首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bipolar disorder (BD) is associated with signs of widespread disruption of white matter (WM) integrity. A polymorphism in the promoter of the serotonin transporter (5‐HTTLPR) influenced functional cortico‐limbic connectivity in healthy subjects and course of illness in BD, with the short (s) allele being associated with lower functional connectivity, and with earlier onset of illness and poor response to treatment. We tested the effects of 5‐HTTLPR on diffusion tensor imaging (DTI) measures of WM microstructure in 140 inpatients, affected by a major depressive episode in course of BD, of Italian descent. We used whole brain tract‐based spatial statistics in the WM skeleton with threshold‐free cluster enhancement of DTI measures of WM microstructure: axial, radial and mean diffusivity and fractional anisotropy. Compared with l/l homozygotes, 5‐HTTLPR*s carriers showed significantly increased radial and mean diffusivity in several brain WM tracts, including corpus callosum, cingulum bundle, uncinate fasciculus, corona radiata, thalamic radiation, inferior and superior longitudinal fasciculus and inferior fronto‐occipital fasciculus. An increase of mean and radial diffusivity, perpendicular to the main axis of the WM tract, is thought to signify increased space between fibers, thus suggesting demyelination or dysmyelination, or loss of bundle coherence. The effects of 5‐HTTLPR on the anomalous emotional processing in BD might be mediated by changes of WM microstructure in key WM tracts contributing to the functional integrity of the brain.  相似文献   

2.
Suicidal behavior and self‐mutilation can be regarded as the expression of self‐directed aggression and both are common in prison populations. We investigated the influence of externalizing behaviors, depressive symptoms, childhood trauma, 5‐HTTLPR variants on self‐directed aggression (N = 145) in a group of 702 male Italian prisoners. Participants were comprehensively evaluated, including for psychiatric disorders, impulsive traits, lifetime aggressive behavior [Brown‐Goodwin Lifetime History of Aggression (BGHA)], hostility, violent behavior during incarceration, depressive symptomatology [Hamilton Depression Rating Scale (HDRS)], childhood trauma [Childhood Trauma Questionnaire (CTQ)]. Logistic regression analysis showed false discovery rate corrected independent main effects of externalizing behaviors: BGHA (P = 0.001), violent behavior in jail (P = 0.007), extraversion (P = 0.015); HDRS (P = 0.0004), Axis I disorders (P = 0.015), CTQ (P = 0.004) and 5‐HTTLPR genotype (P = 0.02). Carriers of 5‐HTTLPR high (LALA), intermediate (LALG, SLA) activity variants were more likely to have exhibited self‐directed aggression relative to the low activity (LGLG, SLG, SS) variant: high/low: odds ratio (OR) = 2.3, 95% confidence interval (CI) 1.27–4.68, P = 0.007; intermediate/low: OR = 1.96, 95% CI 1.09–3.68, P = 0.025. The CTQ main effect was driven by physical abuse. There was no interactive effect of 5‐HTTLPR and CTQ. Secondary logistic regression analyses in (1) all suicide attempters (N = 88) and (2) all self‐mutilators (N = 104), compared with controls showed that in both groups, childhood trauma (P = 0.008–0.01), depression (P = 0.0004–0.001) were strong predictors. BGHA, violent behavior in jail predicted self‐mutilation (P = 0.002) but not suicide attempts (P = 0.1). This study was able to distinguish differing influences on self‐directed aggression between groups of closely related predictor variables within the externalizing behavioral domain. 5‐HTTLPR had an independent, variant dosage effect.  相似文献   

3.
Decision making ability has been reported to be impaired in schizophrenia patients, but no research has examined the genetic bases of this impairment. This study investigated how decision making was affected by the genetic variants in the serotonin transporter gene (triallelic 5‐ HTTLPR) and serotonin receptor 1A gene (rs6295) and their interaction in 465 schizophrenia patients and 448 healthy controls. The Iowa Gambling Task (IGT) was used to evaluate decision making under ambiguity (the first 40 trials) and decision making under risk (the last 60 trials). Results showed that, among the patients, the main effects of 5‐ HTTLPR (F2,16 = 6.54, P = 0.002) and HTR1A rs6295 (F2,16 = 3.87, P = 0.021) polymorphisms and their interaction effect (F4,16 = 3.32, P = 0.005) were significant for the first 40 trials, with the GG genotype of HTR1A rs6295, the L′L′ genotype of 5‐ HTTLPR and the GG‐L′L′ combination showing poorer IGT performance than their counterparts. Results for the healthy controls showed a similar pattern but did not reach statistical significance. No significant effects were found for the last 60 trials. These results are discussed in terms of their implications for our understanding of the genetic mechanisms of decision making in schizophrenia patients as well as healthy adults.  相似文献   

