首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Pyrogenic carbon (PyC) derived from charcoal particles (paleo + modern) deposited in the soil column has been little studied in the Amazon, and our understanding of the factors that control the spatial and vertical distribution of these materials in the region's forest soils is still unclear. The objective of this study was to test the effect of forest type and distance from the ignition source on the PyC stocks contained in macroscopic particles of soil charcoal (≥2 mm; 1 m depth) dispersed in ecotone forests of the northern Brazilian Amazon. Thirty permanent plots were set up near a site that had been occupied by pre‐Columbian and by modern populations until the late 1970s. The sampled plots represent seasonal and ombrophilous forests that occur under different hydro‐edaphic restrictions. Our results indicate that the largest PyC stock was spatially dependent on distance to the ignition source (<3 km), occurring mainly in flood‐free ombrophilous forests (3.46 ± 5.22 Mg PyC/ha). The vertical distribution of PyC in the deeper layers of the soil (> 50 cm) in seasonal forests was limited by hydro‐edaphic impediments that restricted the occurrence of charcoal. These results suggest that PyC stocks derived from macroscopic charcoal particles in the soil of this Brazilian Amazon ecotone region are controlled by the distance from the ignition source of the fire, and that forest types with higher hydro‐edaphic restrictions can inhibit formation and accumulation of charcoal. Making use of these distinctions reduces uncertainty and improves our ability to understand the variability of PyC stocks in forests with a history of fire in the Amazon.  相似文献   

2.
    
Wildfires directly emit 2.1 Pg carbon (C) to the atmosphere annually. The net effect of wildfires on the C cycle, however, involves many interacting source and sink processes beyond these emissions from combustion. Among those, the role of post-fire enhanced soil organic carbon (SOC) erosion as a C sink mechanism remains essentially unquantified. Wildfires can greatly enhance soil erosion due to the loss of protective vegetation cover and changes to soil structure and wettability. Post-fire SOC erosion acts as a C sink when off-site burial and stabilization of C eroded after a fire, together with the on-site recovery of SOC content, exceed the C losses during its post-fire transport. Here we synthesize published data on post-fire SOC erosion and evaluate its overall potential to act as longer-term C sink. To explore its quantitative importance, we also model its magnitude at continental scale using the 2017 wildfire season in Europe. Our estimations show that the C sink ability of SOC water erosion during the first post-fire year could account for around 13% of the C emissions produced by wildland fires. This indicates that post-fire SOC erosion is a quantitatively important process in the overall C balance of fires and highlights the need for more field data to further validate this initial assessment.  相似文献   

3.
    
Wildfires release substantial quantities of carbon (C) into the atmosphere but they also convert part of the burnt biomass into pyrogenic organic matter (PyOM). This is richer in C and, overall, more resistant to environmental degradation than the original biomass, and, therefore, PyOM production is an efficient mechanism for C sequestration. The magnitude of this C sink, however, remains poorly quantified, and current production estimates, which suggest that ~1‐5% of the C affected by fire is converted to PyOM, are based on incomplete inventories. Here, we quantify, for the first time, the complete range of PyOM components found in‐situ immediately after a typical boreal forest fire. We utilized an experimental high‐intensity crown fire in a jack pine forest (Pinus banksiana) and carried out a detailed pre‐ and postfire inventory and quantification of all fuel components, and the PyOM (i.e., all visually charred, blackened materials) produced in each of them. Our results show that, overall, 27.6% of the C affected by fire was retained in PyOM (4.8 ± 0.8 t C ha?1), rather than emitted to the atmosphere (12.6 ± 4.5 t C ha?1). The conversion rates varied substantially between fuel components. For down wood and bark, over half of the C affected was converted to PyOM, whereas for forest floor it was only one quarter, and less than a tenth for needles. If the overall conversion rate found here were applicable to boreal wildfire in general, it would translate into a PyOM production of ~100 Tg C yr?1 by wildfire in the global boreal regions, more than five times the amount estimated previously. Our findings suggest that PyOM production from boreal wildfires, and potentially also from other fire‐prone ecosystems, may have been underestimated and that its quantitative importance as a C sink warrants its inclusion in the global C budget estimates.  相似文献   

