首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
树木抗旱机理研究进展   总被引:19,自引:3,他引:19  
李燕  薛立  吴敏 《生态学杂志》2007,26(11):1857-1866
干旱是树木成活与生长的重要限制因素之一。研究树木的抗旱性,有助于了解树木的干旱适应性机制,探求树木抗旱的适宜调控措施,对充分发挥森林的生态效益具有重要作用。本文从树木的水分关系、净光合速率与蒸腾速率、叶片的δ13C值、木质部导管空穴、光合机制与抗氧化保护机制、渗透调节、脱落酸和C4植物的抗旱机理及树木的抗旱基因与遗传特性(包括水通道蛋白、逆境信号转导、树木抗旱性的遗传基因工程)方面对树木抗旱机理研究进行了综述。  相似文献   

2.
Predicting the consequences of climate change on forest systems is difficult because trees may display species‐specific responses to exaggerated droughts that may not be reflected by the climatic envelope of their geographic range. Furthermore, few studies have examined the postdrought recovery potential of drought‐susceptible tree species. This study develops a robust ranking of the drought susceptibility of 21 tree species based on their mortality after two droughts (1990s and 2000s) in the savanna of north‐eastern Australia. Drought‐induced mortality was positively related to species dominance, negatively related to the ratio of postdrought seedlings to adults and had no relationship to the magnitude of extreme drought within the species current geographic ranges. These results suggest that predicting the consequences of exaggerated drought on species’ geographic ranges is difficult, but that dominant species like Eucalyptus with relatively slow rates of population recovery and dispersal are the most susceptible. The implications for savanna ecosystems are lower tree densities and basal area.  相似文献   

3.
Accounting for water stress‐induced tree mortality in forest productivity models remains a challenge due to uncertainty in stress tolerance of tree populations. In this study, logistic regression models were developed to assess species‐specific relationships between probability of mortality (Pm) and drought, drawing on 8.1 million observations of change in vital status (m) of individual trees across North America. Drought was defined by standardized (relative) values of soil water content (Ws,z) and reference evapotranspiration (ETr,z) at each field plot. The models additionally tested for interactions between the water‐balance variables, aridity class of the site (AC), and estimated tree height (h). Considering drought improved model performance in 95 (80) per cent of the 64 tested species during calibration (cross‐validation). On average, sensitivity to relative drought increased with site AC (i.e. aridity). Interaction between water‐balance variables and estimated tree height indicated that drought sensitivity commonly decreased during early height development and increased during late height development, which may reflect expansion of the root system and decreasing whole‐plant, leaf‐specific hydraulic conductance, respectively. Across North America, predictions suggested that changes in the water balance caused mortality to increase from 1.1% yr?1 in 1951 to 2.0% yr?1 in 2014 (a net change of 0.9 ± 0.3% yr?1). Interannual variation in mortality also increased, driven by increasingly severe droughts in 1988, 1998, 2006, 2007 and 2012. With strong confidence, this study indicates that water stress is a common cause of tree mortality. With weak‐to‐moderate confidence, this study strengthens previous claims attributing positive trends in mortality to increasing levels of water stress. This ‘learn‐as‐we‐go’ approach – defined by sampling rare drought events as they continue to intensify – will help to constrain the hydraulic limits of dominant tree species and the viability of boreal and temperate forest biomes under continued climate change.  相似文献   

4.
5.
Winter‐drought induced forest diebacks in the low‐latitude margins of species' distribution ranges can provide new insights into the mechanisms (carbon starvation, hydraulic failure) underlying contrasting tree reactions. We analysed a winter‐drought induced dieback at the Scots pine's southern edge through a dual‐isotope approach (Δ13C and δ18O in tree‐ring cellulose). We hypothesized that a differential long‐term performance, mediated by the interaction between CO2 and climate, determined the fates of individuals during dieback. Declining trees showed a stronger coupling between climate, growth and intrinsic water‐use efficiency (WUEi) than non‐declining individuals that was noticeable for 25 years prior to dieback. The rising stomatal control of water losses with time in declining trees, indicated by negative Δ13C‐δ18O relationships, was likely associated with their native aptitude to grow more and take up more water (suggested by larger tracheid lumen widths) than non‐declining trees and, therefore, to exhibit a greater cavitation risk. Freeze‐thaw episodes occurring in winter 2001 unveiled such physiological differences by triggering dieback in those trees more vulnerable to hydraulic failure. Thus, WUEi tightly modulated growth responses to long‐term warming in declining trees, indicating that co‐occurring individuals were differentially predisposed to winter‐drought mortality. These different performances were unconnected to the depletion of stored carbohydrates.  相似文献   

