首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Satellite studies of the terrestrial Arctic report increased summer greening and longer overall growing and peak seasons since the 1980s, which increases productivity and the period of carbon uptake. These trends are attributed to increasing air temperatures and reduced snow cover duration in spring and fall. Concurrently, deciduous shrubs are becoming increasingly abundant in tundra landscapes, which may also impact canopy phenology and productivity. Our aim was to determine the influence of greater deciduous shrub abundance on tundra canopy phenology and subsequent impacts on net ecosystem carbon exchange (NEE) during the growing and peak seasons in the arctic foothills region of Alaska. We compared deciduous shrub‐dominated and evergreen/graminoid‐dominated community‐level canopy phenology throughout the growing season using the normalized difference vegetation index (NDVI). We used a tundra plant‐community‐specific leaf area index (LAI) model to estimate LAI throughout the green season and a tundra‐specific NEE model to estimate the impact of greater deciduous shrub abundance and associated shifts in both leaf area and canopy phenology on tundra carbon flux. We found that deciduous shrub canopies reached the onset of peak greenness 13 days earlier and the onset of senescence 3 days earlier compared to evergreen/graminoid canopies, resulting in a 10‐day extension of the peak season. The combined effect of the longer peak season and greater leaf area of deciduous shrub canopies almost tripled the modeled net carbon uptake of deciduous shrub communities compared to evergreen/graminoid communities, while the longer peak season alone resulted in 84% greater carbon uptake in deciduous shrub communities. These results suggest that greater deciduous shrub abundance increases carbon uptake not only due to greater leaf area, but also due to an extension of the period of peak greenness, which extends the period of maximum carbon uptake.  相似文献   

2.
Global vegetation models predict rapid poleward migration of tundra and boreal forest vegetation in response to climate warming. Local plot and air‐photo studies have documented recent changes in high‐latitude vegetation composition and structure, consistent with warming trends. To bridge these two scales of inference, we analyzed a 24‐year (1986–2010) Landsat time series in a latitudinal transect across the boreal forest‐tundra biome boundary in northern Quebec province, Canada. This region has experienced rapid warming during both winter and summer months during the last 40 years. Using a per‐pixel (30 m) trend analysis, 30% of the observable (cloud‐free) land area experienced a significant (P < 0.05) positive trend in the Normalized Difference Vegetation Index (NDVI). However, greening trends were not evenly split among cover types. Low shrub and graminoid tundra contributed preferentially to the greening trend, while forested areas were less likely to show significant trends in NDVI. These trends reflect increasing leaf area, rather than an increase in growing season length, because Landsat data were restricted to peak‐summer conditions. The average NDVI trend (0.007 yr?1) corresponds to a leaf‐area index (LAI) increase of ~0.6 based on the regional relationship between LAI and NDVI from the Moderate Resolution Spectroradiometer. Across the entire transect, the area‐averaged LAI increase was ~0.2 during 1986–2010. A higher area‐averaged LAI change (~0.3) within the shrub‐tundra portion of the transect represents a 20–60% relative increase in LAI during the last two decades. Our Landsat‐based analysis subdivides the overall high‐latitude greening trend into changes in peak‐summer greenness by cover type. Different responses within and among shrub, graminoid, and tree‐dominated cover types in this study indicate important fine‐scale heterogeneity in vegetation growth. Although our findings are consistent with community shifts in low‐biomass vegetation types over multi‐decadal time scales, the response in tundra and forest ecosystems to recent warming was not uniform.  相似文献   

3.
作为陆地生态系统的主体,植被的时空变化深刻地影响着景观格局和生态功能,深入理解植被动态及其对气候变化的响应,对于提高对生态过程的认识、加强生态管理具有重要意义。在一致性检验的基础上,利用中分辨率成像光谱仪(moderateresolution imaging Spectroradiometer,MODIS)的归一化植被指数(normalized Difference Vegetation Index,NDVI)数据集将新疆地区全球检测与模型研究组(Global Inventory Modeling and Mapping Studies,GIMMS)开发的NDVI数据集的时间序列拓展到2012年,探讨了生长季和各季节植被绿度、气候异常值的动态变化,分析了植被对气候变化的响应。研究结果显示,区域尺度和像元尺度GIMMS与MODIS NDVI之间的一致性较强。1982—2012年,研究区域生长季和各季节植被绿度呈显著增加趋势,但生长季存在明显阶段性:1998年前后分别呈显著增加和显著减少,夏季与秋季与生长季类似,而春季则不存在变化趋势的逆转。NDVI呈正异常值的面积比例与区域尺度NDVI的变化趋势一致;极端异常值、较大异常值多呈明显减少趋势,而一般异常值多呈增加趋势,NDVI的变化倾向于逐渐平稳。区域变暖趋势显著,降水量略有增加,潜在蒸散发显著提高,而湿润指数变化不明显。气温、潜在蒸散发主要在春季、秋季促进植被生长,而夏季降水量、湿润指数对植被生长的调节作用更为突出。  相似文献   

