首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity of a lake to remove reactive nitrogen (N) through denitrification has important implications both for the lake and for downstream ecosystems. In large oligotropic lakes such as Lake Superior, where nitrate (NO3 ?) concentrations have increased steadily over the past century, deep oxygen penetration into sediments may limit the denitrification rates. We tested the hypothesis that the position of the redox gradient in lake sediments affects denitrification by measuring net N-fluxes across the sediment–water interface for intact sediment cores collected across a range of sediment oxycline values from nearshore and offshore sites in Lake Superior, as well as sites in Lake Huron and Lake Erie. Across this redox gradient, as the thickness of the oxygenated sediment layer increased from Lake Erie to Lake Superior, fluxes of NH4 + and N2 out of the sediment decreased, and sediments shifted from a net sink to a net source of NO3 ?. Denitrification of NO3 ? from overlying water decreased with thickness of the oxygenated sediment layer. Our results indicate that, unlike sediments from Lake Erie and Lake Huron, Lake Superior sediments do not remove significant amounts of water column NO3 ? through denitrification, likely as a result of the thick oxygenated sediment layer.  相似文献   

2.
Chronic lung infection by Pseudomonas aeruginosa is the major severe complication in cystic fibrosis (CF) patients, where P. aeruginosa persists and grows in biofilms in the endobronchial mucus under hypoxic conditions. Numerous polymorphonuclear leukocytes (PMNs) surround the biofilms and create local anoxia by consuming the majority of O2 for production of reactive oxygen species (ROS). We hypothesized that P. aeruginosa acquires energy for growth in anaerobic endobronchial mucus by denitrification, which can be demonstrated by production of nitrous oxide (N2O), an intermediate in the denitrification pathway. We measured N2O and O2 with electrochemical microsensors in 8 freshly expectorated sputum samples from 7 CF patients with chronic P. aeruginosa infection. The concentrations of NO3 and NO2 in sputum were estimated by the Griess reagent. We found a maximum median concentration of 41.8 µM N2O (range 1.4–157.9 µM N2O). The concentration of N2O in the sputum was higher below the oxygenated layers. In 4 samples the N2O concentration increased during the initial 6 h of measurements before decreasing for approximately 6 h. Concomitantly, the concentration of NO3 decreased in sputum during 24 hours of incubation. We demonstrate for the first time production of N2O in clinical material from infected human airways indicating pathogenic metabolism based on denitrification. Therefore, P. aeruginosa may acquire energy for growth by denitrification in anoxic endobronchial mucus in CF patients. Such ability for anaerobic growth may be a hitherto ignored key aspect of chronic P. aeruginosa infections that can inform new strategies for treatment and prevention.  相似文献   

3.
A strategy for sequential hydrocarbon bioremediation is proposed. The initial O2-requiring transformation is effected by aerobic resting cells, thus avoiding a high oxygen demand. The oxygenated metabolites can then be degraded even under anaerobic conditions when supplemented with a highly water-soluble alternative electron acceptor, such as nitrate. To develop the new strategy, some phenomena were studied by examining Pseudomonas aeruginosa fermentation. The effects of dissolved oxygen (DO) concentration on n-hexadecane biodegradation were investigated first. Under microaerobic conditions, the denitrification rate decreased as the DO concentration decreased, implying that the O2-requiring reactions were rate limiting. The effects of different nitrate and nitrite concentrations were examined next. When cultivated aerobically in tryptic soy broth supplemented with 0 to 0.35 g of NO2-N per liter, cells grew in all systems, but the lag phase was longer in the presence of higher nitrite concentrations. However, under anaerobic denitrifying conditions, even 0.1 g of NO2-N per liter totally inhibited cell growth. Growth was also inhibited by high nitrate concentrations (>1 g of NO3-N per liter). Cells were found to be more sensitive to nitrate or nitrite inhibition under denitrifying conditions than under aerobic conditions. Sequential hexadecane biodegradation by P. aeruginosa was then investigated. The initial fermentation was aerobic for cell growth and hydrocarbon oxidation to oxygenated metabolites, as confirmed by increasing dissolved total organic carbon (TOC) concentrations. The culture was then supplemented with nitrate and purged with nitrogen (N2). Nitrate was consumed rapidly initially. The live cell concentration, however, also decreased. The aqueous-phase TOC level decreased by about 40% during the initial active period but remained high after this period. Additional experiments confirmed that only about one-half of the derived TOC was readily consumable under anaerobic denitrifying conditions.  相似文献   

