首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen (N) deposition is widely considered an environmental problem that leads to biodiversity loss and reduced ecosystem resilience; but, N fertilization has also been used as a management tool for enhancing primary production and ground cover, thereby promoting the restoration of degraded lands. However, empirical evaluation of these contrasting impacts is lacking. We tested the dual effects of N enrichment on biodiversity and ecosystem functioning at different organizational levels (i.e., plant species, functional groups, and community) by adding N at 0, 1.75, 5.25, 10.5, 17.5, and 28.0 g N m?2 yr?1 for four years in two contrasting field sites in Inner Mongolia: an undisturbed mature grassland and a nearby degraded grassland of the same type. N addition had both quantitatively and qualitatively different effects on the two communities. In the mature community, N addition led to a large reduction in species richness, accompanied by increased dominance of early successional annuals and loss of perennial grasses and forbs at all N input rates. In the degraded community, however, N addition increased the productivity and dominance of perennial rhizomatous grasses, with only a slight reduction in species richness and no significant change in annual abundance. The mature grassland was much more sensitive to N‐induced changes in community structure, likely as a result of higher soil moisture accentuating limitation by N alone. Our findings suggest that the critical threshold for N‐induced species loss to mature Eurasian grasslands is below 1.75 g N m?2 yr?1, and that changes in aboveground biomass, species richness, and plant functional group composition to both mature and degraded ecosystems saturate at N addition rates of approximately 10.5 g N m?2 yr?1. This work highlights the tradeoffs that exist in assessing the total impact of N deposition on ecosystem function.  相似文献   

2.
Response of plant biodiversity to increased availability of nitrogen (N) has been investigated in temperate and boreal forests, which are typically N‐limited, but little is known in tropical forests. We examined the effects of artificial N additions on plant diversity (species richness, density and cover) of the understory layer in an N saturated old‐growth tropical forest in southern China to test the following hypothesis: N additions decrease plant diversity in N saturated tropical forests primarily from N‐mediated changes in soil properties. Experimental additions of N were administered at the following levels from July 2003 to July 2008: no addition (Control); 50 kg N ha?1 yr?1 (Low‐N); 100 kg N ha?1 yr?1 (Medium‐N), and 150 kg N ha?1 yr?1 (High‐N). Results showed that no understory species exhibited positive growth response to any level of N addition during the study period. Although low‐to‐medium levels of N addition (≤100 kg N ha?1 yr?1) generally did not alter plant diversity through time, high levels of N addition significantly reduced species diversity. This decrease was most closely related to declines within tree seedling and fern functional groups, as well as to significant increases in soil acidity and Al mobility, and decreases in Ca availability and fine‐root biomass. This mechanism for loss of biodiversity provides sharp contrast to competition‐based mechanisms suggested in studies of understory communities in other forests. Our results suggest that high‐N additions can decrease plant diversity in tropical forests, but that this response may vary with rate of N addition.  相似文献   

3.
To maintain European semi-natural grasslands, agri-environment schemes (AES) have been established in many countries but their biodiversity benefits have remained limited. We tested the effects of three new mowing regimes designed to benefit biodiversity in extensively managed meadows across the Swiss lowlands. Our experimental treatments mimicked easily implementable farming practices. We previously showed that invertebrates benefit from delayed mowing and leaving an uncut grass refuge. Here we focus on the effects on plant and bryophyte communities.We compared the standard AES practice (earliest mowing on June 15, no fertilizer input, but no restriction on number of cuts) to three alternative mowing regimes: (i) earliest mowing delayed by one month, (ii) maximum of two cuts per year with at least eight weeks in between, and (iii) leaving an uncut refuge on 10–20% of the meadow area in 12 study areas in the Swiss lowlands. We also tested for the interactive effects of ambient temperature, precipitation, elevation, meadow size, local forest cover, time since AES registration, and phytomass production.After five years of application, we found no difference in the effects of mowing regimes on vascular plant or bryophyte species richness, community composition, phytomass, flowering phenology or average plant height (the latter two indices were derived from the literature). However, cutting frequency and hay nutritional quality (C:N and Ca:P ratios) were lower under delayed mowing. Vascular plant and bryophyte species richness as well as forage quality were negatively related to phytomass, while the latter was positively related to mean summer temperature and negatively to time since AES registration.We conclude that supporting invertebrate biodiversity with alternative mowing regimes has no detrimental effects on the vascular plants and mosses, while the reduced forage quality calls for additional financial compensation of the farmers adopting these agri-environment schemes.  相似文献   

