首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
βArrestin proteins shuttle between the cytosol and nucleus and have been shown to regulate G protein-coupled receptor signaling, actin remodeling, and gene expression. Here, we tested the hypothesis that βarrestin1 regulates actin remodeling and cell migration through the small GTPase Rac. Depletion of βarrestin1 promotes Rac activation, leading to the formation of multipolar protrusions and increased cell circularity, and overexpression of a dominant negative form of Rac reverses these morphological changes. Small interfering RNA library screen identifies RasGRF2 as a target of βarrestin1. RasGRF2 gene and protein expression levels are elevated following depletion of βarrestin1, and the consequent activation of Rac results in dephosphorylation of cofilin that can promote actin polymerization and formation of multipolar protrusions, thereby retarding cell migration and invasion. Together, these results suggest that βarrestin1 regulates rasgrf2 gene expression and Rac activation to affect membrane protrusion and cell migration and invasion.  相似文献   

2.
To cover the receptive field completely and non‐redundantly, neurons of certain functional groups arrange tiling of their dendrites. In Drosophila class IV dendrite arborization (da) neurons, the NDR family kinase Tricornered (Trc) is required for homotypic repulsion of dendrites that facilitates dendritic tiling. We here report that Sin1, Rictor, and target of rapamycin (TOR), components of the TOR complex 2 (TORC2), are required for dendritic tiling of class IV da neurons. Similar to trc mutants, dendrites of sin1 and rictor mutants show inappropriate overlap of the dendritic fields. TORC2 components physically and genetically interact with Trc, consistent with a shared role in regulating dendritic tiling. Moreover, TORC2 is essential for Trc phosphorylation on a residue that is critical for Trc activity in vivo and in vitro. Remarkably, neuronal expression of a dominant active form of Trc rescues the tiling defects in sin1 and rictor mutants. These findings suggest that TORC2 likely acts together with the Trc signalling pathway to regulate the dendritic tiling of class IV da neurons, and thus uncover the first neuronal function of TORC2 in vivo.  相似文献   

3.
Ishihara D  Dovas A  Park H  Isaac BM  Cox D 《PloS one》2012,7(1):e30033
Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor that is required for macrophages to directionally migrate towards various chemoattractants. The chemotaxis defect of WASp-deficient cells and its activation by Cdc42 in vivo suggest that WASp plays a role in directional sensing, however, its precise role in macrophage chemotaxis is still unclear. Using shRNA-mediated downregulation of WASp in the murine monocyte/macrophage cell line RAW/LR5 (shWASp), we found that WASp was responsible for the initial wave of actin polymerization in response to global stimulation with CSF-1, which in Dictyostelium discoideum amoebae and carcinoma cells has been correlated with the ability to migrate towards chemoattractants. Real-time monitoring of shWASp cells, as well as WASp−/− bone marrow-derived macrophages (BMMs), in response to a CSF-1 gradient revealed that the protrusions from WASp-deficient cells were directional, showing intact directional sensing. However, the protrusions from WASp-deficient cells demonstrated reduced persistence compared to their respective control shRNA and wild-type cells. Further examination showed that tyrosine phosphorylation of WASp was required for both the first wave of actin polymerization following global CSF-1 stimulation and proper directional responses towards CSF-1. Importantly, the PI3K, Rac1 and WAVE2 proteins were incorporated normally in CSF-1 – elicited protrusions in the absence of WASp, suggesting that membrane protrusion driven by the WAVE2 complex signaling is intact. Collectively, these results suggest that WASp and its phosphorylation play critical roles in coordinating the actin cytoskeleton rearrangements necessary for the persistence of protrusions required for directional migration of macrophages towards CSF-1.  相似文献   

4.
Rho GTPases play important roles in many aspects of cell migration, including polarity establishment and organizing actin cytoskeleton. In particular, the Rho GTPase Rac1 has been associated with the generation of protrusions at leading edge of migrating cells. Previously we showed the mobility of Rac1 molecules is not uniform throughout a migrating cell (Hinde E et. al. PNAS 2013). Specifically, the closer a Rac1 molecule is to the leading edge, the slower the molecule diffuses. Because actin-bound Rac1 diffuses slower than unbound Rac1, we hypothesized that regions of high actin concentration, called “actin islands”, act as diffusive traps and are responsible for the non-uniform diffusion observed in vivo. Here, in silico model simulations demonstrate that equally spaced actin islands can regulate the time scale for Rac1 diffusion in a manner consistent with data from live-cell imaging experiments. Additionally, we find this mechanism is robust; different patterns of Rac1 mobility can be achieved by changing the actin islands’ positions or their affinity for Rac1.  相似文献   