4.
Monitoring changes in vegetation growth has been the subject of considerable research during the past several decades, because of the important role of vegetation in regulating the terrestrial carbon cycle and the climate system. In this study, we combined datasets of satellite‐derived Normalized Difference Vegetation Index (NDVI) and climatic factors to analyze spatio‐temporal patterns of changes in vegetation growth and their linkage with changes in temperature and precipitation in temperate and boreal regions of Eurasia (> 23.5°N) from 1982 to 2006. At the continental scale, although a statistically significant positive trend of average growing season NDVI is observed (0.5 × 10?3 year?1, P = 0.03) during the entire study period, there are two distinct periods with opposite trends in growing season NDVI. Growing season NDVI has first significantly increased from 1982 to 1997 (1.8 × 10?3 year?1, P < 0.001), and then decreased from 1997 to 2006 (?1.3 × 10?3 year?1, P = 0.055). This reversal in the growing season NDVI trends over Eurasia are largely contributed by spring and summer NDVI changes. Both spring and summer NDVI significantly increased from 1982 to 1997 (2.1 × 10?3 year?1, P = 0.01; 1.6 × 10?3 year?1P < 0.001, respectively), but then decreased from 1997 to 2006, particularly summer NDVI which may be related to the remarkable decrease in summer precipitation (?2.7 mm yr?1, P = 0.009). Further spatial analyses supports the idea that the vegetation greening trend in spring and summer that occurred during the earlier study period 1982–1997 was either stalled or reversed during the following study period 1997–2006. But the turning point of vegetation NDVI is found to vary across different regions.  相似文献   

5.
Recent increases in vegetation greenness over much of the world reflect increasing CO2 globally and warming in cold areas. However, the strength of the response to both CO2 and warming in those areas appears to be declining for unclear reasons, contributing to large uncertainties in predicting how vegetation will respond to future global changes. Here, we investigated the changes of satellite-observed peak season absorbed photosynthetically active radiation (Fmax) on the Tibetan Plateau between 1982 and 2016. Although climate trends are similar across the Plateau, we identified robust divergent responses (a greening of 0.31 ± 0.14% year−1 in drier regions and a browning of 0.12 ± 0.08% year−1 in wetter regions). Using an eco-evolutionary optimality (EEO) concept of plant acclimation/adaptation, we propose a parsimonious modelling framework that quantitatively explains these changes in terms of water and energy limitations. Our model captured the variations in Fmax with a correlation coefficient (r) of .76 and a root mean squared error of .12 and predicted the divergent trends of greening (0.32 ± 0.19% year−1) and browning (0.07 ± 0.06% year−1). We also predicted the observed reduced sensitivities of Fmax to precipitation and temperature. The model allows us to explain these changes: Enhanced growing season cumulative radiation has opposite effects on water use and energy uptake. Increased precipitation has an overwhelmingly positive effect in drier regions, whereas warming reduces Fmax in wetter regions by increasing the cost of building and maintaining leaf area. Rising CO2 stimulates vegetation growth by enhancing water-use efficiency, but its effect on photosynthesis saturates. The large decrease in the sensitivity of vegetation to climate reflects a shift from water to energy limitation. Our study demonstrates the potential of EEO approaches to reveal the mechanisms underlying recent trends in vegetation greenness and provides further insight into the response of alpine ecosystems to ongoing climate change.  相似文献   

