首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This study sought to identify climate‐change thermal‐stress refugia for reef corals in the Indian and Pacific Oceans. A species distribution modeling approach was used to identify refugia for 12 coral species that differed considerably in their local response to thermal stress. We hypothesized that the local response of coral species to thermal stress might be similarly reflected as a regional response to climate change. We assessed the contemporary geographic range of each species and determined their temperature and irradiance preferences using a k‐fold algorithm to randomly select training and evaluation sites. That information was applied to downscaled outputs of global climate models to predict where each species is likely to exist by the year 2100. Our model was run with and without a 1 °C capacity to adapt to the rising ocean temperature. The results show a positive exponential relationship between the current area of habitat that coral species occupy and the predicted area of habitat that they will occupy by 2100. There was considerable decoupling between scales of response, however, and with further ocean warming some ‘winners’ at local scales will likely become ‘losers’ at regional scales. We predicted that nine of the 12 species examined will lose 24–50% of their current habitat. Most reductions are predicted to occur between the latitudes 5–15°, in both hemispheres. Yet when we modeled a 1 °C capacity to adapt, two ubiquitous species, Acropora hyacinthus and Acropora digitifera, were predicted to retain much of their current habitat. By contrast, the thermally tolerant Porites lobata is expected to increase its current distribution by 14%, particularly southward along the east and west coasts of Australia. Five areas were identified as Indian Ocean refugia, and seven areas were identified as Pacific Ocean refugia for reef corals under climate change. All 12 of these reef‐coral refugia deserve high‐conservation status.  相似文献   

2.
Thermal‐stress events that cause coral bleaching and mortality have recently increased in frequency and severity. Yet few studies have explored conditions that moderate coral bleaching. Given that high light and high ocean temperature together cause coral bleaching, we explore whether corals at turbid localities, with reduced light, are less likely to bleach during thermal‐stress events than corals at other localities. We analyzed coral bleaching, temperature, and turbidity data from 3,694 sites worldwide with a Bayesian model and found that Kd490, a measurement positively related to turbidity, between 0.080 and 0.127 reduced coral bleaching during thermal‐stress events. Approximately 12% of the world's reefs exist within this “moderating turbidity” range, and 30% of reefs that have moderating turbidity are in the Coral Triangle. We suggest that these turbid nearshore environments may provide some refuge through climate change, but these reefs will need high conservation status to sustain them close to dense human populations.  相似文献   

3.
Ocean acidification will disproportionately impact the growth of calcifying organisms in coral reef ecosystems. Simultaneously, sponge bioerosion rates have been shown to increase as seawater pH decreases. We conducted a 20‐week experiment that included a 4‐week acclimation period with a high number of replicate tanks and a fully orthogonal design with two levels of temperature (ambient and +1 °C), three levels of pH (8.1, 7.8, and 7.6), and two levels of boring sponge (Cliona varians, present and absent) to account for differences in sponge attachment and carbonate change for both living and dead coral substrate (Porites furcata). Net coral calcification, net dissolution/bioerosion, coral and sponge survival, sponge attachment, and sponge symbiont health were evaluated. Additionally, we used the empirical data from the experiment to develop a stochastic simulation of carbonate change for small coral clusters (i.e., simulated reefs). Our findings suggest differential impacts of temperature, pH and sponge presence for living and dead corals. Net coral calcification (mg CaCO3 cm?2 day?1) was significantly reduced in treatments with increased temperature (+1 °C) and when sponges were present; acidification had no significant effect on coral calcification. Net dissolution of dead coral was primarily driven by pH, regardless of sponge presence or seawater temperature. A reevaluation of the current paradigm of coral carbonate change under future acidification and warming scenarios should include ecologically relevant timescales, species interactions, and community organization to more accurately predict ecosystem‐level response to future conditions.  相似文献   