4.
Fertilizer use has dramatically increased the availability of nitrate (NO3 ?) in aquatic systems. Microbe-mediated denitrification is one of the predominant means of NO3 ? removal from freshwaters, yet oxygenation (O2)-induced disruptions—e.g., extreme precipitation events—can occur, resulting in a disproportional increase in nitrous oxide (N2O) production and efflux as facultative anaerobic bacterial populations use of O2 as a terminal electron acceptor increases. We examined the effects of 12- and 24-h passive O2 exposure on previously anaerobic bacterial communities focusing on denitrification enzyme activity (DEA), N2O production, and bacterial community 16S rRNA and nitrous oxide reductase gene (nosZ) profiles after 12, 24, and 48 h of anaerobic recovery. Treatments experiencing 24-h O2 exposure had significantly higher DEA 12 h into anaerobic recovery than treatments undergoing 12-h O2 exposure. Initial N2O emissions were significantly lower in the 24-h O2 exposure treatments although by 24 h a dramatic spike (tenfold relative to the 12-h O2 exposure treatments) in N2O concentrations was observed. However, within 6 h (30-h anaerobic recovery) these differences were gone. Community nosZ profiles experiencing 24-h O2 exposure exhibited reduced diversity after 24-h recovery, which corresponded with an increase in N2O emissions. However, after 48 h of anaerobic recovery, nosZ diversity had recovered. These observations highlight the effects of short-term aerobic disruption on denitrification, as well as the effects on the denitrifier community profile. Together, these data suggest that recovery to ambient N cycling is exacerbated by disturbance length due to increased lag time and subsequent loss of denitrifier community diversity.  相似文献   

5.
Intensive agriculture leads to increased nitrogen fluxes (mostly as nitrate, NO3 ?) to aquatic ecosystems, which in turn creates ecological problems, including eutrophication and associated harmful algal blooms. These problems have focused scientific attention on understanding the controls on nitrate reduction processes such as denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Our objective was to determine the effects of nutrient-tolerant bioturbating invertebrates (tubificid oligochaetes) on nitrogen cycling processes, specifically coupled nitrification–denitrification, net denitrification, DNRA, and biogeochemical fluxes (O2, NO3 ?, NH4 +, CO2, N2O, and CH4) in freshwater sediments. A mesocosm experiment determined how tubificid density and increasing NO3 ? concentrations (using N15 isotope tracing) interact to affect N cycling processes. At the lowest NO3 ? concentration and in the absence of bioturbation, the relative importance of denitrification to DNRA was similar (i.e., 49.6 and 50.4 ± 8.1 %, respectively). Increasing NO3 ? concentrations in the control cores (without fauna) stimulated denitrification, but did not enhance DNRA, which significantly altered the relative importance of denitrification compared to DNRA (94.6 vs. 5.4 ± 0.9 %, respectively). The presence of tubificid oligochaetes enhanced O2, NO3 ?, NH4 + fluxes, greenhouse gas production, and N cycling processes. The relative importance of denitrification to DNRA shifted towards favoring denitrification with both the increase in NO3 ? concentrations and the increase of bioturbation activity. Our study highlights that understanding the interactions between nutrient-tolerant bioturbating species and nitrate contamination is important for determining the nitrogen removal capacity of eutrophic freshwater ecosystems.  相似文献   