4.
Traditionally managed mountain grasslands in the Alps are species‐rich ecosystems that developed during centuries of livestock grazing. However, changes in land use including fertilisation of well accessible pastures and gradual abandonment of remote sites are increasingly threatening this diversity. In five regions of the Swiss and French Alps we assessed the relationship between land use, soil resource availability, cover of the unpalatable species Veratrum album, species richness and vegetation composition of mountain grasslands across four spatial scales ranging from 1 to 1000 m2. Mean species richness and the increase in the number of species with increasing area were lower in intensively grazed, fertilised pastures than in traditional pastures or in abandoned pastures. Species composition of abandoned pastures differed from that of the other management types. Plant species richness was influenced by different factors at different spatial scales. At the 1 m2 scale, plant species richness was negatively related to soil nitrate and influenced by the cover of V. album, depending on land use: species richness and cover of V. album were negatively correlated in abandoned pastures, but positively correlated in fertilised grasslands. At the 1000 m2 scale, a negative effect of fertilization on richness was evident. These results indicate that at small scales species richness in mountain grasslands is determined by competition for light, which should be more important if nutrient availability is high, and by positive and negative interactions with unpalatable plants. In contrast, species richness at the large scale appears to be mainly influenced by land use. This result emphasizes the importance of studying such inter‐relationships at multiple scales. Our study further suggests that the maintenance of the traditional land use scheme is crucial for the conservation of plant species richness of mountain pastures as both intensification and abandonment changed species composition and reduced plant species diversity.  相似文献   

5.
Aim Although many studies support the prevailing paradigm of nitrogen (N)‐driven biodiversity loss, some have argued that phosphorus (P) may be the main culprit. This questions the generality of the global threat through N enrichment. The major objective here was to quantify the relative importance of soil N and P in explaining patterns of plant species richness, under different levels of N and P limitation. Location North‐western Europe. Methods We collected soil, productivity and plant species data from 132 semi‐natural grasslands located along a gradient of nutrient availability and atmospheric N deposition. We used linear mixed models to investigate the relation between soil nutrients, acidity, limitation and productivity on one side, and indices for plant species richness on the other. Results Mixed models explained between 38 and 50% of the total variation in species numbers, forbs and endangered species. Soil P was significantly negatively related to total species number, forbs and endangered species. Soil N was only significantly negatively related to number of forbs and endangered species. Compared with soil P, the explained variation attributed to soil N was between five‐ and twenty‐fold lower. P‐limited grasslands exhibited higher species richness, numbers of forbs and endangered species. Species richness and number of forbs decreased with lower soil acidity. N deposition was negatively related to the number of forbs and endangered species, as well as to soil acidity. Productivity was weakly positively related to soil P and negatively to species and forb numbers. We found no interaction factors between the explanatory variables. Main conclusions P enrichment can present a greater threat to biodiversity than N enrichment in at least some terrestrial ecosystems. However, as N‐ and P‐driven species loss appeared independent, our results suggest that simultaneously reducing N and P inputs is a prerequisite for maintaining maximum plant diversity.  相似文献   

6.
Anthropogenic nutrient enrichment of mountain grasslands has boosted grasses and fast‐growing unpalatable plants at the expense of slow‐growing species, resulting in a significant loss in biodiversity. A potential tool to reduce nutrient availability and aboveground productivity without destroying the perennial vegetation is carbon (C) addition. However, little is known about its suitability under severe climatic conditions. Here, we report the results of a 3‐year field study assessing the effects of sawdust addition on soil nutrients, aboveground productivity, and vegetational composition of 10 grazed and ungrazed mountain grasslands. Of particular interest was the effect of C addition on grasses and on the tall unpalatable weed Veratrum album. After 3 years, soil pH, ammonium, and plant‐available phosphorus were not altered by sawdust application, and nitrate concentrations were marginally higher in treatment plots. However, the biomass of grasses and forbs (without V. album) was 20–25% lower in sawdust‐amended plots, whereas the biomass of V. album was marginally higher. Sawdust addition reduced the cover of grasses but did not affect evenness, vegetation diversity, or plant species richness, although species richness generally increased with decreasing biomass at our sites. Our results suggest that sawdust addition is a potent tool to reduce within a relatively short time the aboveground productivity and grass cover in both grazed and ungrazed mountain grasslands as long as they are not dominated by tall unpalatable weeds. The technique has the advantage that it preserves the topsoil and the perennial soil seed bank.  相似文献   