4.
森林土壤呼吸及其对全球变化的响应   总被引:65,自引:5,他引:65       下载免费PDF全文
森林土壤呼吸是全球碳循环的重要流通途径之一 ,其动态变化将直接影响全球 C平衡。森林土壤呼吸由自养呼吸和异养呼吸组成 ,不同森林类型、测定季节和测定方法等直接影响其所占比例。土壤温度和湿度是影响森林土壤呼吸的最主要因素 ,共同解释了森林土壤呼吸变化的大部分。因树种组成、生产力和枯落物数量等不同而使不同森林类型土壤呼吸速率表现出明显差异。采伐对森林土壤呼吸的影响结果有增加、降低或无影响 ,因采伐方式、森林类型、采伐迹地上植被恢复进程和气候条件等而异。火烧一般导致土壤呼吸速率降低。因肥料种类、施用剂量和立地条件不同 ,施肥对森林土壤呼吸的影响出现增加、降低或无影响等不同结果。大气 CO2 浓度升高和升温均可促进森林土壤呼吸。 N沉降有可能刺激了土壤呼吸 ,而酸沉降则可能降低了土壤呼吸。臭氧浓度和 UV-B辐射强度亦会在一定程度上影响森林土壤呼吸。但目前全球变化对森林土壤呼吸的综合影响尚不清楚 ,深入探讨森林土壤呼吸的调控因素及其对全球变化和营林措施的响应等仍是今后努力的主要方向。  相似文献   

5.
Cloud forests are of great importance in the hydrological functioning of watersheds in subhumid East Africa. However, the montane forests of Mt. Kilimanjaro are heavily threatened by global change impacts. Based on an evaluation of over 1500 vegetation plots and interpretation of satellite imagery from 1976 and 2000, land-cover changes on Kilimanjaro were evaluated and their impact on the water balance estimated. While the vanishing glaciers of Kilimanjaro attract broad interest, the associated increase of frequency and intensity of fires on the slopes of Kilimanjaro is less conspicuous but ecologically far more significant. These climate change-induced fires have lead to changes in species composition and structure of the forests and to a downward shift of the upper forest line by several hundred metres. During the last 70 years, Kilimanjaro has lost nearly one-third of its forest cover, in the upper areas caused by fire, on the lower forest border mainly caused by clearing. The loss of 150 km2 of cloud forest – the most effective source in the upper montane and subalpine fog interception zone – caused by fire during the last three decades means a considerable reduction in water yield. In contrast to common belief, global warming does not necessarily cause upward migration of plants and animals. On Kilimanjaro the opposite trend is under way, with consequences more harmful than those due to the loss of the showy ice cap of Africa's highest mountain.  相似文献   

6.
    
The incomplete combustion of vegetation and dead organic matter by landscape fires creates recalcitrant pyrogenic carbon (PyC), which could be consequential for the global carbon budget if changes in fire regime, climate, and atmospheric CO2 were to substantially affect gains and losses of PyC on land and in oceans. Here, we included global PyC cycling in a coupled climate–carbon model to assess the role of PyC in historical and future simulations, accounting for uncertainties through five sets of parameter estimates. We obtained year‐2000 global stocks of (Central estimate, likely uncertainty range in parentheses) 86 (11–154), 47 (2–64), and 1129 (90–5892) Pg C for terrestrial residual PyC (RPyC), marine dissolved PyC, and marine particulate PyC, respectively. PyC cycling decreased atmospheric CO2 only slightly between 1751 and 2000 (by 0.8 Pg C for the Central estimate) as PyC‐related fluxes changed little over the period. For 2000 to 2300, we combined Representative Concentration Pathways (RCPs) 4.5 and 8.5 with stable or continuously increasing future fire frequencies. For the increasing future fire regime, the production of new RPyC generally outpaced the warming‐induced accelerated loss of existing RPyC, so that PyC cycling decreased atmospheric CO2 between 2000 and 2300 for most estimates (by 4–8 Pg C for Central). For the stable fire regime, however, PyC cycling usually increased atmospheric CO2 (by 1–9 Pg C for Central), and only the most extreme choice of parameters maximizing PyC production and minimizing PyC decomposition led to atmospheric CO2 decreases under RCPs 4.5 and 8.5 (by 5–8 Pg C). Our results suggest that PyC cycling will likely reduce the future increase in atmospheric CO2 if landscape fires become much more frequent; however, in the absence of a substantial increase in fire frequency, PyC cycling might contribute to, rather than mitigate, the future increase in atmospheric CO2.  相似文献   

7.
8.
    