6.
Whole‐cell biocatalysis for C–H oxyfunctionalization depends on and is often limited by O2 mass transfer. In contrast to oxygenases, molybdenum hydroxylases use water instead of O2 as an oxygen donor and thus have the potential to relieve O2 mass transfer limitations. Molybdenum hydroxylases may even allow anaerobic oxyfunctionalization when coupled to anaerobic respiration. To evaluate this option, the coupling of quinoline hydroxylation to denitrification is tested under anaerobic conditions employing Pseudomonas putida (P. putida) 86, capable of aerobic growth on quinoline. P. putida 86 reduces both nitrate and nitrite, but at low rates, which does not enable significant growth and quinoline hydroxylation. Introduction of the nitrate reductase from Pseudomonas aeruginosa enables considerable specific quinoline hydroxylation activity (6.9 U gCDW?1) under anaerobic conditions with nitrate as an electron acceptor and 2‐hydroxyquinoline as the sole product (further metabolization depends on O2). Hydroxylation‐derived electrons are efficiently directed to nitrate, accounting for 38% of the respiratory activity. This study shows that molybdenum hydroxylase‐based whole‐cell biocatalysts enable completely anaerobic carbon oxyfunctionalization when coupled to alternative respiration schemes such as nitrate respiration.  相似文献   

7.
Nitric oxide (NO) is a chemical weapon within the arsenal of immune cells, but is also generated endogenously by different bacteria. Pseudomonas aeruginosa are pathogens that contain an NO-generating nitrite (NO2) reductase (NirS), and NO has been shown to influence their virulence. Interestingly, P. aeruginosa also contain NO dioxygenase (Fhp) and nitrate (NO3) reductases, which together with NirS provide the potential for NO to be metabolically cycled (NO→NO3→NO2→NO). Deeper understanding of NO metabolism in P. aeruginosa will increase knowledge of its pathogenesis, and computational models have proven to be useful tools for the quantitative dissection of NO biochemical networks. Here we developed such a model for P. aeruginosa and confirmed its predictive accuracy with measurements of NO, O2, NO2, and NO3 in mutant cultures devoid of Fhp or NorCB (NO reductase) activity. Using the model, we assessed whether NO was metabolically cycled in aerobic P. aeruginosa cultures. Calculated fluxes indicated a bottleneck at NO3, which was relieved upon O2 depletion. As cell growth depleted dissolved O2 levels, NO3 was converted to NO2 at near-stoichiometric levels, whereas NO2 consumption did not coincide with NO or NO3 accumulation. Assimilatory NO2 reductase (NirBD) or NorCB activity could have prevented NO cycling, and experiments with ΔnirB, ΔnirS, and ΔnorC showed that NorCB was responsible for loss of flux from the cycle. Collectively, this work provides a computational tool to analyze NO metabolism in P. aeruginosa, and establishes that P. aeruginosa use NorCB to prevent metabolic cycling of NO.  相似文献   

8.
A model was constructed to simulate the results of experiments which investigated nitrification and denitrification in the freshwater sediment of Lake Vilhelmsborg, Denmark (K. Jensen, N. P. Sloth, N. Risgaard-Petersen, S. Rysgaard, and N. P. Revsbech, Appl. Environ. Microbiol. 60:2094-2100, 1994). The model output faithfully represented the profiles of O2 and NO3- and rates of nitrification, denitrification, and O2 consumption as the O2 concentration in the overlying water was increased from 10 to 600 μM. The model also accurately predicted the response, to increasing O2 concentrations, of the integrated (micromoles per square meter per hour) rates of nitrification and denitrification. The simulated rates of denitrification of NO3- diffusing from the overlying water (Dw) and of NO3- generated by nitrification within the sediment (Dn) corresponded to the experimental rates as the O2 concentration in the overlying water was altered. The predicted Dw and Dn rates, as NO3- concentration in the overlying water was changed, closely resembled those determined experimentally. The model was composed of 41 layers 0.1 mm thick, of which 3 represented the diffusive boundary layer in the water. Large first-order rate constants for nitrification and denitrification were required to completely oxidize all NH4+ diffusing from the lower sediment layers and to remove much of the NO3- produced. In addition to the flux of NH4+ from below, the model required a flux of an electron donor, possibly methane. Close coupling between nitrification and denitrification, achieved by allowing denitrification to tolerate some O2 (~10 μM), was necessary to reproduce the real data. Spatial separation of the two processes (no toleration by denitrification of O2) resulted in too high NO3- concentrations and too low rates of denitrification.  相似文献   