4.
Individual variation in serotonergic function is associated with reactivity, risk for affective disorders, as well as an altered response to disease. Our study used a nonhuman primate model to further investigate whether a functional polymorphism in the promoter region for the serotonin transporter gene helps to explain differences in proinflammatory responses. Homology between the human and rhesus monkey polymorphisms provided the opportunity to determine how this genetic variation influences the relationship between a psychosocial stressor and immune responsiveness. Leukocyte numbers in blood and interleukin‐6 (IL‐6) responses are sensitive to stressful challenges and are indicative of immune status. The neutrophil‐to‐lymphocyte ratio and cellular IL‐6 responses to in vitro lipopolysaccharide stimulation were assessed in 27 juvenile male rhesus monkeys while housed in stable social groups (NLL = 16, NS = 11) and also in 18 animals after relocation to novel housing (NLL = 13, NS = 5). Short allele monkeys had significantly higher neutrophil‐to‐lymphocyte ratios than homozygous Long allele carriers at baseline [t(25) = 2.18, P = 0.02], indicative of an aroused state even in the absence of disturbance. In addition, following the housing manipulation, IL‐6 responses were more inhibited in short allele carriers (F1,16 = 8.59, P = 0.01). The findings confirm that the serotonin transporter gene‐linked polymorphism is a distinctive marker of reactivity and inflammatory bias, perhaps in a more consistent manner in monkeys than found in many human studies .  相似文献   

5.
The oxytocin and the dopaminergic systems have turned out to be highly relevant for social abilities and cognition. Therefore, we examined the association between two functional gene polymorphisms and face cognition (FC) in a multivariate study (N = 250) by applying structural equation modeling. The catechol‐O‐methyltransferase (COMT) val158met polymorphism influences the enzyme activity of COMT, which affects the prefrontal dopamine concentration. The rs226849 is a single‐nucleotide polymorphism located in the promoter region of the oxytocin receptor (OXTR) gene, modulating the mRNA expression. By modeling a general fluid ability factor (defined by working memory and reasoning) and nested FC factors, we tested genetic contributions to FC, after controlling for variance in FC that was also associated with fluid abilities. In line with several previous studies, we found a significant association between the COMT genotype and fluid abilities (Gf) but not with FC. The association between the oxytocin polymorphism and Gf was opposite in direction for men and women. Women with the C+ genotype performed better on Gf tasks than those with the C? genotype. Conversely, men with the C? genotype performed better than those with the C+ genotype. There was no significant association between OXTR and the nested FC factor. Therefore, the relationship between the oxytocin polymorphism and FC can be fully accounted for by Gf. The sex specificity of this relationship is a novel finding and warrants a mechanistic explanation.  相似文献   

6.
Exposure to war zone stressors is common, yet only a minority of soldiers experience clinically meaningful disturbance in psychological function. Identification of biomarkers that predict vulnerability to war zone stressors is critical for developing more effective treatment and prevention strategies not only in soldiers but also in civilians who are exposed to trauma. We investigated the role of the serotonin transporter linked polymorphic region (5‐HTTLPR) genotype in predicting the emergence of post‐traumatic stress disorder (PTSD), depressive and anxiety symptoms as a function of war zone stressors. A prospective cohort of 133 U.S. Army soldiers with no prior history of deployment to a war zone, who were scheduled to deploy to Iraq, was recruited. Multilevel regression models were used to investigate associations between 5‐HTTLPR genotype, level of war zone stressors, and reported symptoms of PTSD, depression and anxiety while deployed to Iraq. Level of war zone stressors was associated with symptoms of PTSD, depression and anxiety. Consistent with its effects on stress responsiveness, 5‐HTTLPR genotype moderated the relationship between level of war zone stressors and symptoms of emotional disturbance. Specifically, soldiers carrying one or two low functioning alleles (S or LG) reported heightened symptoms of PTSD, depression and anxiety in response to increased levels of exposure to war zone stressors, relative to soldiers homozygous for the high functioning allele (LA). These data suggest that 5‐HTTLPR genotype moderates individual sensitivity to war zone stressors and the expression of emotional disturbance including PTSD symptoms. Replication of this association along with identification of other genetic moderators of risk can inform the development of biomarkers that can predict relative resilience vs. vulnerability to stress.  相似文献   