6.
The expected increase in drought severity and frequency as a result of anthropogenic climate change leads to concerns about the ability of native tree species to cope with these changes. To determine the susceptibility of Fagus sylvatica (European beech) and Quercus robur (pedunculate oak) – the two dominant deciduous tree species in Central Europe – to drought, we quantified the climate sensitivity and drought-response of radial growth for both species using an array of dendroecological methods. Tree-ring data were collected from a site east of Coburg, Bavaria which had shown pronounced stress-symptoms (early leaf coloration) during the record drought of 2018. Climate-growth relationships were used to establish the sensitivity of radial growth to multiple climatic variables. The impact of specific drought events on tree growth was quantified using tolerance indices. In addition, we employed a Principal Component Gradient Analysis (PCGA) and remote sensing data (MODIS Normalized Difference Vegetation Index (NDVI)) to delineate the species specific drought responses. Using these methods we were able to show a clear difference in drought susceptibility between beech and oak. Beech displayed a higher sensitivity to temperature and the standardized precipitation evapotranspiration index (SPEI) and showed lower resistance and resilience to drought events than oak. In particular, beech was unable to fully recover from the 2003 drought, after which it expressed a stark growth decline, i.e. drought legacies, which was not observed for oak. The PCGA revealed a clear differentiation in the grouping of drought responses between beech and oak, supporting the findings of the climate-growth analysis and the tolerance indices. Correlations of NDVI and ring-width indices (RWI) indicated that under normal climatic conditions NDVI variability is linked to the start of the growing season. This is in contrast to drought years, such as 2003, where summer NDVI mirrored the drought response of beech and oak. These results reveal beech to have both a higher sensitivity to summer temperature and SPEI and a higher susceptibility to drought events. Although, in the past high plasticity and adaptability to drought have been attributed to both beech and oak, our study assigns beech a higher risk than oak to suffer from anticipated increases in drought frequency and intensity as a consequence of climate change.  相似文献   

7.
Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature‐induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ?13C responses on a subsample of trees as representative of the wider region. The negative ?13C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ?13C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought‐induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions.  相似文献   

8.
Adjustment mechanisms of trees to changes in soil‐water availability over long periods are poorly understood, but crucial to improve estimates of forest development in a changing climate. We compared mature trees of Scots pine (Pinus sylvestris) and European larch (Larix decidua) growing along water‐permeable channels (irrigated) and under natural conditions (control) at three sites in inner‐Alpine dry valleys. At two sites, the irrigation had been stopped in the 1980s. We combined measurements of basal area increment (BAI), tree height and gas‐exchange physiology (Δ13C) for the period 1970–2009. At one site, the Δ13C of irrigated pine trees was higher than that of the control in all years, while at the other sites, it differed in pine and larch only in years with dry climatic conditions. During the first decade after the sudden change in water availability, the BAI and Δ13C of originally irrigated pine and larch trees decreased instantly, but subsequently reached higher levels than those of the control by 2009 (15 years afterwards). We found a high plasticity in the gas‐exchange physiology of pine and larch and site‐specific responses to changes in water availability. Our study highlights the ability of trees to adjust to new conditions, thus showing high resilience.  相似文献   