7.
Question: Does long‐term grazing exclusion affect plant species diversity? And does this effect vary with long‐term phytomass accumulation across a regional productivity gradient? Location: Lowland grassy ecosystems across the state of Victoria, southeast Australia. Methods: Floristic surveys and phytomass sampling were conducted across a broad‐scale productivity gradient in grazing exclusion plots and adjacent grazed areas. Differences in species richness, evenness and life‐form evenness between grazed and ungrazed areas were analysed. The environmental drivers of long‐term phytomass accumulation were assessed using multiple linear regression analysis. Results: Species richness declined in the absence of grazing only at the high productivity sites (i.e. when phytomass accumulation was >500 g m?2). Species evenness and life‐form evenness also showed a negative relationship with increasing phytomass accumulation. Phytomass accumulation was positively associated with both soil nitrogen and rainfall, and negatively associated with tree cover. Conclusions: Competitive dominance is a key factor regulating plant diversity in productive grassy ecosystems, but canopy disturbance is not likely to be necessary to maintain diversity in less productive systems. The results support the predictions of models of the effects of grazing on plant diversity, such as the dynamic equilibrium model, whereby the effects of herbivory are context‐dependent and vary according to gradients of rainfall, soil fertility and tree cover.  相似文献   

8.
The response of montane and subalpine hay meadow plant and arthropod communities to the application of liquid manure and aerial irrigation – two novel, rapidly spreading management practices – remains poorly understood, which hampers the formulation of best practice management recommendations for both hay production and biodiversity preservation. In these nutrient-poor mountain grasslands, a moderate management regime could enhance overall conditions for biodiversity. This study experimentally assessed, at the site scale, among low-input montane and subalpine meadows, the short-term effects (1 year) of a moderate intensification (slurry fertilization: 26.7–53.3 kg N·ha−1·year−1; irrigation with sprinklers: 20 mm·week−1; singly or combined together) on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass in the inner European Alps (Valais, SW Switzerland). Results show that (1) montane and subalpine hay meadow ecological communities respond very rapidly to an intensification of management practices; (2) on a short-term basis, a moderate intensification of very low-input hay meadows has positive effects on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass; (3) vegetation structure is likely to be the key factor limiting arthropod abundance and biomass. Our ongoing experiments will in the longer term identify which level of management intensity achieves an optimal balance between biodiversity and hay production.  相似文献   

9.
While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small & erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m2) and central Germany (6.4 species per 16 m2) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity.  相似文献   

10.
The effects of long-term nitrogen loading on grassland insect communities   总被引:14,自引:0,他引:14  
Just as long-term nitrogen loading of grasslands decreases plant species richness and increases plant biomass, we have found that nitrogen loading decreases insect species richness and increases insect abundances. We sampled 54 plots that had been maintained at various rates of nitrogen addition for 14 years. Total insect species richness and effective insect diversity, as well as herbivore and predator species richness, were significantly, negatively related to the rate of nitrogen addition. However, there was variation in trophic responses to nitrogen. Detritivore species richness increased as nitrogen addition increased, and parasitoids showed no response. Insect abundances, measured as the number of insects and insect biovolume (an estimate of biomass), were significantly, positively related to the rate of nitrogen addition, as were the abundances of herbivores and detritivores. Parasitoid abundance was negatively related to the rate of nitrogen addition. Changes in the insect community were correlated with changes in the plant community. As rates of nitrogen addition increased, plant species richness decreased, plant productivity and plant tissue nitrogen increased, and plant composition shifted from C4 to C3 grass species. Along this gradient, total insect species richness and effective insect diversity were most strongly, positively correlated with plant species richness. Insect biovolume was negatively correlated with plant species richness. Responses of individual herbivores varied along the nitrogen gradient, but numbers of 13 of the 18 most abundant herbivores were positively correlated with their host plant biomass. Although insect communities did not respond as strongly as plant communities, insect species richness, abundance, and composition were impacted by nitrogen addition. This study demonstrates that long-term nitrogen loading affects the entire food chain, simplifying both plant and insect communities. Received: 18 May 1999 / Accepted: 5 January 2000  相似文献   