7.
The serotonin 5‐HT4 receptor (5‐HT4‐R) is an unusually complex G‐protein coupled receptor that is likely to play important roles in brain development and that may underlie the comorbidity of central and peripheral abnormalities in some developmental disorders. We studied the expression of 5‐HT4‐Rs in the developing mouse forebrain at embryonic days 13, 15, 17, and at postnatal days 3 and 14 by using immunohistochemistry, tract tracing, and quantitative RT‐PCR. The developing thalamocortical projections transiently expressed 5‐HT4‐Rs in the embryonic brain and the 5‐HT4‐R expression in the forebrain changed from axonal to somatic around birth. From embryonic days 13–17, the forebrain mRNA levels of the 5‐HT4(a)‐R and 5‐HT4(b)‐R splice variants increased nine‐ and fivefold, respectively, whereas the levels of the 5‐HT4(e)‐R and 5‐HT4(f)‐R variants remained relatively low throughout the studied period of embryonic development. These results suggest that during development 5‐HT4‐R expression undergoes a dynamic regulation and that this regulation may be important for the normal development of sensory and limbic processing. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010.  相似文献   

8.
9.
10.
In the present study, the 5‐HT2A and 5‐HT1A receptors functional activity and 5‐HT2A receptor gene expression were examined in the brain of ASC/Icg and congenic AKR.CBAD13Mit76C mouse strains (genetically predisposed to catalepsy) in comparison with the parental catalepsy‐resistant AKR/J and catalepsy‐prone CBA/Lac mouse strains. The significantly reduced 5‐HT2A receptor functional activity along with decreased 5‐HT2A receptor gene expression in the frontal cortex was found in all mice predisposed to catalepsy compared with catalepsy‐resistant AKR/J. 5‐HT2A agonist DOI (0.5 and 1 mg/kg, i.p.) significantly reduced catalepsy in ASC/Icg and CBA/Lac, but not in AKR.CBAD13Mit76C mice. Essential increase in 5‐HT1A receptor functional activity was shown in catalepsy‐prone mouse strains in comparison with catalepsy‐resistant AKR/J mice. However, in AKR.CBAD13Mit76C mice it was lower than in ASC/Icg and CBA/Lac mice. The inter‐relation between 5‐HT2A and 5‐HT1A receptors in the regulation of catalepsy was suggested. This suggestion was confirmed by prevention of DOI anticataleptic effect in ASC/Icg and CBA/Lac mice by pretreatment with 5‐HT1A receptor antagonist p‐MPPI (3 mg/kg, i.p.). At the same time, the activation of 5‐HT2A receptor led to the essential suppression of 5‐HT1A receptor functional activity, indicating the opposite effect of 5‐HT2A receptor on pre‐ and postsynaptic 5‐HT1A receptors. Thus, 5‐HT2A/5‐HT1A receptor interaction in the mechanism of catalepsy suppression in mice was shown.  相似文献   