Historically, large areas of forest in Europe were managed as coppice woodland to produce wood‐based fuel for the smelting industry. We hypothesized that this practice produced a legacy effect on current forest ecosystem properties. Specifically, we hypothesized that the historical form of coppicing may have produced a legacy of elevated stocks of soil organic carbon (SOC), nutrients and black carbon (BC) in soil as fire was routinely used in coppiced woodland to clear land. We further hypothesized that these changes in soil properties would result in increased biodiversity. To test these hypotheses, we sampled the surface soil (0–5, 5–10 and 10–20 cm) from a chronosequence of forest sites found in the Siegerland (Germany) that had been coppiced and burned 1, 2, 3.5, 6, 8, 11 and 17 years before present. Mature beech and spruce forests (i.e., >60 years) were also sampled as reference sites: to provide a hint of what might occur in the absence of human intervention. We measured stocks of SOC, BC, NO3‐N, P, K, Mg, as well as cation exchange and water‐holding capacity, and we mapped plant composition to calculate species richness and evenness. The results showed that coppicing in combination with burning soil and litter improved soil nutrient availability, enhanced biodiversity and increased SOC stocks. The SOC stocks and biodiversity were increased by a factor of three relative to those in the mature beech and spruce forests. This study shows that traditional coppicing practice may facilitate net C accrual rates of 20 t ha?1 yr?1 and maintain high biodiversity, indicating that aspects of traditional practice could be applied in current forest management to foster biodiversity and to mitigate climate change.  相似文献   

9.
    
We used a climate‐driven regression model to develop spatially resolved estimates of soil‐CO2 emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil‐to‐atmosphere CO2 fluxes. The mean annual global soil‐CO2 flux over this 15‐y period was estimated to be 80.4 (range 79.3–81.8) Pg C. Monthly variations in global soil‐CO2 emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil‐CO2 emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreen broad‐leaved forests contributed more soil‐derived CO2 to the atmosphere than did any other vegetation type (~30% of the total) and exhibited a biannual cycle in their emissions. Soil‐CO2 emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil‐CO2 production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO2 concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands and deserts), interannual variability in soil‐CO2 emissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil‐CO2 fluxes correlated with mean annual temperature, with a slope of 3.3 Pg C y?1 per °C. Although the distribution of precipitation influences seasonal and spatial patterns of soil‐CO2 emissions, global warming is likely to stimulate CO2 emissions from soils.  相似文献   

10.
  总被引:6,自引:0,他引:6  
Pyrogenic carbon (PC‐ charcoal, biochar or black carbon) represents a poorly understood component of the global carbon (C) cycle, but one that has considerable potential to mitigate climate change through provision of long‐term soil C sequestration. Mass balance calculations suggest global PC production and stocks are not in balance, indicating a major gap in our understanding of the processes by which PC is re‐mineralized. We collected PC samples derived from the same wood material and exposed to natural environmental conditions for 1 and 11 years. We subjected these materials to repeated laboratory incubation studies at temperatures of up to 60 °C, as ground surface temperatures above 30 °C and up to 60 °C occur regularly over a significant area of the tropics and sub‐tropics. Mineralization rates were not different for the two samples and followed an exponential Arrhenius function that suggest an average turnover time of 67 years for conditions typical of a tropical savannah environment. Microbial biomass as measured by chloroform fumigation and DNA extractions was the same for the two samples, but abiotic CO2 production was lower for the fresh PC sample than that for the aged sample. Nuclear magnetic resonance spectroscopy, hydrogen pyrolysis and scanning electron microscopy demonstrate that the measured CO2 production originates dominantly from polycyclic aromatic compounds rather than any minor labile components. Therefore, rapid, sub‐centennial rates of re‐mineralization of PC on the soil surface in tropical and sub‐tropical environments may represent a major and hitherto unidentified mechanism for balancing the PC production at the global scale.  相似文献   