6.
We combine satellite and ground observations during 1950–2011 to study the long‐term links between multiple climate (air temperature and cryospheric dynamics) and vegetation (greenness and atmospheric CO2 concentrations) indicators of the growing season of northern ecosystems (>45°N) and their connection with the carbon cycle. During the last three decades, the thermal potential growing season has lengthened by about 10.5 days (P < 0.01, 1982–2011), which is unprecedented in the context of the past 60 years. The overall lengthening has been stronger and more significant in Eurasia (12.6 days, P < 0.01) than North America (6.2 days, P > 0.05). The photosynthetic growing season has closely tracked the pace of warming and extension of the potential growing season in spring, but not in autumn when factors such as light and moisture limitation may constrain photosynthesis. The autumnal extension of the photosynthetic growing season since 1982 appears to be about half that of the thermal potential growing season, yielding a smaller lengthening of the photosynthetic growing season (6.7 days at the circumpolar scale, P < 0.01). Nevertheless, when integrated over the growing season, photosynthetic activity has closely followed the interannual variations and warming trend in cumulative growing season temperatures. This lengthening and intensification of the photosynthetic growing season, manifested principally over Eurasia rather than North America, is associated with a long‐term increase (22.2% since 1972, P < 0.01) in the amplitude of the CO2 annual cycle at northern latitudes. The springtime extension of the photosynthetic and potential growing seasons has apparently stimulated earlier and stronger net CO2 uptake by northern ecosystems, while the autumnal extension is associated with an earlier net release of CO2 to the atmosphere. These contrasting responses may be critical in determining the impact of continued warming on northern terrestrial ecosystems and the carbon cycle.  相似文献   

7.
Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the land–atmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is known about how the vegetation responds. Here, we focus on how spring phenology and summertime greenness respond to the asymmetric warming, that is, stronger warming during nighttime than during daytime. Using both in situ and satellite observations, we found that vegetation green‐up date showed a stronger negative partial correlation with daily minimum temperature (Tmin) than with maximum temperature (Tmax) before the growing season (‘preseason’ henceforth). Summer vegetation greenness was strongly positively correlated with summer Tmin, but negatively with Tmax. A 1‐K increase in preseason Tmin advanced green‐up date by 4 days (P < 0.05) and in summer enhanced greenness by 3.6% relative to the mean greenness during 2000–2004 (< 0.01). In contrast, increases in preseason Tmax did not advance green‐up date (> 0.10) and higher summer Tmax even reduced greenness by 2.6% K?1 (< 0.05). The stimulating effects of increasing Tmin were likely caused by reduced low temperature constraints, and the apparent negative effects of higher Tmax on greenness were probably due to the accompanying decline in water availability. The dominant enhancing effect of nighttime warming indicates that climatic warming will probably have stronger impact on TP ecosystems than on apparently similar Arctic ecosystems where vegetation is controlled mainly by Tmax. Our results are crucial for future improvements of dynamic vegetation models embedded in the Earth System Models which are being used to describe the behavior of the Asian monsoon. The results are significant because the state of the vegetation on the TP plays an important role in steering the monsoon.  相似文献   

8.
Northern terrestrial ecosystems have shown global warming‐induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystem on the atmospheric CO2 and 13C/12C seasonality. Here, we use four CO2 observation stations in the Northern Hemisphere, namely Alert, La Jolla, Point Barrow, and Mauna Loa Observatory, to determine how changes in vegetation productivity and phenology, respiration, and air temperature affect both the atmospheric CO2 and 13C/12C seasonality. Since the 1960s, the only significant long‐term trend of CO2 and 13C/12C seasonality was observed at the northern most station, Alert, where the spring CO2 drawdown dates advanced by 0.65 ± 0.55 days yr?1, contributing to a nonsignificant increase in length of the CO2 uptake period (0.74 ± 0.67 days yr?1). For Point Barrow station, vegetation phenology changes in well‐watered ecosystems such as the Canadian and western Siberian wetlands contributed the most to 13C/12C seasonality while the CO2 seasonality was primarily linked to nontree vegetation. Our results indicate significant increase in the Northern Hemisphere soil respiration. This means, increased respiration of 13C depleted plant materials cancels out the 12C gain from enhanced vegetation activities during the start and end of growing season. These findings suggest therefore that parallel warming‐induced increases both in photosynthesis and respiration contribute to the long‐term stability of CO2 and 13C/12C seasonality under changing climate and vegetation activity. The summer photosynthesis and the soil respiration in the dormant seasons have become more vigorous which lead to increased peak‐to‐through CO2 amplitude. As the relative magnitude of the increased photosynthesis in summer months is more than the increased respiration in dormant months, we have the increased overall carbon uptake rates in the northern ecosystems.  相似文献   