11.
In this study we investigate the impact of nitrogen (N) deposition on the diversity of three different vegetation functional groups – forbs, grasses and mosses – using a field survey of acid grasslands across Great Britain. Our aim is to identify the vegetation types that are most vulnerable to enhanced N deposition, and to shed light on the mechanisms that may be driving N‐initiated species changes in the UK. Sixty‐eight randomly selected grasslands belonging to the UK National Vegetation Classification group U4 (Festuca ovina–Agrostis capillaris–Galium saxatile grassland) were studied along a gradient of atmospheric N deposition ranging from 6 to 36 kg N ha?1 yr?1. At each site, vegetation was surveyed and samples were taken from the topsoil and subsoil. Aboveground plant material was collected from three species: a forb, grass and moss. Both the species richness and cover of forbs declined strongly with increasing N deposition, from greater than eight species/20% cover per m2 quadrat at low levels of N to fewer than two species/5% cover at the highest N deposition levels. Grasses showed a weak but significant decline in species richness, and a trend toward increasing cover with increasing N input. Mosses showed no trends in either species richness or cover. Most of the decline in plant species richness could be accounted for by the level of ammonium deposition. Soil KCl‐extractable ammonium concentration showed a significant positive correlation with N input, but there was no relationship between N deposition and extractable nitrate. In the soil O/A horizon, there was no relationship between N deposition and %N, and only a very weak positive relationship between the level of N deposition and the C : N ratio. Finally, in the vegetation, there was no relationship between N deposition and either shoot tissue N concentration or N : P ratio for any of the three reference species. Combining our regional survey with the results of published N‐addition experiments provides compelling evidence that there has been a significant decline in the species richness and cover of forbs across Great Britain, and that the primary cause is competition due to an increase in the cover of grasses in response to enhanced deposition of reactive N, primarily NH4+.  相似文献   

12.
Z Xu  S Wan  H Ren  X Han  MH Li  W Cheng  Y Jiang 《PloS one》2012,7(6):e39762
Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change.  相似文献   

13.

Background and aims

Nitrogen (N) deposition usually alters plant community structure and reduces plant biodiversity in grasslands. Seedling recruitment is essential for maintaining species richness and determines plant community composition. Arbuscular mycorrhizal fungi (AMF) are widespread symbiotic fungi and could facilitate seedling establishment. Here we conducted an experiment to address whether the influence of AMF on seedling recruitment depends on N addition and plant species.

Methods

Leymus chinensis were cultivated for 5 months in the microcosms that were inoculated with or without AMF at five N addition rates. Seeds of three main species (two C3 grasses and one non-N2-fixing forb) of the Eurasian steppe were sown to the 5-month-old microcosms. Seedling establishment was estimated by shoot biomass, N and P contents 7 weeks after seedling germination.

Results

AMF promoted seedlings recruitment of two C3 grasses at addition rates above 0.5 g N m?2. In contrast, seedling recruitment of the non-N2-fixing forb was increased by AMF at addition rates below 0.5 g N m?2 but was decreased above 2.5 g N m?2.

Conclusions

These results partly explain why N addition favored the dominance of grasses over forbs in perennial grassland communities. Our study indicates that AMF have the potential to influence plant community composition by mediating revegetation in the face of N deposition.  相似文献   