11.
12.
Canonical BMP and Wnt signaling pathways play critical roles in regulation of osteoblast function and bone formation. Recent studies demonstrate that BMP‐2 acts synergistically with β‐catenin to promote osteoblast differentiation. To determine the molecular mechanisms of the signaling cross‐talk between canonical BMP and Wnt signaling pathways, we have used primary osteoblasts and osteoblast precursor cell lines 2T3 and MC3T3‐E1 cells to investigate the effect of BMP‐2 on β‐catenin signaling. We found that BMP‐2 stimulates Lrp5 expression and inhibits the expression of β‐TrCP, the F‐box E3 ligase responsible for β‐catenin degradation and subsequently increases β‐catenin protein levels in osteoblasts. In vitro deletion of the β‐catenin gene inhibits osteoblast proliferation and alters osteoblast differentiation and reduces the responsiveness of osteoblasts to the BMP‐2 treatment. These findings suggest that BMP‐2 may regulate osteoblast function in part through modulation of the β‐catenin signaling. J. Cell. Biochem. 108: 896–905, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Mammalian Tolloid‐like 1 (Tll‐1) is a pleiotropic metalloprotease that is expressed by a small subset of cells within the precardiac mesoderm and is necessary for proper heart development. Following heart tube formation Tll‐1 is expressed by the endocardium and regions of myocardium overlying the region of the muscular interventricular septum. Mutations in Tll‐1 lead to embryonic lethality due to cardiac defects. We demonstrate that the Tll‐1 promoter contains Nkx2–5 binding sites and that the Tll‐1 promoter is activated by and directly binds Nkx2–5. Tll‐1 expression is ablated by a dominant negative Nkx2–5 or by mutation of the Nkx2–5 binding sites within the Tll‐1 promoter. In vivo, Tll‐1 expression is decreased in the hearts of Nkx2–5 knockout embryos when compared with hemizygous and wild‐type embryos. These results show that Nkx2–5 is a direct activator of Tll‐1 expression and provide insight into the mechanism of the defects found in both the Tll‐1 and Nkx2–5 knockout mice.  相似文献   

14.
In this study, we identified a polymorphism in the 5′‐flanking region of the chicken serotonin transporter (5‐HTT) gene. Sequencing analysis revealed that in comparison with the wild‐type variant (W), a deleted variant (D) is generated by deletion of four nucleotides (5′‐AATT‐3′) and a single nucleotide change (A→T). Using a polyacrylamide gel electrophoresis system, we found that the 360‐bp DNA fragment containing the W variant with the wild‐type sequence 5′‐AATTAATT‐3′ shows intrinsic DNA curvature while the 356‐bp fragment containing the D variant lacking the four base pairs AATT is not curved. Quantitative real‐time RT‐PCR and ELISA demonstrated that the expression of 5‐HTT in D/D chickens was higher than that in W/W and W/D chickens. In addition, transient transfection experiments with chloramphenicol acetyltransferase reporter gene constructs revealed increased 5‐HTT promoter activity mediated by the D variant and a silencer activity of the W variant. Interestingly, females and males with D/D genotype showed significant greater increase in body weight from 6 weeks and 16 weeks of age, respectively, and higher body mass index. Moreover, we found that D/D chickens of both genders were physically more active than W/W and W/D chickens.

  相似文献   


15.
Hypoxia–ischaemia (HI) remains a major cause of foetal brain damage presented a scarcity of effective therapeutic approaches. Dexmedetomidine (DEX) and microRNA‐140‐5p (miR‐140‐5p) have been highlighted due to its potentially significant role in the treatment of cerebral ischaemia. This study was to investigate the role by which miR‐140‐5p provides cerebral protection using DEX to treat hypoxic–ischaemic brain damage (HIBD) in neonatal rats via the Wnt/β‐catenin signalling pathway. The HIBD rat models were established and allocated into various groups with different treatment plans, and eight SD rats into sham group. The learning and memory ability of the rats was assessed. Apoptosis and pathological changes in the hippocampus CA1 region and expressions of the related genes of the Wnt/β‐catenin signalling pathway as well as the genes responsible of apoptosis were detected. Compared with the sham group, the parameters of weight, length growth, weight ratio between hemispheres, the rate of reaching standard, as well as Bcl‐2 expressions, were all increased. Furthermore, observations of increased levels of cerebral infarction volume, total mortality rate, response times, total response duration, expressions of Wnt1, β‐catenin, TCF‐4, E‐cadherin, apoptosis rate of neurons, and Bax expression were elevated. Following DEX treatment, the symptoms exhibited by HIBD rats were ameliorated. miR‐140‐5p and si‐Wnt1 were noted to attenuate the progression of HIBD. Our study demonstrates that miR‐140‐5p promotes the cerebral protective effects of DEX against HIBD in neonatal rats by targeting the Wnt1 gene through via the negative regulation of the Wnt/β‐catenin signalling pathway.  相似文献   