9.
The Arctic is particularly sensitive to climate change, but the independent effects of increasing atmospheric CO2 concentration (pCO2) and temperature on high‐latitude forests are poorly understood. Here, we present a new, annually resolved record of stable carbon isotope (δ13C) data determined from Larix cajanderi tree cores collected from far northeastern Siberia in order to investigate the physiological response of these trees to regional warming. The tree‐ring record, which extends from 1912 through 1961 (50 years), targets early twentieth‐century warming (ETCW), a natural warming event in the 1920s to 1940s that was limited to Northern hemisphere high latitudes. Our data show that net carbon isotope fractionation (Δ13C), decreased by 1.7‰ across the ETCW, which is consistent with increased water stress in response to climate warming and dryer soils. To investigate whether this signal is present across the northern boreal forest, we compiled published carbon isotope data from 14 high‐latitude sites within Europe, Asia, and North America. The resulting dataset covered the entire twentieth century and spanned both natural ETCW and anthropogenic Late Twentieth‐Century Warming (~0.7 °C per decade). After correcting for a ~1‰ increase in Δ13C in response to twentieth century pCO2 rise, a significant negative relationship (r = ?0.53, P < 0.0001) between the average, annual Δ13C values and regional annual temperature anomalies is observed, suggesting a strong control of temperature on the Δ13C value of trees growing at high latitudes. We calculate a 17% increase in intrinsic water‐use efficiency within these forests across the twentieth century, of which approximately half is attributed to a decrease in stomatal conductance in order to conserve water in response to drying conditions, with the other half being attributed to increasing pCO2. We conclude that annual tree‐ring records from northern high‐latitude forests record the effects of climate warming and pCO2 rise across the twentieth century.  相似文献   

10.
  • Climate anomalies have resulted in changing forest productivity, increasing tree mortality in Central and Southern Europe. This has resulted in more severe and frequent ecological disturbances to forest stands. This study analysed the size‐dependence of growth response to drought years based on 384 tree individuals of Norway spruce [Picea abies (L.) Karst.] and European beech [Fagus sylvatica ([L.)] in Bavaria, Germany.
  • Samples were collected in both monospecific and mixed‐species stands. To quantify the growth response to drought stress, indices for basal area increment, resistance, recovery and resilience were calculated from tree ring measurements of increment cores. Linear mixed models were developed to estimate the influence of drought periods.
  • The results show that ageing‐related growth decline is significant in drought years. Drought resilience and resistance decrease significantly with growth size among Norway spruce individuals. Evidence is also provided for robustness in the resilience capacity of European beech during drought stress. Spruce benefits from species mixing with deciduous beech, with over‐yielding spruce in pure stands.
  • The importance of the influence of size‐dependence within tree growth studies during disturbances is highlighted and should be considered in future studies of disturbances, including drought.
  相似文献   

11.
Whilst forest policy promotes cultivation and regeneration of beech dominated forest ecosystems, beech itself is a highly drought sensitive tree species likely to suffer from the climatic conditions prognosticated for the current century. Taking advantage of model ecosystems with cool-moist and warm-dry local climate, the latter assumed to be representative for future climatic conditions, the effects of climate and silvicultural treatment (different thinning regimes) on water status, nitrogen balance and growth parameters of adult beech trees and beech regeneration in the understorey were assessed. In addition, validation experiments with beech seedlings were carried out under controlled conditions, mainly in order to assess the effect of drought on the competitive abilities of beech. As measures of water availability xylem flow, shoot water potential, stomatal conductance as well as delta (13)C and delta (18)O in different tissues (leaves, phloem, wood) were analysed. For the assessment of nitrogen balance we determined the uptake of inorganic nitrogen by the roots as well as total N content and soluble N compounds in different tissues of adult and young trees. Retrospective and current analysis of delta (13)C, growth and meteorological parameters revealed that beech growing under warm-dry climatic conditions were impaired in growth and water balance during periods with low rain-fall. Thinning affected water, N balance and growth mostly of young beech, but in a different way under different local climatic conditions. Under cool, moist conditions, representative for the current climatic and edaphic conditions in beech forests of Central Europe, thinning improves nutrient and water status consistent to published literature and long-term experience of forest practitioners. However, beech regeneration was impaired as a result of thinning at higher temperatures and under reduced water availability, as expected in future climate.  相似文献   

12.
Rising temperatures are amplifying drought‐induced stress and mortality in forests globally. It remains uncertain, however, whether tree mortality across drought‐stricken landscapes will be concentrated in particular climatic and competitive environments. We investigated the effects of long‐term average climate [i.e. 35‐year mean annual climatic water deficit (CWD)] and competition (i.e. tree basal area) on tree mortality patterns, using extensive aerial mortality surveys conducted throughout the forests of California during a 4‐year statewide extreme drought lasting from 2012 to 2015. During this period, tree mortality increased by an order of magnitude, typically from tens to hundreds of dead trees per km2, rising dramatically during the fourth year of drought. Mortality rates increased independently with average CWD and with basal area, and they increased disproportionately in areas that were both dry and dense. These results can assist forest managers and policy‐makers in identifying the most drought‐vulnerable forests across broad geographic areas.  相似文献   