14.
So far, seed limitation as a local process, and dispersal limitation as a regional process have been largely neglected in biodiversity–ecosystem functioning research. However, these processes can influence both local plant species diversity and ecosystem processes, such as biomass production. We added seeds of 60 species from the regional species pool to grassland communities at 20 montane grassland sites in Germany. In these sites, plant species diversity ranged from 10 to 34 species m−2 and, before manipulation, diversity was not related to aboveground biomass, which ranged from 108 to 687 g m−2. One year after seed addition, local plant species richness had increased on average by six species m−2 (29%) compared with control plots, and this increase was highest in grasslands with intermediate productivity. The increased diversity after adding seeds was associated with an average increase of aboveground biomass of 36 g m−2 (14.8%) compared with control plots. Thus, our results demonstrate that a positive relationship between changes in species richness and productivity, as previously reported from experimental plant communities, also holds for natural grassland ecosystems. Our results show that local plant communities are dispersal limited and a hump‐shaped model appears to be the limiting outline of the natural diversity–productivity relationship. Hence, the effects of dispersal on local diversity can substantially affect the functioning of natural ecosystems.  相似文献   

15.
The decline in species‐rich grasslands across the United States has increased the importance of conservation and restoration efforts to preserve the biodiversity supported by these habitats. Abandoned agricultural fields often provide practical locations for the reestablishment of species‐rich grasslands. However, these fields often retain legacies of agriculture both in their soils, which may have higher pH and nitrogen (N) contents than soils that were never farmed, and in their plant communities, which are dominated by non‐native species and poor in native seed stock. We considered methods of reversing these legacies to create native‐species‐rich grassland on former agricultural land. We tested seeding and tilling combined with additions of sulfur (S), carbon (C), N or water to establish diverse sandplain grassland vegetation on an old field on Martha's Vineyard, Massachusetts. We measured soil pH, extractable nitrate and ammonium, and total and native species richness and native species cover for 5 years after treatment. S additions lowered pH to values typical of never‐tilled sandplain ecosystems and increased native species cover, but had no effect on species richness. C, N, and water additions had no significant effects on the soil or vegetation. Seeding and tilling were more effective at restoring native species richness than any soil amendments and indicated a greater importance of biotic factors compared with soil conditions in promoting sandplain vegetation establishment. S amendment accelerated establishment of native species cover for several years but the effect of S additions compared with seeding and tilling alone declined over time.  相似文献   

16.
Species composition and productivity of natural grasslands are influenced by soil nutrient status. With high resource availability, productivity is expected to increase, and competition is assumed to gain prominence with predicted exclusion of species of lower competitive ability. During 2010 and 2011 we used the dry weight rank method to measure above‐ground phytomass production of herbage in 96 plots (9 m × 2.7 m) fertilized for 60 years with two forms of nitrogen (N as limestone ammonium nitrate or ammonium sulphate at four levels: 0, 7.1, 14.1, 21.2 g m?2), phosphorus (P as superphosphate at two levels: 0, 33.6 g m?2), and lime (two levels: 0, 225 g m?2). Light attenuation was measured as the proportion of photosynthetically active radiation reaching the lower leaf layers of the grasses and the ground surface. Light conditions beneath the grass layer were reduced by nutrient addition to 30% of full sunlight but remained above 60% in non‐fertilized plots. Grass total above‐ground phytomass production increased with nutrient addition. The strongest yield responses were attained with N plus P addition. Species responses showed that Themeda triandra and Hyparrhenia hirta decreased in above‐ground phytomass production with nutrient addition while Panicum maximum, Eragrostis curvula and E. plana increased. These findings are discussed in terms of competitive interactions among species, their position in the grass canopy and their physiological tolerances to high nitrogen environments.  相似文献   

17.
Understanding changes in biodiversity in agricultural landscapes in relation to land-use type and intensity is a major issue in current ecological research. In this context nutrient enrichment has been identified as a key mechanism inducing species loss in Central European grassland ecosystems. At the same time, insights into the linkage between agricultural land use and plant nutrient status are largely missing. So far, studies on the relationship between chemical composition of plant community biomass and biodiversity have mainly been restricted to wetlands and all these studies neglected the effects of land use. Therefore, we analyzed aboveground biomass of 145 grassland plots covering a gradient of land-use intensities in three regions across Germany. In particular, we explored relationships between vascular plant species richness and nutrient concentrations as well as fibre contents (neutral and acid detergent fibre and lignin) in the aboveground community biomass.We found the concentrations of several nutrients in the biomass to be closely linked to plant species richness and land use. Whereas phosphorus concentrations increased with land-use intensity and decreased with plant species richness, nitrogen and potassium concentrations showed less clear patterns. Fibre fractions were negatively related to nutrient concentrations in biomass, but hardly to land-use measures and species richness. Only high lignin contents were positively associated with species richness of grasslands. The N:P ratio was strongly positively related to species richness and even more so to the number of endangered plant species, indicating a higher persistence of endangered species under P (co-)limited conditions. Therefore, we stress the importance of low P supply for species-rich grasslands and suggest the N:P ratio in community biomass to be a useful proxy of the conservation value of agriculturally used grasslands.  相似文献   