9.
Survival of Denitrifiers in Nitrate-Free, Anaerobic Environments   总被引:3,自引:1,他引:2       下载免费PDF全文
Experiments were undertaken to explain the occurrence of a high denitrification capacity in anaerobic, NO3--free habitats. Deep layers of freshwater sediments that were buried more than 40 years ago and digested sludge were the habitats studied. The denitrifier populations were 3.1 × 103 and 3.1 × 105 cells cm-3 in deep sediments from a river and lake, respectively, and 5.3 × 106 cells cm-3 in digested sludge. The denitrification capacities of the samples reflected the population densities. Strict anaerobic procedures were used to obtain the predominant isolates that would grow on anaerobic medium with NO3-. All strict anaerobes isolated failed to denitrify. All isolates that denitrified were aerobic, gram-negative bacteria, particularly species of Pseudomonas and Alcaligenes. No detectable growth was observed when these strains were incubated with electron acceptors other than NO3- or O2. When representative isolates were added to sterile, O2- and NO3--free porewater from their original locations at their natural densities (105 cells cm-3), no change in viable population was noted over 3 months of incubation. Metabolic activity was demonstrated in these cells by slow formation of formazan granules when exposed to tetrazolium and by observation of motile cells. When [14C]glucose was added to cell suspensions of the pseudomonads that had been starved for 3 months without electron acceptors (O2 or NO3-), 14C-labeled products, including cell biomass, 14CO2, and fermentation products, were produced. The high denitrification capacity of these anaerobic environments appears to be due to conventional respiratory denitrifiers. These organisms have the capacity for long-term survival without O2 or NO3- and appear to be capable of providing for their maintenance by carrying on a low level of fermentation.  相似文献   

10.
Summary The NAD(P)H fluorescence ofPseudomonas aeruginosa dropped sharply upon addition of nitrate to an anaerobic culture, indicating that denitrification is not limited by mass transfer of nitrate through cell membrane to reach nitrate reductase. The effect of added nitrate concentration on fluorescence drop followed a typical saturation kinetics. The maximum specific denitrification rate under the studied condition was found to be 0.26±0.05 g NO 3 -N/g cells-hr.  相似文献   

11.
Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4 2? and Mg2+ are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications.  相似文献   

12.
SUMMARY. Denitrification experiments under anaerobic and aerated conditions were carried out in the laboratory with Lake Kinneret water and with pure cultures of the denitrifying bacteria Pseudomonas aeruginosa 2 Kin isolated from the lake. Although losses of nitrogen in Lake Kinneret due to denitrification have been found to occur during periods when dissolved oxygen exceeded 5 mg l?1 it was found that under aerated conditions glucose as a carbon source must be added in order to get denitrification in the laboratory. Disappearance of nitrogen during the experiments was due to denitrification as shown by the nitrogen balance calculated for each sampling. The ATP content showed that no proliferation of cells took place during the experiment. The rate of denitrification was strongly influenced by and was directly proportional to nitrate concentrations. Temperature has a very slight effect on the denitrification rate. Q10 for the range 15–30°C was 1.35. The role of denitrification in the nitrogen balance of Lake Kinneret is discussed.  相似文献   

13.
硝态氮异化还原机制及其主导因素研究进展   总被引:12,自引:0,他引:12  
硝态氮(NO_3~-)异化还原过程通常包含反硝化和异化还原为铵(DNRA)两个方面,是土壤氮素转化的重要途径,其强度大小直接影响着硝态氮的利用和环境效应(如淋溶和氮氧化物气体排放)。反硝化和DNRA过程在反应条件、产物和影响因素等方面常会呈现出协同与竞争的交互作用机制。综述了反硝化和DNRA过程的研究进展及其二者协同竞争的作用机理,并阐述了在NO_3~-、pH、有效C、氧化还原电位(Eh)等环境条件和土壤微生物对其发生强度和产物的影响,提出了今后应在产生机理、土壤环境因素、微生物学过程以及与其他氮素转化过程耦联作用等方面亟需深入研究,以期增进对氮素循环过程的认识以及为加强氮素管理利用提供依据。  相似文献   