13.
Tree resilience to drought increases in the Tibetan Plateau   总被引:1,自引:0,他引:1  
Forests in the Tibetan Plateau are thought to be vulnerable to climate extremes, yet they also tend to exhibit resilience contributing to the maintenance of ecosystem services in and beyond the plateau. So far the spatiotemporal pattern in tree resilience in the Tibetan Plateau remains largely unquantified and the influence of specific factors on the resilience is poorly understood. Here, we study ring‐width data from 849 trees at 28 sites in the Tibetan Plateau with the aim to quantify tree resilience and determine their diving forces. Three extreme drought events in years 1969, 1979, and 1995 are detected from metrological records. Regional tree resistance to the three extreme droughts shows a decreasing trend with the proportion of trees having high resistance ranging from 71.9%, 55.2%, to 39.7%. Regional tree recovery is increasing with the proportion of trees having high recovery ranging from 28.3%, 52.2%, to 64.2%. The area with high resistance is contracting and that of high recovery is expanding. The spatiotemporal resistance and recovery are associated with moisture availability and diurnal temperature range, respectively. In addition, they are both associated with forest internal factor represented by growth consistence among trees. We conclude that juniper trees in the Tibetan Plateau have increased resilience to extreme droughts in the study period. We highlight pervasive resilience in juniper trees. The results have implications for predicting tree resilience and identifying areas vulnerable to future climate extremes.  相似文献   

14.
The increasing carbon dioxide (CO2) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree‐ring sites located across Europe are investigated to determine the intrinsic water‐use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX‐Bern 1.0) that integrates numerous ecosystem and land–atmosphere exchange processes in a theoretical framework. The spatial pattern of tree‐ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south‐to‐north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil‐water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation–climate feedbacks are currently still poorly constrained by observational data.  相似文献   

15.
樟子松树轮不同组分的稳定碳同位素分析   总被引:1,自引:0,他引:1  
对大兴安岭北部樟子松树轮中的全木、综纤维素和α纤维素3种组分按早晚材分别测定稳定碳同位素(δ13C)值,分析比较早晚材两种材质的3种组分δ13C值差异,探讨其对气候环境变化的响应。结果表明:从组分来看,樟子松树轮综纤维素的δ13C指标更接近于α纤维素;从材质来看,樟子松树轮晚材不同组分的稳定碳同位素信号对气候环境变化响应的一致性和敏感程度要大于早材。樟子松树轮晚材的综纤维素δ13C指标是研究过去气候或环境变化的理想载体,而α纤维素在提取过程中很可能丢失了部分气候信息。  相似文献   

16.
Non‐native tree species (NNT) are used in European forestry for many purposes including their growth performance, valuable timber, and resistance to drought and pest or pathogen damage. Yet, cultivating NNT may pose risks to biodiversity, ecosystem functioning, and the provisioning of ecosystem services, and several NNT have been classified as invasive in Europe. Typically, such classifications are based on risk assessments, which do not adequately consider site‐specific variations in impacts of the NNT or the extent of affected areas. Here, we present a new methodological framework that facilitates both mitigating risks associated with NNT and taking advantage of their ecosystem services. The framework is based on a stratified assessment of risks posed by NNT which distinguishes between different sites and considers effectiveness of available management strategies to control negative effects. The method can be applied to NNT that already occur in a given area or those NNT that may establish in future. The framework consists of eight steps and is partly based on existing knowledge. If adequate site‐specific knowledge on NNT does not yet exist, new evidence on the risks should be obtained, for example, by collecting and analyzing monitoring data or modeling the potential distribution of NNT. However, limitations remain in the application of this method, and we propose several policy and management recommendations which are required to improve the responsible use of NNT.  相似文献   