9.
Climate change is lengthening the growing season of the Northern Hemisphere extratropical terrestrial ecosystems, but little is known regarding the timing and dynamics of the peak season of plant activity. Here, we use 34‐year satellite normalized difference vegetation index (NDVI) observations and atmospheric CO2 concentration and δ13C isotope measurements at Point Barrow (Alaska, USA, 71°N) to study the dynamics of the peak of season (POS) of plant activity. Averaged across extratropical (>23°N) non‐evergreen‐dominated pixels, NDVI data show that the POS has advanced by 1.2 ± 0.6 days per decade in response to the spring‐ward shifts of the start (1.0 ± 0.8 days per decade) and end (1.5 ± 1.0 days per decade) of peak activity, and the earlier onset of the start of growing season (1.4 ± 0.8 days per decade), while POS maximum NDVI value increased by 7.8 ± 1.8% for 1982–2015. Similarly, the peak day of carbon uptake, based on calculations from atmospheric CO2 concentration and δ13C data, is advancing by 2.5 ± 2.6 and 4.3 ± 2.9 days per decade, respectively. POS maximum NDVI value shows strong negative relationships (< .01) with the earlier onset of the start of growing season and POS days. Given that the maximum solar irradiance and day length occur before the average POS day, the earlier occurrence of peak plant activity results in increased plant productivity. Both the advancing POS day and increasing POS vegetation greenness are consistent with the shifting peak productivity towards spring and the increasing annual maximum values of gross and net ecosystem productivity simulated by coupled Earth system models. Our results further indicate that the decline in autumn NDVI is contributing the most to the overall browning of the northern high latitudes (>50°N) since 2011. The spring‐ward shift of peak season plant activity is expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget.  相似文献   

10.
Global climate change has emerged as a major driver of ecosystem change. Here, we present evidence for globally consistent responses in vegetation dynamics to recent climate change in the world's mountain ecosystems located in the pan‐tropical belt (30°N–30°S). We analyzed decadal‐scale trends and seasonal cycles of vegetation greenness using monthly time series of satellite greenness (Normalized Difference Vegetation Index) and climate data for the period 1982–2006 for 47 mountain protected areas in five biodiversity hotspots. The time series of annual maximum NDVI for each of five continental regions shows mild greening trends followed by reversal to stronger browning trends around the mid‐1990s. During the same period we found increasing trends in temperature but only marginal change in precipitation. The amplitude of the annual greenness cycle increased with time, and was strongly associated with the observed increase in temperature amplitude. We applied dynamic models with time‐dependent regression parameters to study the time evolution of NDVI–climate relationships. We found that the relationship between vegetation greenness and temperature weakened over time or was negative. Such loss of positive temperature sensitivity has been documented in other regions as a response to temperature‐induced moisture stress. We also used dynamic models to extract the trends in vegetation greenness that remain after accounting for the effects of temperature and precipitation. We found residual browning and greening trends in all regions, which indicate that factors other than temperature and precipitation also influence vegetation dynamics. Browning rates became progressively weaker with increase in elevation as indicated by quantile regression models. Tropical mountain vegetation is considered sensitive to climatic changes, so these consistent vegetation responses across widespread regions indicate persistent global‐scale effects of climate warming and associated moisture stresses.  相似文献   