5.
Membrane ruffling is the formation of actin rich membrane protrusions, essential for cell motility. The exact mechanism of ruffling is not fully known. Using YFP and CFP fluorescent chimeras, we show for the first time a co-localization of Phospholipase D2 (PLD2) and Growth factor Receptor Bound protein-2 (Grb2) with actin-rich membrane protrusions of macrophages. Grb2 cooperates with PLD2 in enhancing membrane ruffling, whether in resting cells or in cells stimulated with the growth factor M-CSF, although in the latter an increase in dorsal ruffles was observed, consistent with receptor-ligand internalization. Cells transfected with PLD2 mutated in the PH domain (Y169F) or with Grb2 mutated in the SH2 site (R86K) negate this effect, indicating an association PLD2(Y169)-SH2-Grb2 that was confirmed by immunoprecipitation and Western blotting. The association results in enhanced PLD activity, but the lipase activity can only partially explain the formation of membrane ruffles in vivo. A third component involves the Rho-GTPase Rac2 and it is only when Rac2 is overexpressed along with PLD2 and Rac2 that a full biological effect, including actin polymerization in vivo, is obtained. The mechanism involved is, then, as follows: PLD enzymatic action, after having been increased due to the binding to Grb2-SH2 via Y169, cooperates with Rac2, and the three molecules stimulate actin polymerization and consequently, membrane ruffle formation. Since membrane ruffling precedes cell migration, the results herein provide a novel mechanism for control of membrane dynamics, crucial for the physiology of leukocytes.  相似文献   

6.
Over the past several years, it has become clear that the Rho family of GTPases plays an important role in various aspects of neuronal development including cytoskeleton dynamics and cell adhesion processes. We have analysed the role of MEGAP, a GTPase-activating protein that acts towards Rac1 and Cdc42 in vitro and in vivo, with respect to its putative regulation of cytoskeleton dynamics and cell migration. To investigate the effects of MEGAP on these cellular processes, we have established an inducible cell culture model consisting of a stably transfected neuroblastoma SHSY-5Y cell line that endogenously expresses MEGAP albeit at low levels. We can show that the induced expression of MEGAP leads to the loss of filopodia and lamellipodia protrusions, whereas constitutively activated Rac1 and Cdc42 can rescue the formation of these structures. We have also established quantitative assays for evaluating actin dynamics and cellular migration. By time-lapse microscopy, we show that induced MEGAP expression reduces cell migration by 3.8-fold and protrusion formation by 9-fold. MEGAP expressing cells also showed impeded microtubule dynamics as demonstrated in the TC-7 3x-GFP epithelial kidney cells. In contrast to the wild type, overexpression of MEGAP harbouring an artificially introduced missense mutation R542I within the functionally important GAP domain did not exert a visible effect on actin and microtubule cytoskeleton remodelling. These data suggest that MEGAP negatively regulates cell migration by perturbing the actin and microtubule cytoskeleton and by hindering the formation of focal complexes.  相似文献   

7.
The haematopoietic-specific RhoGTPase, Rac2, has been indirectly implicated in T-lymphocyte development and function, and as a pivotal regulator of T Helper 1 (T(H)1) responses. In other haematopoietic cells it regulates cytoskeletal rearrangement downstream of extracellular signals. Here we demonstrate that Rac2 deficiency results in an abnormal distribution of T lymphocytes in vivo and defects in T-lymphocyte migration and filamentous actin generation in response to chemoattractants in vitro. To investigate the requirement for Rac2 in IFN-gamma production and TH1 responses in vivo, Rac2-deficient mice were challenged with Leishmania major and immunized with ovalbumin-expressing cytomegalovirus.Despite a minor skewing towards a T(H)2 phenotype, Rac2-deficient mice displayed no increased susceptibility to L. major infection. Cytotoxic T-lymphocyte responses to cytomegalovirus and ovalbumin were also normal. Although Rac2 is required for normal T-lymphocyte migration, its role in the generation of T(H)1 responses to infection in vivo is largely redundant.  相似文献   