11.
Soil respiration in six temperate forests in China   总被引:14,自引:0,他引:14  
Scaling soil respiration (RS), the major CO2 source to the atmosphere from terrestrial ecosystems, from chamber‐based measurements to ecosystems requires studies on variations and correlations of RS from various biomes and across geographic regions. However, few studies on RS are available for Chinese temperate forest despite the importance of this forest in the national and global carbon budgets. In this study, we conducted 18‐month RS measurements during 2004–2005 in six temperate forest types, representing the typical secondary forest ecosystems across various site conditions in northeastern China: Mongolian oak (Quercus mongolica Fisch.), aspen‐birch (Populous davidiana Dode and Betula platyphylla Suk.), mixed deciduous (no dominant tree species), hardwood (dominated by Fraxinus mandshurica Rupr., Juglans mandshurica Maxim., and Phellodendron amurense Rupr.) forests, Korean pine (Pinus koraiensis Sieb. et Zucc.) and Dahurian larch (Larix gmelinii Rupr.) plantations. Our specific objectives were to: (1) explore relationships of RS against soil temperature and water content for the six forest ecosystems, (2) quantify annual soil surface CO2 flux and its relations to belowground carbon storage, (3) examine seasonal variations in RS and related environmental factors, and (4) quantify among‐ and within‐ecosystem variations in RS. The RS was positively correlated to soil temperature in all forest types, and was significantly influenced by the interactions of soil temperature and water content in the pine, larch, and mixed deciduous forests. The sensitivity of RS to soil temperature at 10 cm depth (Q10) ranged from 2.61 in the oak forest to 3.75 in the aspen‐birch forests. The Q10 tended to increase with soil water content until reaching a threshold, and then decline. The annual RS for the larch, pine, hardwood, oak, mixed deciduous, and aspen‐birch forests averaged 403, 514, 781, 785, 786, and 813 g C m?2 yr?1, respectively. The annual RS of the broadleaved forests was 72% greater than that of the coniferous forests. The annual RS was positively correlated to soil organic carbon (SOC) concentration at O horizon (R2=0.868) and total biomass of roots <0.5 cm in diameter (R2=0.748). The coefficient of variation (CV) of RS among forest types averaged 25% across the 18‐month measurements. The CV of RS within plots varied from 20% to 27%, significantly (P<0.001) greater than those among plots (9–15%), indicating the importance of the fine‐scaled heterogeneity in RS. This study emphasized that variations in soil respiration and potential sampling bias should be appropriately tackled for accurate soil CO2 flux estimates.  相似文献   

12.
    
There are few data, but diametrically opposed opinions, about the impacts of forest logging on soil organic carbon (SOC). Reviews and research articles conclude either that there is no effect, or show contradictory effects. Given that SOC is a substantial store of potential greenhouse gasses and forest logging and harvesting is routine, resolution is important. We review forest logging SOC studies and provide an overarching conceptual explanation for their findings. The literature can be separated into short‐term empirical studies, longer‐term empirical studies and long‐term modelling. All modelling that includes major aboveground and belowground biomass pools shows a long‐term (i.e. ≥300 years) decrease in SOC when a primary forest is logged and then subjected to harvesting cycles. The empirical longer‐term studies indicate likewise. With successive harvests the net emission accumulates but is only statistically perceptible after centuries. Short‐term SOC flux varies around zero. The long‐term drop in SOC in the mineral soil is driven by the biomass drop from the primary forest level but takes time to adjust to the new temporal average biomass. We show agreement between secondary forest SOC stocks derived purely from biomass information and stocks derived from complex forest harvest modelling. Thus, conclusions that conventional harvests do not deplete SOC in the mineral soil have been a function of their short time frames. Forest managers, climate change modellers and environmental policymakers need to assume a long‐term net transfer of SOC from the mineral soil to the atmosphere when primary forests are logged and then undergo harvest cycles. However, from a greenhouse accounting perspective, forest SOC is not the entire story. Forest wood products that ultimately reach landfill, and some portion of which produces some soil‐like material there rather than in the forest, could possibly help attenuate the forest SOC emission by adding to a carbon pool in landfill.  相似文献   

13.
Stocks of carbon in Amazonian forest biomass and soils have received considerable research attention because of their potential as sources and sinks of atmospheric CO2. Fluxes of CO2 from soil to the atmosphere, on the other hand, have not been addressed comprehensively in regard to temporal and spatial variations and to land cover change, and have been measured directly only in a few locations in Amazonia. Considerable variation exists across the Amazon Basin in soil properties, climate, and management practices in forests and cattle pastures that might affect soil CO2 fluxes. Here we report soil CO2 fluxes from an area of rapid deforestation in the southwestern Amazonian state of Acre. Specifically we addressed (1) the seasonal variation of soil CO2 fluxes, soil moisture, and soil temperature; (2) the effects of land cover (pastures, mature, and secondary forests) on these fluxes; (3) annual estimates of soil respiration; and (4) the relative contributions of grass‐derived and forest‐derived C as indicated by δ13CO2. Fluxes were greatest during the wet season and declined during the dry season in all land covers. Soil respiration was significantly correlated with soil water‐filled pore space but not correlated with temperature. Annual fluxes were higher in pastures compared with mature and secondary forests, and some of the pastures also had higher soil C stocks. The δ13C of CO2 respired in pasture soils showed that high respiration rates in pastures were derived almost entirely from grass root respiration and decomposition of grass residues. These results indicate that the pastures are very productive and that the larger flux of C cycling through pasture soils compared with forest soils is probably due to greater allocation of C belowground. Secondary forests had soil respiration rates similar to mature forests, and there was no correlation between soil respiration and either forest age or forest biomass. Hence, belowground allocation of C does not appear to be directly related to the stature of vegetation in this region. Variation in seasonal and annual rates of soil respiration of these forests and pastures is more indicative of flux of C through the soil rather than major net changes in ecosystem C stocks.  相似文献   

14.
    
