the elemental distribution coefficient (DSr) and Δ88/86Sr similar to inorganic calcite with a physiologically induced offset. Our observations indicate (i) that temperature and pCO2 induce specific effects on coccolith Δ88/86Sr values and (ii) that strontium elemental ratios and stable isotope fractionation are mainly controlled by precipitation kinetics when embedded into the crystal lattice and subject to vital effects during the transmembrane transport from seawater to the site of calcification. These results provide an important step to develop a coccolith Δ88/86Sr palaeoproxy complementing the existing toolbox of palaeoceanography.  相似文献   

16.
A new system for the determination of nucleic acid by rare earth metallic porphyrin of [tetra‐(3‐methoxy‐4‐hydroxyphenyl)]–Tb3+ [T(3‐MO‐4HP)–Tb3+] porphyrin as fluorescence spectral probe has been developed in this paper. Nucleic acid can enhance the fluorescence intensity of the T(3‐MO‐4HP)–Tb3+ porphyrin in the presence of bis(2‐ethylhexyl)sulfosuccinate sodium salt(AOT) micelle. In pH 8.00 Tris–HCl buffer solution, under optimum conditions, the enhanced fluorescence intensity is in proportion to the concentration of nucleic acids in the range of 0.05–3.00 µg mL?1 for calf thymus DNA (ct DNA) and 0.03–4.80 µg mL?1 for fish sperm DNA(fs DNA). Their detection limits are 0.03 and 0.01 µg mL?1, respectively. In addition, the binding interaction mechanism between T(3‐MO‐4HP)–Tb3+ porphyrin and ct DNA is also investigated by resonance scattering and fluorescence spectra. The maximum binding number is calculated by molar ratio method. The new system can be used for the determination of nucleic acid in pig liver, yielding satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Prussian blue analogs (PBAs) are especially investigated as superior cathodes for sodium‐ion batteries (SIBs) due to high theoretical capacity (≈170 mA h g?1) with 2‐Na storage and low cost. However, PBAs suffer poor cyclability due to irreversible phase transition in deep charge/discharge states. PBAs also suffer low crystallinity, with considerable [Fe(CN)6] vacancies, and coordinated water in crystal frameworks. Presently, a new chelating agent/surfactant coassisted crystallization method is developed to prepare high‐quality (HQ) ternary‐metal NixCo1?x[Fe(CN)6] PBAs. By introducing inactive metal Ni to suppress capacity fading caused by excessive lattice distortion, these PBAs have tunable limits on depth of charge/discharge. HQ‐NixCo1?x[Fe(CN)6] (x = 0.3) demonstrates the best reversible Na‐storage behavior with a specific capacity of ≈145 mA h g?1 and a remarkably improved cycle performance, with ≈90% capacity retention over 600 cycles at 5 C. Furthermore, a dual‐insertion full cell on the cathode and NaTi2(PO4)3 anode delivers reversible capacity of ≈110 mA h g?1 at a current rate of 1.0 C without capacity fading over 300 cycles, showing promise as a high‐performance SIB for large‐scale energy‐storage systems. The ultrastable cyclability achieved in the lab and explained herein is far beyond that of any previously reported PBA‐based full cells.  相似文献   