8.
Microtubules are involved in actin-based protrusion at the leading-edge lamellipodia of migrating fibroblasts. Here we show that the growth of microtubules induced in fibroblasts by removal of the microtubule destabilizer nocodazole activates Rac1 GTPase, leading to the polymerization of actin in lamellipodial protrusions. Lamellipodial protrusions are also activated by the rapid growth of a disorganized array of very short microtubules induced by the microtubule-stabilizing drug taxol. Thus, neither microtubule shortening nor long-range microtubule-based intracellular transport is required for activating protrusion. We suggest that the growth phase of microtubule dynamic instability at leading-edge lamellipodia locally activates Rac1 to drive actin polymerization and lamellipodial protrusion required for cell migration.  相似文献   

9.
Actin assembly at the cell front drives membrane protrusion and initiates the cell migration cycle. Microtubules (MTs) extend within forward protrusions to sustain cell polarity and promote adhesion site turnover. Memo is an effector of the ErbB2 receptor tyrosine kinase involved in breast carcinoma cell migration. However, its mechanism of action remained unknown. We report in this study that Memo controls ErbB2-regulated MT dynamics by altering the transition frequency between MT growth and shortening phases. Moreover, although Memo-depleted cells can assemble the Rac1-dependent actin meshwork and form lamellipodia, they show defective localization of lamellipodial markers such as α-actinin-1 and a reduced number of short-lived adhesion sites underlying the advancing edge of migrating cells. Finally, we demonstrate that Memo is required for the localization of the RhoA guanosine triphosphatase and its effector mDia1 to the plasma membrane and that Memo–RhoA–mDia1 signaling coordinates the organization of the lamellipodial actin network, adhesion site formation, and MT outgrowth within the cell leading edge to sustain cell motility.  相似文献   

10.
Defects in myeloid cell function in Rac2 knockout mice underline the importance of this isoform in activation of NADPH oxidase and cell motility. However, the specific role of Rac1 in neutrophil function has been difficult to assess since deletion of Rac1 results in embryonic lethality in mice. To elucidate the specific role of Rac1 in neutrophils, we generated mice with a conditional Rac1 deficiency restricted to cells of the granulocyte/monocyte lineage. As observed in Rac2-deficient neutrophils, Rac1-deficient neutrophils demonstrated profound defects in inflammatory recruitment in vivo, migration to chemotactic stimuli, and chemoattractant-mediated actin assembly. In contrast, superoxide production is normal in Rac1-deficient neutrophils but markedly diminished in Rac2 null cells. These data demonstrate that although Rac1 and Rac2 are both required for actin-mediated functions, Rac2 is specifically required for activation of the neutrophil NADPH oxidase.  相似文献   

11.
In fibroblasts and keratocytes, motility is actin dependent, while microtubules play a secondary role, providing directional guidance. We demonstrate here that the motility of glioblastoma cells is exceptional, in that it occurs in cells depleted of assembled actin. Cells display persistent motility in the presence of actin inhibitors at concentrations sufficient to fully disassemble actin. Such actin independent motility is characterized by the extension of cell protrusions containing abundant microtubule polymers. Strikingly, glioblastoma cells exhibit no motility in the presence of microtubule inhibitors, at concentrations that disassemble labile microtubule polymers. In accord with an unconventional mode of motility, glioblastoma cells have some unusual requirements for the Rho GTPases. While Rac1 is required for lamellipodial protrusions in fibroblasts, expression of dominant negative Rac1 does not suppress glioblastoma migration. Other GTPase mutants are largely without unique effect, except dominant positive Rac1-Q61L, and rapidly cycling Rac1-F28L, which substantially suppress glioblastoma motility. We conclude that glioblastoma cells display an unprecedented mode of intrinsic motility that can occur in the absence of actin polymer, and that appears to require polymerized microtubules.  相似文献   

12.
The coordination of the several pathways involved in cell motility is poorly understood. Here, we identify SH3BP1, belonging to the RhoGAP family, as a partner of the exocyst complex and establish a physical and functional link between two motility-driving pathways, the Ral/exocyst and Rac signaling pathways. We show that SH3BP1 localizes together with the exocyst to the leading edge of motile cells and that SH3BP1 regulates cell migration via its GAP activity upon Rac1. SH3BP1 loss of function induces abnormally high Rac1 activity at the front, as visualized by in vivo biosensors, and disorganized and instable protrusions, as revealed by cell morphodynamics analysis. Consistently, constitutively active Rac1 mimics the phenotype of SH3BP1 depletion: slow migration and aberrant cell morphodynamics. Our finding that SH3BP1 downregulates Rac1 at the motile-cell front indicates that Rac1 inactivation in this location, as well as its activation by GEF proteins, is a fundamental requirement for cell motility.  相似文献   