11.
Climate change may considerably impact the carbon (C) dynamics and C stocks of forest soils. To assess the combined effects of warming and reduced precipitation on soil CO2 efflux, we conducted a two‐way factorial manipulation experiment (4 °C soil warming + throughfall exclusion) in a temperate spruce forest from 2008 until 2010. Soil was warmed by heating cables throughout the growing seasons. Soil drought was simulated by throughfall exclusions with three 100 m2 roofs during 25 days in July/August 2008 and 2009. Soil warming permanently increased the CO2 efflux from soil, whereas throughfall exclusion led to a sharp decrease in soil CO2 efflux (45% and 50% reduction during roof installation in 2008 and 2009, respectively). In 2008, CO2 efflux did not recover after natural rewetting and remained lowered until autumn. In 2009, CO2 efflux recovered shortly after rewetting, but relapsed again for several weeks. Drought offset the increase in soil CO2 efflux by warming in 2008 (growing season CO2 efflux in t C ha?1: control: 7.1 ± 1.0; warmed: 9.5 ± 1.7; warmed + roof: 7.4 ± 0.3; roof: 5.9 ± 0.4) and in 2009 (control: 7.6 ± 0.8; warmed + roof: 8.3 ± 1.0). Throughfall exclusion mainly affected the organic layer and the top 5 cm of the mineral soil. Radiocarbon data suggest that heterotrophic and autotrophic respiration were affected to the same extent by soil warming and drying. Microbial biomass in the mineral soil (0–5 cm) was not affected by the treatments. Our results suggest that warming causes significant C losses from the soil as long as precipitation patterns remain steady at our site. If summer droughts become more severe in the future, warming induced C losses will likely be offset by reduced soil CO2 efflux during and after summer drought.  相似文献   

12.
In terrestrial high‐latitude regions, observations indicate recent changes in snow cover, permafrost, and soil freeze–thaw transitions due to climate change. These modifications may result in temporal shifts in the growing season and the associated rates of terrestrial productivity. Changes in productivity will influence the ability of these ecosystems to sequester atmospheric CO2. We use the terrestrial ecosystem model (TEM), which simulates the soil thermal regime, in addition to terrestrial carbon (C), nitrogen and water dynamics, to explore these issues over the years 1960–2100 in extratropical regions (30–90°N). Our model simulations show decreases in snow cover and permafrost stability from 1960 to 2100. Decreases in snow cover agree well with National Oceanic and Atmospheric Administration satellite observations collected between the years 1972 and 2000, with Pearson rank correlation coefficients between 0.58 and 0.65. Model analyses also indicate a trend towards an earlier thaw date of frozen soils and the onset of the growing season in the spring by approximately 2–4 days from 1988 to 2000. Between 1988 and 2000, satellite records yield a slightly stronger trend in thaw and the onset of the growing season, averaging between 5 and 8 days earlier. In both, the TEM simulations and satellite records, trends in day of freeze in the autumn are weaker, such that overall increases in growing season length are due primarily to earlier thaw. Although regions with the longest snow cover duration displayed the greatest increase in growing season length, these regions maintained smaller increases in productivity and heterotrophic respiration than those regions with shorter duration of snow cover and less of an increase in growing season length. Concurrent with increases in growing season length, we found a reduction in soil C and increases in vegetation C, with greatest losses of soil C occurring in those areas with more vegetation, but simulations also suggest that this trend could reverse in the future. Our results reveal noteworthy changes in snow, permafrost, growing season length, productivity, and net C uptake, indicating that prediction of terrestrial C dynamics from one decade to the next will require that large‐scale models adequately take into account the corresponding changes in soil thermal regimes.  相似文献   

13.
The timing of the end of the vegetation growing season (EOS) plays a key role in terrestrial ecosystem carbon and nutrient cycles. Autumn phenology is, however, still poorly understood, and previous studies generally focused on few species or were very limited in scale. In this study, we applied four methods to extract EOS dates from NDVI records between 1982 and 2011 for the Northern Hemisphere, and determined the temporal correlations between EOS and environmental factors (i.e., temperature, precipitation and insolation), as well as the correlation between spring and autumn phenology, using partial correlation analyses. Overall, we observed a trend toward later EOS in ~70% of the pixels in Northern Hemisphere, with a mean rate of 0.18 ± 0.38 days yr?1. Warming preseason temperature was positively associated with the rate of EOS in most of our study area, except for arid/semi‐arid regions, where the precipitation sum played a dominant positive role. Interestingly, increased preseason insolation sum might also lead to a later date of EOS. In addition to the climatic effects on EOS, we found an influence of spring vegetation green‐up dates on EOS, albeit biome dependent. Our study, therefore, suggests that both environmental factors and spring phenology should be included in the modeling of EOS to improve the predictions of autumn phenology as well as our understanding of the global carbon and nutrient balances.  相似文献   