The production of pyrogenic carbon (PyC; a continuum of organic carbon (C) ranging from partially charred biomass and charcoal to soot) is a widely acknowledged C sink, with the latest estimates indicating that ~50% of the PyC produced by vegetation fires potentially sequesters C over centuries. Nevertheless, the quantitative importance of PyC in the global C balance remains contentious, and therefore, PyC is rarely considered in global C cycle and climate studies. Here we examine the robustness of existing evidence and identify the main research gaps in the production, fluxes and fate of PyC from vegetation fires. Much of the previous work on PyC production has focused on selected components of total PyC generated in vegetation fires, likely leading to underestimates. We suggest that global PyC production could be in the range of 116–385 Tg C yr?1, that is ~0.2–0.6% of the annual terrestrial net primary production. According to our estimations, atmospheric emissions of soot/black C might be a smaller fraction of total PyC (<2%) than previously reported. Research on the fate of PyC in the environment has mainly focused on its degradation pathways, and its accumulation and resilience either in situ (surface soils) or in ultimate sinks (marine sediments). Off‐site transport, transformation and PyC storage in intermediate pools are often overlooked, which could explain the fate of a substantial fraction of the PyC mobilized annually. We propose new research directions addressing gaps in the global PyC cycle to fully understand the importance of the products of burning in global C cycle dynamics.  相似文献   

15.
【背景】面对全球气候变暖,土壤微生物在陆地生态系统对全球变暖反馈中起到了至关重要的作用。【目的】了解土壤微生物对气候变暖响应研究的发展现状、研究热点及前沿动态,厘清当前该研究领域的知识结构关系。【方法】以1999-2021年Web of Science核心数据库中土壤微生物对气候变暖响应研究已发表的3 189篇论文为数据源,利用Vosviewer和CiteSpace软件对年发文量、文献被引频次、作者、机构、国家、学科和关键词等进行可视化分析。【结果】研究总体呈逐步增长趋势,经历缓慢增长、稳步增长和高速增长3个阶段;高被引论文均发表在国际顶级期刊上,研究成果具有较高的学术影响力。在学科融合与合作交流方面,环境科学、生态学和土壤学是该研究领域的主要学科,而多学科交叉学在该领域占有重要地位;作者骆亦其、Schuur和周集中是该领域核心学者,作者之间的合作关系主要以同一研究团队内部合作为主;主要的科研机构有中国科学院、加利福尼亚大学和美国能源部,各科研机构之间合作较为紧密;中国、美国和欧洲是土壤微生物对气候变暖响应研究领域的主要力量,国家之间相互合作程度高。该领域的主要研究热点是气候变暖改变了土壤微生物的群落结构组成、多样性和生理生化功能,进而对地球化学物质循环产生影响;土壤微生物在土壤碳库释放中的作用机理和调控机制是该领域研究前沿。【结论】目前,不同生态系统研究中土壤微生物对增温的响应与适应机制存在着差异,而且对微生物碳功能基因和多环境交互因子的研究较少。因此,建议后期应更加聚焦特定生态系统的细化研究,开展大范围、大尺度、长时期的定位研究,加强对微生物碳降解和碳固定功能基因的研究,多关注环境因子变化的交互作用对土壤微生物生态过程的影响。  相似文献   