13.
Integrin-linked kinase (ILK) is key for cell survival, migration, and adhesion, but little is known about its role in epidermal development and homeostasis in vivo. We generated mice with conditional inactivation of the Ilk gene in squamous epithelia. These mice die perinatally and exhibit skin blistering and severe defects in hair follicle morphogenesis, including greatly reduced follicle numbers, failure to progress beyond very early developmental stages, and pronounced defects in follicular keratinocyte proliferation. ILK-deficient epidermis shows abnormalities in adhesion to the basement membrane and in differentiation. ILK-deficient cultured keratinocytes fail to attach and spread efficiently and exhibit multiple abnormalities in actin cytoskeletal organization. Ilk gene inactivation in cultured keratinocytes causes impaired ability to form stable lamellipodia, to directionally migrate, and to polarize. These defects are accompanied by abnormal distribution of active Cdc42 to cell protrusions, as well as reduced activation of Rac1 upon induction of cell migration in scraped keratinocyte monolayers. Significantly, alterations in cell spreading and forward movement in single cells can be rescued by expression of constitutively active Rac1 or RhoG. Our studies underscore a central and distinct role for ILK in hair follicle development and in polarized cell movements, two key aspects of epithelial morphogenesis and function.  相似文献   

14.
Rac1 is a member of the small Rho GTPase family, which controls actin cytoskeleton and focal adhesion dynamics in cellular protrusions. While Rac1 therefore contributes to regulation of endothelial cell-cell and cell-matrix interactions, a detailed understanding of its role in endothelium function is lacking. Recently, the role of Rac1 in development and postnatal regulation of the cardiovascular system has been investigated in murine models lacking Rac1 specifically in endothelium. Homozygous endothelial deletion was lethal, primarily due to defects in angiogenesis. Rac1-deficient endothelial cells were unable to form cellular protrusions/lamellipodia, leading to impaired cell-cell and cell-matrix interactions, and resulting in dysfunctional adhesion, motility, permeability and capillary morphogenesis. Development was normal in the heterozygous model, however a hypertensive phenotype was observed as a result of reduced nitric oxide signalling. Nitric oxide synthase activity was regulated by Rac1 at multiple levels; expression, mRNA stability and uptake of the nitric oxide synthase substrate L-arginine. Therefore, Rac1 activity is essential in regulating developmental and postnatal angiogenesis and cardiovascular function, by controlling nitric oxide production, and formation of endothelial cell protrusions.Key words: Rac1, angiogenesis, endothelial, motility, lamellipodia, nitric oxide, nitric oxide synthase  相似文献   

15.
During development, primordial germ cells (PGCs) migrate from the sites of their specification towards the region in which the future gonad develops. This cell migration requires polarization of PGCs and their responsiveness to external guidance cues. In zebrafish, the directed migration and polarization of PGCs are regulated independently, by the chemokine Cxcl12a and the Rho GTPase Rac1, respectively. However, the upstream signals controlling Rac activity in this context have not yet been identified. By investigating the role of G proteins in PGC migration, we found that signaling mediated by G protein subunits Gβγ is required to regulate cell polarization. PGCs that are defective for Gβγ signaling failed to polarize, and developed multiple protrusions in random locations, resembling the defects observed in PGCs with decreased Rac activity. These defects render PGCs incapable of migrating actively and responding to directional cues. FRET-based assays showed that PGCs require Gβγ signaling for polarized Rac activation and actin organization at the leading front, as well as for maintaining overall Rac levels in these cells. Conversely, overexpression of Gβγ in PGCs increases Rac activity. Our results indicate that during PGC migration in vivo, Gβγ signaling regulates Rac activity to control cell polarity, which is required for the responsiveness to chemokine signaling.  相似文献   

16.
Rac1 is a member of the small Rho GTPase family, which controls actin cytoskeleton and focal adhesion dynamics in cellular protrusions. While Rac1 therefore contributes to regulation of endothelial cell-cell and cell-matrix interactions, a detailed understanding of its role in endothelium function is lacking. Recently, the role of Rac1 in development and postnatal regulation of the cardiovascular system has been investigated in murine models lacking Rac1 specifically in endothelium. Homozygous endothelial deletion was lethal, primarily due to defects in angiogenesis. Rac1-deficient endothelial cells were unable to form cellular protrusions/lamellipodia, leading to impaired cell-cell and cell-matrix interactions, and resulting in dysfunctional adhesion, motility, permeability and capillary morphogenesis. Development was normal in the heterozygous model, however a hypertensive phenotype was observed as a result of reduced nitric oxide signalling. Nitric oxide synthase activity was regulated by Rac1 at multiple levels; expression, mRNA stability and uptake of the nitric oxide synthase substrate L-arginine. Therefore, Rac1 activity is essential in regulating developmental and postnatal angiogenesis and cardiovascular function, by controlling nitric oxide production, and formation of endothelial cell protrusions.  相似文献   