14.
For bacteria, many studies have focused on the role of respiratory enzymes in energy conservation; however, their effect on cell behavior is poorly understood. Pseudomonas aeruginosa can perform both aerobic respiration and denitrification. Previous studies demonstrated that cbb3-type cytochrome c oxidases that support aerobic respiration are more highly expressed in P. aeruginosa under anoxic conditions than are other aerobic respiratory enzymes. However, little is known about their role under such conditions. In this study, it was shown that cbb3 oxidases of P. aeruginosa PAO1 alter anaerobic growth, the denitrification process, and cell morphology under anoxic conditions. Furthermore, biofilm formation was promoted by the cbb3 oxidases under anoxic conditions. cbb3 oxidases led to the accumulation of nitric oxide (NO), which is produced during denitrification. Cell elongation induced by NO accumulation was reported to be required for robust biofilm formation of P. aeruginosa PAO1 under anoxic conditions. Our data show that cbb3 oxidases promote cell elongation by inducing NO accumulation during the denitrification process, which further leads to robust biofilms. Our findings show that cbb3 oxidases, which have been well studied as aerobic respiratory enzymes, are also involved in denitrification and influence the lifestyle of P. aeruginosa PAO1 under anoxic conditions.  相似文献   

15.
This paper presents a method for measuring the metabolism of macrophytes, macrophytobenthos, periphyton, corals, and other benthic organisms in flow-through systems in non-equilibrium and equilibrium states and provides its mathematical justification. An experimental system has been designed for measuring the rate of metabolic exchange of O2, CO2, NH4, NO2, NO3, PO4, dissolved organic matter (DOM), etc. between aquatic organisms and the environment in situ and in vitro repeatedly during a 24-hour experimental period. Using of this system, production characteristics (photosynthesis and respiration) were calculated for benthic marine organisms and the dependence of the rates of their metabolism on environmental factors was determined.  相似文献   

16.
This study was aimed at examining nitrate (NO3) and phosphate (PO4) removal potentials of rosegold pussy willow (Salix gracilistyla), giant pussy willow (Salix chaenomeloides), Korean willow (Salix koreensis), and bald cypress (Taxodium distichum) from eutrophic aquatic environment. These plants were replanted in rubber pots 35-cm high and 30-cm diameter without holes in the bottom. Water of different concentration levels in NO3 (5, 10, 20 ppm) or PO4 (0.5, 1, 2 ppm) was funneled into the pots, and the residence time of inflow was controlled ranging from 1 to 4 h. Nitrate abatement of 58.9% was observed in the giant pussy willow pots with 20 ppm concentration and 4 h residence. The rosegold pussy willow pots showed the highest PO4 removal at 20.2% at 0.5 ppm concentration and 4 h residence. Removal potentials of NO3 and PO4 were also investigated on the supposition that the polluted water would reside in wetlands or treatment facilities for longer than 5 days. Except that the residence time of inflow ranged from 5 to 20 days, the same experimental conditions were kept. The percentage of NO3 removal in the rosegold pussy willow pots was higher than in those of the other two willow species, and bald cypress showed the lowest NO3 abatement. Highest PO4 removal was observed in giant pussy willow pots and lowest in rosegold pussy willow pots.  相似文献   