16.
  总被引:2,自引:0,他引:2  
Biomass carbon accumulation in forest ecosystems is a widespread phenomenon at both regional and global scales. However, as coupled carbon–climate models predicted, a positive feedback could be triggered if accelerated soil carbon decomposition offsets enhanced vegetation growth under a warming climate. It is thus crucial to reveal whether and how soil carbon stock in forest ecosystems has changed over recent decades. However, large‐scale changes in soil carbon stock across forest ecosystems have not yet been carefully examined at both regional and global scales, which have been widely perceived as a big bottleneck in untangling carbon–climate feedback. Using newly developed database and sophisticated data mining approach, here we evaluated temporal changes in topsoil carbon stock across major forest ecosystem in China and analysed potential drivers in soil carbon dynamics over broad geographical scale. Our results indicated that topsoil carbon stock increased significantly within all of five major forest types during the period of 1980s–2000s, with an overall rate of 20.0 g C m?2 yr?1 (95% confidence interval, 14.1–25.5). The magnitude of soil carbon accumulation across coniferous forests and coniferous/broadleaved mixed forests exhibited meaningful increases with both mean annual temperature and precipitation. Moreover, soil carbon dynamics across these forest ecosystems were positively associated with clay content, with a larger amount of SOC accumulation occurring in fine‐textured soils. In contrast, changes in soil carbon stock across broadleaved forests were insensitive to either climatic or edaphic variables. Overall, these results suggest that soil carbon accumulation does not counteract vegetation carbon sequestration across China's forest ecosystems. The combination of soil carbon accumulation and vegetation carbon sequestration triggers a negative feedback to climate warming, rather than a positive feedback predicted by coupled carbon–climate models.  相似文献   

17.
  总被引:2,自引:0,他引:2  
While there is an emerging view that roots and their associated microbes actively alter resource availability and soil organic matter (SOM) decomposition, the ecosystem consequences of such rhizosphere effects have rarely been quantified. Using a meta‐analysis, we show that multiple indices of microbially mediated C and nitrogen (N) cycling, including SOM decomposition, are significantly enhanced in the rhizospheres of diverse vegetation types. Then, using a numerical model that combines rhizosphere effect sizes with fine root morphology and depth distributions, we show that root‐accelerated mineralization and priming can account for up to one‐third of the total C and N mineralized in temperate forest soils. Finally, using a stoichiometrically constrained microbial decomposition model, we show that these effects can be induced by relatively modest fluxes of root‐derived C, on the order of 4% and 6% of gross and net primary production, respectively. Collectively, our results indicate that rhizosphere processes are a widespread, quantitatively important driver of SOM decomposition and nutrient release at the ecosystem scale, with potential consequences for global C stocks and vegetation feedbacks to climate.  相似文献   

18.
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO2) from fossil fuels, methane (CH4) and nitrous oxide (N2O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg Ceq), and in the unburned system (559 out of 748 kg Ceq). Although nitrogen fertilizer emissions are large, 111 kg Ceq ha?1 yr?1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg Ceq ha?1 yr?1). and BC (1536 kg Ceq ha?1 yr?1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha?1 yr?1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.  相似文献   

19.
20.
The possible responses of ecosystem processes to rising atmospheric CO2 concentration and climate change are illustrated using six dynamic global vegetation models that explicitly represent the interactions of ecosystem carbon and water exchanges with vegetation dynamics. The models are driven by the IPCC IS92a scenario of rising CO2 ( Wigley et al. 1991 ), and by climate changes resulting from effective CO2 concentrations corresponding to IS92a, simulated by the coupled ocean atmosphere model HadCM2‐SUL. Simulations with changing CO2 alone show a widely distributed terrestrial carbon sink of 1.4–3.8 Pg C y?1 during the 1990s, rising to 3.7–8.6 Pg C y?1 a century later. Simulations including climate change show a reduced sink both today (0.6–3.0 Pg C y?1) and a century later (0.3–6.6 Pg C y?1) as a result of the impacts of climate change on NEP of tropical and southern hemisphere ecosystems. In all models, the rate of increase of NEP begins to level off around 2030 as a consequence of the ‘diminishing return’ of physiological CO2 effects at high CO2 concentrations. Four out of the six models show a further, climate‐induced decline in NEP resulting from increased heterotrophic respiration and declining tropical NPP after 2050. Changes in vegetation structure influence the magnitude and spatial pattern of the carbon sink and, in combination with changing climate, also freshwater availability (runoff). It is shown that these changes, once set in motion, would continue to evolve for at least a century even if atmospheric CO2 concentration and climate could be instantaneously stabilized. The results should be considered illustrative in the sense that the choice of CO2 concentration scenario was arbitrary and only one climate model scenario was used. However, the results serve to indicate a range of possible biospheric responses to CO2 and climate change. They reveal major uncertainties about the response of NEP to climate change resulting, primarily, from differences in the way that modelled global NPP responds to a changing climate. The simulations illustrate, however, that the magnitude of possible biospheric influences on the carbon balance requires that this factor is taken into account for future scenarios of atmospheric CO2 and climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号