17.
Most animal cells use a combination of actin-myosin–based contraction and actin polymerization– based protrusion to control their shape and motility. The small GTPase Rho triggers the formation of contractile stress fibers and focal adhesion complexes (Ridley, A.J., and A. Hall. 1992. Cell. 70:389–399) while a close relative, Rac, induces lamellipodial protrusions and focal complexes in the lamellipodium (Nobes, C.D., and A. Hall. 1995. Cell. 81:53–62; Ridley, A.J., H.F. Paterson, C.L. Johnston, D. Diekmann, and A. Hall. 1992. Cell. 70:401–410); the Rho family of small GTPases may thus play an important role in regulating cell movement. Here we explore the roles of actin polymerization and extracellular matrix in Rho- and Rac-stimulated cytoskeletal changes. To examine the underlying mechanisms through which these GTPases control F-actin assembly, fluorescently labeled monomeric actin, Cy3-actin, was introduced into serum-starved Swiss 3T3 fibroblasts. Incorporation of Cy3- actin into lamellipodial protrusions is concomitant with F-actin assembly after activation of Rac, but Cy3-actin is not incorporated into stress fibers formed immediately after Rho activation. We conclude that Rac induces rapid actin polymerization in ruffles near the plasma membrane, whereas Rho induces stress fiber assembly primarily by the bundling of actin filaments. Activation of Rho or Rac also leads to the formation of integrin adhesion complexes. Integrin clustering is not required for the Rho-induced assembly of actin-myosin filament bundles, or for vinculin association with actin bundles, but is required for stress fiber formation. Integrin-dependent focal complex assembly is not required for the Rac-induced formation of lamellipodia or membrane ruffles. It appears, therefore, that the assembly of large integrin complexes is not required for most of the actin reorganization or cell morphology changes induced by Rac or Rho activation in Swiss 3T3 fibroblasts.  相似文献   

18.
Recent discoveries have unveiled the roles of a complicated network of E3 ubiquitin ligases in regulating cell migration machineries. The E3 ubiquitin ligases Smurf1 and Cul/BACURD ubiquitinate RhoA to regulate stress fiber formation and cell polarity, and ASB2α ubiquitinates filamins to modulate cytoskeletal stiffness, thus regulating cell spreading and cell migration. HACE1, XIAP, and Skp1-Cul1-F-box bind to Rac1 and cause its ubiquitination and degradation, thus suppressing lamellipodium protrusions, while PIAS3, a SUMO ligase, activates Rac1 to promote lamellipodium dynamics. Smurf1 also enhances Rac1 activation but it does not ubiquitinate Rac1. Both Smurf1 and HECTD1 regulate focal adhesion (FA) assembly and (or) disassembly through ubiquitinating the talin head domain and phosphatidylinositol 4 phosphate 5-kinase type I γ (PIPKIγ90), respectively. Thus, E3 ubiquitin ligases regulate stress fiber formation, cell polarity, lamellipodium protrusions, and FA dynamics through ubiquitinating the key proteins that control these processes.  相似文献   

19.
The p21-activated kinases (PAKs) play essential roles in diverse cellular processes and are required for cell proliferation, apoptosis, polarity establishment, migration, and cell shape changes. Here, we have identified a novel function for the group I PAKs in cell–cell fusion. We show that the two Drosophila group I PAKs, DPak3 and DPak1, have partially redundant functions in myoblast fusion in vivo, with DPak3 playing a major role. DPak3 is enriched at the site of fusion colocalizing with the F-actin focus within a podosome-like structure (PLS), and promotes actin filament assembly during PLS invasion. Although the small GTPase Rac is involved in DPak3 activation and recruitment to the PLS, the kinase activity of DPak3 is required for effective PLS invasion. We propose a model whereby group I PAKs act downstream of Rac to organize the actin filaments within the PLS into a dense focus, which in turn promotes PLS invasion and fusion pore initiation during myoblast fusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号