16.
We recently showed that a genetic polymorphism (rs878886) in the human corticotropin‐releasing hormone receptor 1 (CRHR1) is associated with reduced fear‐conditioned responses to a threat cue. This is a potentially important finding considering that the failure to acquire fear contingencies can leave an individual in a maladaptive state of more generalized anxiety. Consistent with that idea, the CRHR1‐dependent fear acquisition deficit translated into heightened contextual anxiety when taking genetic variability within the serotonin transporter long polymorphic region (5‐HTTLPR) into account. To replicate our previous findings, we conducted a replication study in 224 healthy medication‐free human subjects using the exact same cue and context virtual reality fear‐conditioning procedure as in study by Heitland et al. (2013). In the replication study, consistent with the original findings, CRHR1 rs878886 G‐allele carriers showed reduced acquisition of cue‐specific fear‐conditioned responses compared with C/C homozygotes. Also, in this larger sample the cue acquisition deficit of G‐allele carriers translated into heightened contextual anxiety, even independent of 5‐HTT gene variation. In contrast to our earlier findings, there was an additional interaction effect of CRHR1 rs878886 and the triallelic 5‐HTTLPR/rs25531 variant on cued fear acquisition. In summary, this study replicated the initially reported association of the CRHR1 rs878886 G‐allele with cued fear acquisition deficits, albeit with a different pattern of results regarding the interaction with 5‐HTT variation. This further supports the notion that the human corticotropin‐releasing hormone plays a role in the acquisition of fears.  相似文献   

17.
ATP‐binding cassette (ABC) transporters play a pivotal role in physiology and pathology. We identified and cloned two novel mRNA isoforms (ABCB 5α and ABCB 5β) of the ABC transporter ABCB 5 in human melanoma cells. The deduced ABCB 5α protein appears to be an altered splice variant containing only a putative ABC, whereas the ABCB 5β isoform shares approximately 70% similarity with ABCB1 (MDR1) and has a deduced topological arrangement similar to that of the whole carboxyl terminal half of the ABCB1 gene product, P‐glycoprotein, including an intact ABC. Northern blot, real‐time PCR, and conventional RT‐PCR were used to verify the expression profiles of ABCB 5α/β. We found that the melanomas included among the NCI‐60 panel of cell lines preferentially expressed both ABCB 5α and ABCB 5β. However, ABCB 5α/β expression was undetectable in two amelanotic melanomas (M14 and LOX‐IMVI). The expression profile of ABCB 5α/β in all of the other melanomas of the panel was confirmed both by RT‐PCR and by sequencing. Neither ABCB 5α nor ABCB 5β expression was found in normal tissues such as liver, spleen, thymus, kidney, lung, colon, small intestines or placenta. ABCB 5α/β mRNAs were also expressed in normal melanocytes and in retinal pigment epithelial cells, suggesting that ABCB 5α/β expression is pigment cell‐specific and might be involved in melanogenesis. Our findings indicate that expression of ABCB 5α/β might possibly provide two novel molecular markers for differential diagnosis of melanomas and constitute potential molecular targets for therapy of melanomas.  相似文献   

18.
Recent studies have showed that α5 nicotinic acetylcholine receptor (α5‐nAChR) is closely associated with nicotine‐related lung cancer. Our previous studies also demonstrated that α5‐nAChR mediates nicotine‐induced lung carcinogenesis. However, the mechanism by which α5‐nAChR functions in lung carcinogenesis remains to be elucidated. Jab1/Csn5 is a key regulatory factor in smoking‐induced lung cancer. In this study, we explored the underlying mechanisms linking the α5‐nAChR‐Jab1/Csn5 axis with lung cancer epithelial‐mesenchymal transition (EMT) and metastasis, which may provide potential therapeutic targets for future lung cancer treatments. Our results demonstrated that the expression of α5‐nAChR was correlated with the expression of Jab1/Csn5 in lung cancer tissues and lung cancer cells. α5‐nAChR expression is associated with Jab1/Csn5 expression in lung tumour xenografts in mice. In vitro, the expression of α5‐nAChR mediated Stat3 and Jab1/Csn5 expression, significantly regulating the expression of the EMT markers, N‐cadherin and Vimentin. In addition, the down‐regulation of α5‐nAChR or/and Stat3 reduced Jab1/Csn5 expression, while the silencing of α5‐nAChR or Jab1/Csn5 inhibited the migration and invasion of NSCLC cells. Mechanistically, α5‐nAChR contributes to EMT and metastasis by regulating Stat3‐Jab1/Csn5 signalling in NSCLC, suggesting that α5‐nAChR may be a potential target in NSCLC diagnosis and immunotherapy.  相似文献   