18.
Plant functional traits reflect individual and community ecological strategies. They allow the detection of directional changes in community dynamics and ecosystemic processes, being an additional tool to assess biodiversity than species richness. Analysis of functional patterns in plant communities provides mechanistic insight into biodiversity alterations due to anthropogenic activity. Although studies have consi‐dered of either anthropogenic management or nutrient availability on functional traits in temperate grasslands, studies combining effects of both drivers are scarce. Here, we assessed the impacts of management intensity (fertilization, mowing, grazing), nutrient stoichiometry (C, N, P, K), and vegetation composition on community‐weighted means (CWMs) and functional diversity (Rao's Q) from seven plant traits in 150 grasslands in three regions in Germany, using data of 6 years. Land use and nutrient stoichiometry accounted for larger proportions of model variance of CWM and Rao's Q than species richness and productivity. Grazing affected all analyzed trait groups; fertilization and mowing only impacted generative traits. Grazing was clearly associated with nutrient retention strategies, that is, investing in durable structures and production of fewer, less variable seed. Phenological variability was increased. Fertilization and mowing decreased seed number/mass variability, indicating competition‐related effects. Impacts of nutrient stoichiometry on trait syndromes varied. Nutrient limitation (large N:P, C:N ratios) promoted species with conservative strategies, that is, investment in durable plant structures rather than fast growth, fewer seed, and delayed flowering onset. In contrast to seed mass, leaf‐economics variability was reduced under P shortage. Species diversity was positively associated with the variability of generative traits. Synthesis. Here, land use, nutrient availability, species richness, and plant functional strategies have been shown to interact complexly, driving community composition, and vegetation responses to management intensity. We suggest that deeper understanding of underlying mechanisms shaping community assembly and biodiversity will require analyzing all these parameters.  相似文献   

19.
The aim of this study is to test the assumption that the relationship between the degree of dominance and local species richness may be different in grass communities with different productivities. Alpine, subalpine, and low-mountain grasslands, as well as subalpine mires, alpine communities of low-snow habitats and those with long-term snow cover, steppe communities, and the grass layer of low-mountain forest communities of the Western Caucasus and Ciscaucasia, are used as objects of research. The data on the phytomass of 419 plots with an area of 0.25 m2 are studied. The results show that, the higher the mean productivity of communities is, the closer the relationship between the degree of dominance and species richness is, and the closest relationship is observed in meadow communities. Possible causes of these relationships are considered. It is reasonably suggested that this may be due to the features of the organization of plant communities with high and low productivity (in particular, high or low intensity of interspecific competition).  相似文献   

20.
Semi-natural lowland and mountain mesic meadows are grasslands rich in species, and their conservation status depends on treatments such as mowing or grazing livestock. In many countries, the condition of grasslands is deteriorating because of their inappropriate use or abandonment. This study aimed to determine the effects of the species composition of plant communities and functional plant groups on the methane yield from biomass harvested from mesic grasslands in the Sudetes Mountains. Biogas potential analysis was performed based on biomass samples collected from Poland and the Czech Republic. The biogas potential was determined in 40 day-long batch anaerobic digestion tests. The average methane yield obtained from the biomass was 246 ± 16 NL CH4 kg?1 VS, whereas the methane yield per hectare was 870 ± 203 m3 CH4 ha?1. Plant communities comprising different dominant species had no effect on the methane yield but affected the methane yield per hectare. Additionally, the species composition of grasslands with a higher percentage of forbs had lower biomass yield, resulting in lower methane yields per hectare. The continuity of the low-intensity management of mountain grassland, which can be provided by the utilization of their biomass for bioenergy production, sustains high biodiversity and ensures appropriate meadow conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号