17.
Until recently, denitrification was thought to be the only significant pathway for N2 formation and, in turn, the removal of nitrogen in aquatic sediments. The discovery of anaerobic ammonium oxidation in the laboratory suggested that alternative metabolisms might be present in the environment. By using a combination of 15N-labeled NH4+, NO3, and NO2 (and 14N analogues), production of 29N2 and 30N2 was measured in anaerobic sediment slurries from six sites along the Thames estuary. The production of 29N2 in the presence of 15NH4+ and either 14NO3 or 14NO2 confirmed the presence of anaerobic ammonium oxidation, with the stoichiometry of the reaction indicating that the oxidation was coupled to the reduction of NO2. Anaerobic ammonium oxidation proceeded at equal rates via either the direct reduction of NO2 or indirect reduction, following the initial reduction of NO3. Whether NO2 was directly present at 800 μM or it accumulated at 3 to 20 μM (from the reduction of NO3), the rate of 29N2 formation was not affected, which suggested that anaerobic ammonium oxidation was saturated at low concentrations of NO2. We observed a shift in the significance of anaerobic ammonium oxidation to N2 formation relative to denitrification, from 8% near the head of the estuary to less than 1% at the coast. The relative importance of anaerobic ammonium oxidation was positively correlated (P < 0.05) with sediment organic content. This report of anaerobic ammonium oxidation in organically enriched estuarine sediments, though in contrast to a recent report on continental shelf sediments, confirms the presence of this novel metabolism in another aquatic sediment system.  相似文献   

18.
Nitrogen (N) dynamics at the sediment–water interface were examined in four regions of Florida Bay to provide mechanistic information on the fate and effects of increased N inputs to shallow, subtropical, coastal environments. Dissimilatory nitrate (NO3 ?) reduction to ammonium (DNRA) was hypothesized to be a significant mechanism retaining bioreactive N in this warm, saline coastal ecosystem. Nitrogen dynamics, phosphorus (P) fluxes, and sediment oxygen demand (SOD) were measured in north-central (Rankin Key; eutrophic), north-eastern (Duck Key; high N to P seston ratios), north-western (Murray Key; low N to P ratios), and central (Rabbit Key; typical central site) Florida Bay in August 2004, January 2005, and November 2006. Site water was passed over intact sediment cores, and changes in oxygen (O2), phosphate (o-PO4 3?), ammonium (NH4 +), NO3 ?, nitrite (NO2 ?), and N2 concentrations were measured, without and with addition of excess 15NO3 ? or 15NH4 + to inflow water. These incubations provided estimates of SOD, nutrient fluxes, N2 production, and potential DNRA rates. Denitrification rates were lowest in summer, when SOD was highest. DNRA rates and NH4 + fluxes were high in summer at the eutrophic Rankin site, when denitrification rates were low and almost no N2 came from added 15NO3 ?. Highest 15NH4 + accumulation, resulting from DNRA, occurred at Rabbit Key during a picocyanobacteria bloom in November. 15NH4 + accumulation rates among the stations correlated with SOD in August and January, but not in November during the algal bloom. These mechanistic results help explain why bioreactive N supply rates are sometimes high in Florida Bay and why denitrification efficiency may decrease with increased NO3 ? inputs in sub-tropical coastal environments.  相似文献   

19.
A five-level-four-factor central composite rotary design (CCRD) was employed in combination with response surface methodology (RSM) to optimize the process variables for the production of a novel copolymer consisting of short-chain-length (SCL) and long-chain-length (LCL) PHA units, i.e., P(3HB-3HV-3HHD-3HOD) copolymer in Pseudomonas aeruginosa MTCC 7925. The four variables involved in this study were ethanol, glucose, ammonium nitrate (NH4NO3), and potassium dihydrogen phosphate (KH2PO4). A second-order polynomial equation was obtained by multiple regression analysis using RSM. The statistical analyses of the results showed that all the four variables had significant impact on the copolymer yield. The model predicted a maximum yield of 81.1% of dry cell weight (dcw) on setting the concentrations of ethanol and glucose at 1.5 and 1.1%, and KH2PO4 and NH4NO3 at 2.79 and 1.86 g/L, respectively. Verification of the predicted value resulted into a yield of 77.6% (dcw). This novel copolymer exhibited comparable material properties with polypropylene (PP) and low density polyethylene (LDPE), thus advocating its potential applications in various fields.  相似文献   

20.
Colonies of N2-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates'' anoxic centres. 15N-isotope labelling experiments and nutrient analyses revealed that N2 fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N2 were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (<1 to ⩾0.1 mm) may only arise in low-oxygenated waters (⩽25 μM). We propose that the net effect of aggregates on nitrogen loss is negligible in NO3-depleted, fully oxygenated (surface) waters. In NO3-enriched (>1.5 μM), O2-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号