14.
Variations in satellite-derived phenology in China's temperate vegetation   总被引:20,自引:0,他引:20  
The relationship between vegetation phenology and climate is a crucial topic in global change research because it indicates dynamic responses of terrestrial ecosystems to climate changes. In this study, we investigate the possible impact of recent climate changes on growing season duration in the temperate vegetation of China, using the advanced very high resolution radiometer (AVHRR)/normalized difference vegetation index (NDVI) biweekly time-series data collected from January 1982 to December 1999 and concurrent mean temperature and precipitation data. The results show that over the study period, the growing season duration has lengthened by 1.16 days yr−1 in temperate region of China. The green-up of vegetation has advanced in spring by 0.79 days yr−1 and the dormancy delayed in autumn by 0.37 days yr−1. The dates of onset for phenological events are most significantly related with the mean temperature during the preceding 2–3 months. A warming in the early spring (March to early May) by 1°C could cause an earlier onset of green-up of 7.5 days, whereas the same increase of mean temperature during autumn (mid-August through early October) could lead to a delay of 3.8 days in vegetation dormancy. Variations in precipitation also influenced the duration of growing season, but such influence differed among vegetation types and phenological phases.  相似文献   

15.
We used a 10-year record (1990–99) of composited and cloud-screened reflectances from the Advanced Very High Resolution Radiometer (AVHRR) to test for phenological differences between urban and rural areas in the eastern United States deciduous broadleaf forest (DBF). We hypothesized that well-documented urban heat island effects would be associated with alterations in temperature-sensitive vegetation phenology. Our objectives were thus (a) to investigate possible differences in the start of the growing season (SOS) and end of the growing season (EOS) between the urban and DBF land covers, (b) to investigate related differences in greenness amplitude and fractional cover, and (c) to develop a generalized additive model (GAM) to predict the spatial variation of observed differences. By analyzing individual 1° latitude by 1° longitude blocks, we found that, on average, urbanization is associated with a growing season expansion of 7.6 days. Most of this effect is caused by an earlier SOS in urban areas. In all cases, urban regions had lower fractional cover and greenness amplitude. The GAM model failed to produce a viable model for differences in EOS, probably because it is dominated by photoperiod controls with only a minor temperature impact. SOS differences were predicted with an accuracy of about 2.4 days, with a GAM consisting of smoothed functions of mean annual average temperature, urban fractional cover, and the urban vs DBF greenness amplitude difference. We speculate that evidence of a phenological response to warming indicates that global warming, without reduction in DBF vegetation cover and greenness amplitude, may increase carbon sequestration in mesic deciduous forests. Received 6 June 2001; accepted 23 October 2001.  相似文献   

16.
The terrestrial forest ecosystems in the northern high latitude region have been experiencing significant warming rates over several decades. These forests are considered crucial to the climate system and global carbon cycle and are particularly vulnerable to climate change. To obtain an improved estimate of the response of vegetation activity, e.g., forest greenness and tree growth, to climate change, we investigated spatiotemporal variations in two independent data sets containing the dendroecological information for this region over the past 30 years. These indices are the normalized difference vegetation index (NDVI3g) and the tree‐ring width index (RWI), both of which showed significant spatial variability in past trends and responses to climate changes. These trends and responses to climate change differed significantly in the ecosystems of the circumarctic (latitude higher than 67°N) and the circumboreal forests (latitude higher and lower than 50°N and 67°N, respectively), but the way in which they differed was relatively similar in the NDVI3g and the RWI. In the circumarctic ecosystem, the climate variables of the current summer were the main climatic drivers for the positive response to the increase in temperatures showed by both the NDVI3g and the RWI indices. On the other hand, in the circumboreal forest ecosystem, the climate variables of the previous year (from summer to winter) were also important climatic drivers for both the NDVI3g and the RWI. Importantly, both indices showed that the temperatures in the previous year negatively affected the ecosystem. Although such negative responses to warming did not necessarily lead to a past negative linear trend in the NDVI3g and the RWI over the past 30 years, future climate warming could potentially cause severe reduction in forest greenness and tree growth in the circumboreal forest ecosystem.  相似文献   