18.
A novel blue luminescent 6‐chloro‐2‐(4‐cynophenyl) substituted diphenyl quinoline (Cl‐CN DPQ) organic phosphor has been synthesized by the acid‐catalyzed Friedlander reaction and then characterized to confirm structural, optical and thermal properties. Structural properties of Cl‐CN‐DPQ were analyzed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X‐ray diffraction technique (XRD) and scanning electron microscopy (SEM) and energy dispersive analysis of X‐ray (EDAX) spectroscopy. FTIR spectra confirmed the presence of different functional groups and bond stretching. 1H–NMR and 13C–NMR confirmed the formation of an organic Cl‐CN‐DPQ compound. X‐ray diffraction study provided its crystalline nature. The surface morphology of Cl‐CN‐DPQ was analyzed by SEM, while EDAX spectroscopy revealed the elemental analysis. Differential thermal analysis (TGA/DTA) disclosed its thermal stability up to 250°C. The optical properties of Cl‐CN‐DPQ were investigated by UV–vis absorption and photoluminescence (PL) measurements. Cl‐CN‐DPQ exhibits intense blue emission at 434 nm in a solid‐state crystalline powder with CIE co‐ordinates (0.157, 0.027), when excited at 373 nm. Cl‐CN‐DPQ shows remarkable Stokes shift in the range 14800–5100 cm?1, which is the characteristic feature of intense light emission. A narrow full width at half‐maximum (FWHM) value of PL spectra in the range 42–48 nm was observed. Oscillator strength, energy band gap, quantum yield, and fluorescence energy yield were also examined using UV–vis absorption and photoluminescence spectra. These results prove its applications towards developing organic luminescence devices and displays, organic phosphor‐based solar cells and displays, organic lasers, chemical sensors and many more.  相似文献   

19.
Iron acquisition by iron‐limited cyanobacteria is typically considered to be mediated mainly by siderophores, iron‐chelating molecules released by iron‐limited cyanobacteria into the environment. In this set of experiments, iron uptake by iron‐limited cells of the cyanobacterium Anabaena flos‐aquae (L.) Bory was investigated in cells resuspended in siderophore‐free medium. Removal of siderophores decreased iron‐uptake rates by ~60% compared to siderophore‐replete conditions; however, substantial rates of iron uptake remained. In the absence of siderophores, Fe(III) uptake was much more rapid from a weaker synthetic chelator [N‐(2‐hydroxyethyl)ethylenediamine‐N,N′,N′‐triacetic acid (HEDTA); log Kcond = 28.64 for Fe(III)HEDTA(OH)?] than from a very strong chelator [N,N′‐bis(2‐hydroxybenzyl)‐ethylenediamine‐N,N′‐diacetic acid (HBED); log Kcond = 31.40 for Fe(III)HBED?], and increasing chelator:Fe(III) ratios decreased the Fe(III)‐uptake rate; these results were evident in both short‐term (4 h; absence of siderophores) and long‐term (116 h; presence of siderophores) experiments. However, free (nonchelated) Fe(III) provided the most rapid iron uptake in siderophore‐free conditions. The results of the short‐term experiments are consistent with an Fe(III)‐binding/uptake mechanism associated with the cyanobacterial outer membrane that operates independently of extracellular siderophores. Iron uptake was inhibited by temperature‐shock treatments of the cells and by metabolically compromising the cells with diphenyleneiodonium; this finding indicates that the process is dependent on active metabolism to operate and is not simply a passive Fe(III)‐binding mechanism. Overall, these results point to an important, siderophore‐independent iron‐acquisition mechanism by iron‐limited cyanobacterial cells.  相似文献   

20.
Herein, a new P2‐type layered oxide is proposed as an outstanding intercalation cathode material for high energy density sodium‐ion batteries (SIBs). On the basis of the stoichiometry of sodium and transition metals, the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode is synthesized without impurities phase by partially substituting Ni and Fe into the Mn sites. The partial substitution results in a smoothing of the electrochemical charge/discharge profiles and thus greatly improves the battery performance. The P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode delivers an extremely high discharge capacity of 221.5 mAh g?1 with a high average potential of ≈2.9 V (vs Na/Na+) for SIBs. In addition, the fast Na‐ion transport in the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode structure enables good power capability with an extremely high current density of 2400 mA g?1 (full charge/discharge in 12 min) and long‐term cycling stability with ≈80% capacity retention after 500 cycles at 600 mA g?1. A combination of electrochemical profiles, in operando synchrotron X‐ray diffraction analysis, and first‐principles calculations are used to understand the overall Na storage mechanism of P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号