19.
Sorafenib (SOR) resistance remains a major obstacle in the effective treatment of hepatocellular carcinoma (HCC). A number of long noncoding RNAs (lncRNAs) are responsible for this chemoresistance. This study aimed to reveal the essential function of a recently defined lncRNA, lncRNA‐POIR, in the epithelial–mesenchymal transition (EMT) and SOR sensitivity of HCC cells. SOR‐induced cytotoxicity was analyzed via cell counting kit‐8 and ethynyl‐2'‐deoxyuridine incorporation assays, whereas immunoblotting and confocal immunofluorescence were used to determine the expression levels of EMT markers. Furthermore, loss‐ or gain‐of‐function approaches were used to demonstrate the role of lncRNA‐POIR/miR‐182‐5p on EMT and SOR sensitivity in HCC. The direct interaction between lncRNA‐POIR and miR‐182‐5p was verified using a luciferase reporter assay. We found that knockdown of lncRNA‐POIR sensitized HCC cells to SOR and simultaneously reversed EMT. As expected, miR‐182‐5p was confirmed as the downstream target of lncRNA‐POIR. Moreover, miR‐182‐5p overexpression clearly reversed EMT and promoted SOR‐induced cytotoxicity in representative HCC cells, whereas miR‐182‐5p downregulation played a contrasting role; miR‐182‐5p knockdown abolished the modulatory effects of lncRNA‐POIR siRNA on EMT and SOR sensitivity. Together, these pieces of data suggest that lncRNA‐POIR promotes EMT progression and suppresses SOR sensitivity simultaneously by sponging miR‐182‐5p. Thus, we proposed a compelling rationale for the use of lncRNA‐POIR as a promising predictor of SOR response and as a potential therapeutic target for HCC treatment in the future.  相似文献   

20.
Advanced glycation end products (AGEs), comprising a highly diverse class of Maillard reaction compounds formed in vivo and during heating processes of foods, have been described in the progression of several degenerative conditions such as Alzheimer's disease and diabetes mellitus. N?‐Carboxymethyllysine (CML) represents a well‐characterized AGE, which is frequently encountered in a Western diet and is known to mediate its cellular effects through binding to the receptor for AGEs (RAGE). As very little is known about the impact of exogenous CML and its precursor, glyoxal, on intestinal cells, a genome‐wide screening using a customized microarray was conducted in fully differentiated Caco‐2 cells. After verification of gene regulation by qPCR, functional assays on fatty acid uptake, glucose uptake, and serotonin release were performed. While only treatment with glyoxal showed a slight impact on fatty acid uptake (P < 0.05), both compounds reduced glucose uptake significantly, leading to values of 81.3% ± 22.8% (500 μM CML, control set to 100%) and 68.3% ± 20.9% (0.3 μM glyoxal). Treatment with 500 μM CML or 0.3 μM glyoxal increased serotonin release (P < 0.05) to 236% ± 111% and 264% ± 66%, respectively. Co‐incubation with the RAGE antagonist FPS‐ZM1 reduced CML‐induced serotonin release by 34%, suggesting a RAGE‐mediated mechanism. Similarly, co‐incubation with the SGLT‐1 inhibitor phloridzin attenuated serotonin release after CML treatment by 32%, hinting at a connection between CML‐stimulated serotonin release and glucose uptake. Future studies need to elucidate whether the CML/glyoxal‐induced serotonin release in enterocytes might stimulate serotonin‐mediated intestinal motility.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号