17.
近年来北京地区的森林随极端干旱加剧表现出脆弱性特征,为了解气候变化下不同树种的干旱耐受性,选择北京东灵山森林内3个乔木树种(华北落叶松、油松和辽东栎),利用树木年轮生态学方法分析了径向生长与气候的关系,以及对极端干旱事件的抵抗力和弹性。结果表明: 华北落叶松和油松与5—6月气温呈显著负相关,辽东栎与5月气温呈显著负相关;华北落叶松与6月降水量、5—6月和8—9月相对湿度呈显著正相关,油松与6—8月降水量和相对湿度呈显著正相关,辽东栎与2月和5月降水量、5月相对湿度呈显著正相关;所有树种均与当年5—7月标准化降水蒸散指数(SPEI)呈显著正相关。华北落叶松是干旱耐受性最弱的树种,径向生长在所选极端干旱事件中(1994年、2001—2002年和2007年)下降幅度最大(46.6%~69.6%),抵抗力(0.534、0.304、0.530)和弹性(0.686、0.570、0.753)显著低于辽东栎和油松,辽东栎在2007年抵抗力显著高于油松,弹性无显著差异。生长季持续的高温或降水减少引起的极端干旱是树木径向生长下降的主要原因,树种间各异的生理生态策略是干旱耐受性差异的可能原因。研究结果可为未来造林树种选择和森林管护措施制定提供新依据,以在气候压力持续增加背景下维持森林生态系统功能和服务。  相似文献   

18.
19.
When site factors reduce growth rates, tree lifespan tends to increase. This study investigates processes leading to such inverse relationship in Fagus sylvatica stands distributed along two elevation gradients, with an emphasis on climatic response, suppression periods, and growth trends. Dendrochronological records from old‐growth beech populations sampled at different elevations within two different bioclimatic regions (Alps vs. Apennines), were used to investigate factors that control tree lifespan. Differences between old‐growth (12) and nearby managed (15) stands were used to assess effects of silvicultural practices on maximum age. Logging reduced tree lifespan not only by removing older trees, but also by reducing the number of years beech individuals spent in the shaded understory. Tree lifespan and growth rates were affected by climate (spring–summer temperature) and were inversely related to one another along elevation gradients. The greatest lifespan was observed in old‐growth high‐mountain populations, and was related not only to slower growth due to a shorter growing season, but also to multidecadal periods of growth suppression during the initial development stages in the understory (i.e., slower growth rates at the youngest cambial ages). Past unfavorable climatic periods (in this case, the Little Ice Age) also helped increase tree lifespan. Using a linear model, we estimated a reduction in beech lifespan of 23 ± 5 years for each degree of warming. Basal area increment of trees with the maximum observed lifespan showed an increasing trend over time. Because growth of old (>300 years) trees has increased in the Alps, while it has recently declined in the Apennines, different bioclimatic regions can have opposite responses to global climatic change. In the next decades, if warming continues, beech lifespan could be reduced in the Alps by faster growth and in the Apennines by drought‐induced mortality.  相似文献   

20.
Question: Is stomatal regulation specific for climate and tree species, and does it reveal species‐specific responses to drought? Is there a link to vegetation dynamics? Location: Dry inner alpine valley, Switzerland Methods: Stomatal aperture (θE) of Pinus sylvestris, Quercus pubescens, Juniperus communis and Picea abies were continuously estimated by the ratio of measured branch sap flow rates to potential transpiration rates (adapted Penman‐Monteith single leaf approach) at 10‐min intervals over four seasons. Results: θE proved to be specific for climate and species and revealed distinctly different drought responses: Pinus stomata close disproportionately more than neighbouring species under dry conditions, but has a higher θE than the other species when weather was relatively wet and cool. Quercus keeps stomata more open under drought stress but has a lower θE under humid conditions. Juniperus was most drought‐tolerant, whereas Picea stomata close almost completely during summer. Conclusions: The distinct microclimatic preferences of the four tree species in terms of θE strongly suggest that climate (change) is altering tree physiological performances and thus species‐specific competitiveness. Picea and Pinus currently live at the physiological limit of their ability to withstand increasing temperature and drought intensities at the sites investigated, whereas Quercus and Juniperus perform distinctly better. This corresponds, at least partially, with regional vegetation dynamics: Pinus has strongly declined, whereas Quercus has significantly increased in abundance in the past 30 years. We conclude that θE provides an indication of a species' ability to cope with current and predicted climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号