17.
Ice‐wedge polygon peatlands contain a substantial part of the carbon stored in permafrost soils. However, little is known about their long‐term carbon accumulation rates (CAR) in relation to shifts in vegetation and climate. We collected four peat profiles from one single polygon in NE Yakutia and cut them into contiguous 0.5 cm slices. Pollen density interpolation between AMS 14C dated levels provided the time span contained in each of the sample slices, which – in combination with the volumetric carbon content – allowed for the reconstruction of CAR over decadal and centennial timescales. Vegetation representing dry palaeo‐ridges and wet depressions was reconstructed with detailed micro‐ and macrofossil analysis. We found repeated shifts between wet and dry conditions during the past millennium. Dry ridges with associated permafrost growth originated during phases of (relatively) warm summer temperature and collapsed during relatively cold phases, illustrating the important role of vegetation and peat as intermediaries between ambient air temperature and the permafrost. The average long‐term CAR across the four profiles was 10.6 ± 5.5 g C m?2 yr?1. Time‐weighted mean CAR did not differ significantly between wet depression and dry ridge/hummock phases (10.6 ± 5.2 g C m?2 yr?1 and 10.3 ± 5.7 g C m?2 yr?1, respectively). Although we observed increased CAR in relation to warm shifts, we also found changes in the opposite direction and the highest CAR actually occurred during the Little Ice Age. In fact, CAR rather seems to be governed by strong internal feedback mechanisms and has roughly remained stable on centennial time scales. The absence of significant differences in CAR between dry ridge and wet depression phases suggests that recent warming and associated expansion of shrubs will not affect long‐term rates of carbon burial in ice‐wedge polygon peatlands.  相似文献   

18.
Xia J  Wan S 《PloS one》2012,7(2):e32088

Background

The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems.

Methodology/Principal Findings

A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration.

Conclusions/Significance

These plants'' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands.  相似文献   

19.

Background and aims

Root phenology is important in controlling carbon and nutrient fluxes in terrestrial ecosystems, yet, remains largely unexplored, especially in the Arctic. We compared below- and aboveground phenology and ending of the growing season in two contrasting vegetation types of subarctic tundra: heath and meadow, and their response to experimental warming in autumn.

Methods

Root phenology was measured in-situ with minirhizotrons and compared with aboveground phenology assessed with repeat digital photography.

Results

The end of the growing season, both below- and aboveground, was similar in meadow and heath and the belowground growing season ended later than aboveground in the two vegetation types. Root growth was higher and less equally distributed over time in meadow compared to heath. The warming treatment increased air and soil temperature by 0.5 °C and slightly increased aboveground greenness, but did not affect root growth or prolong the below- and aboveground growing season in either of the vegetation types.

Conclusions

These results imply that vegetation types differ in root dynamics and suggest that other factors than temperature control autumnal root growth in these ecosystems. Further investigations of root phenology will help to identify those drivers, in which including responses of functionally contrasting vegetation types will help to estimate how climate change affects belowground processes and their roles in ecosystem function.
  相似文献   

20.
Identifying the relative importance of climatic and other environmental controls on the interannual variability and trends in global land surface phenology and greenness is challenging. Firstly, quantifications of land surface phenology and greenness dynamics are impaired by differences between satellite data sets and phenology detection methods. Secondly, dynamic global vegetation models (DGVMs) that can be used to diagnose controls still reveal structural limitations and contrasting sensitivities to environmental drivers. Thus, we assessed the performance of a new developed phenology module within the LPJmL (Lund–Potsdam–Jena managed Lands) DGVM with a comprehensive ensemble of three satellite data sets of vegetation greenness and ten phenology detection methods, thereby thoroughly accounting for observational uncertainties. The improved and tested model allows us quantifying the relative importance of environmental controls on interannual variability and trends of land surface phenology and greenness at regional and global scales. We found that start of growing season interannual variability and trends are in addition to cold temperature mainly controlled by incoming radiation and water availability in temperate and boreal forests. Warming‐induced prolongations of the growing season in high latitudes are dampened by a limited availability of light. For peak greenness, interannual variability and trends are dominantly controlled by water availability and land‐use and land‐cover change (LULCC) in all regions. Stronger greening trends in boreal forests of Siberia than in North America are associated with a stronger increase in water availability from melting permafrost soils. Our findings emphasize that in addition to cold temperatures, water availability is a codominant control for start of growing season and peak greenness trends at the global scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号