4.
Changing oceanic conditions, particularly ocean warming and altered currents, can affect the reproductive success of corals. Improving the knowledge of coral reproductive processes at the marginal range limits of coral reefs is important for understanding the ecology of subtropical coral communities and the potential for coral species to expand their ranges in higher latitudes in the future. The extent of live coral cover around subtropical Lord Howe Island (LHI; 31°33′S, 159°05′E) approximately 600 km off the east coast of Australia, has been relatively stable over the last several decades; however, shifts in dominant species in the adult coral community have been reported. To examine the potential influences of recent altered currents and shifts in dominant scleractinian taxa within this community, this study examined spatial and seasonal variation of coral larval settlement at different habitats within the LHI reef lagoon. The study also assessed whether the assemblage of scleractinian corals settling at LHI has changed between 1990–1991 and 2011–2012. Mean densities of coral settlement in 2011–2012 (230 spat m?2 yr?1) were consistent with those reported in 1990–1991 and in other regions. However, changes in taxonomic composition were apparent with increases in the proportion of Acroporidae spat at some sites. Settlement of all taxa was highest over summer months, whereas during winter only one coral spat (Pocilloporidae) was detected. Coral settlement was highest and most taxonomically diverse at sites closest to the reef crest, where mortality of settled spat was also greatest. Rates of settlement were high compared with juvenile densities; hence, post-settlement mortality is also likely to be high. Post-settlement processes, influenced by local environmental conditions, are likely to be very important in structuring the adult coral communities within the LHI reef lagoon.  相似文献   

5.
Anthropogenic global change and local stressors are impacting coral growth and survival worldwide, altering the structure and function of coral reef ecosystems. Here, we show that skeletal extension rates of nearshore colonies of two abundant and widespread Caribbean corals (Siderastrea siderea, Pseudodiploria strigosa) declined across the Belize Mesoamerican Barrier Reef System (MBRS) over the past century, while offshore coral conspecifics exhibited relatively stable extension rates over the same temporal interval. This decline has caused nearshore coral extension rates to converge with those of their historically slower growing offshore coral counterparts. For both species, individual mass coral bleaching events were correlated with low rates of skeletal extension within specific reef environments, but no single bleaching event was correlated with low skeletal extension rates across all reef environments. We postulate that the decline in skeletal extension rates for nearshore corals is driven primarily by the combined effects of long‐term ocean warming and increasing exposure to higher levels of land‐based anthropogenic stressors, with acute thermally induced bleaching events playing a lesser role. If these declining trends in skeletal growth of nearshore S. siderea and P. strigosa continue into the future, the structure and function of these critical nearshore MBRS coral reef systems is likely to be severely impaired.  相似文献   

6.
This study describes the natural turbidity regimes at two inshore turbid reefs on the central Great Barrier Reef where wind-driven waves are the main agent of sediment resuspension. Many corals on inshore turbid reefs have adapted to high and fluctuating turbidity, however, anthropogenic activities such as dredging are speculated to produce larger and more prolonged turbidity events that may exceed the environmental tolerance and adaptive capacity of corals on these reefs. Natural turbidity regimes must be described and understood to determine whether and when coral communities on inshore turbid reefs are at risk from anthropogenically elevated turbidity, but at present few baseline studies exist. Here, we present turbidity data from (a) Middle Reef, a semi-protected reef located between Magnetic Island and Townsville and (b) Paluma Shoals, a reef exposed to higher energy wind and waves located in Halifax Bay. Instruments were deployed on both reefs for 16 days to measure spatial and temporal variations in turbidity and its driving forces (waves, currents, tides). Locally driven wind waves were the key driver of turbidity, but the strength of the relationship was dependent on wave exposure. Turbidity regimes thus vary markedly over individual reefs and this is reflected in community assemblage distributions, with a high abundance of heterotrophic corals (e.g. Goniopora) in reef habitats subjected to large fluctuations in turbidity (>100 NTU). A turbidity model developed using local wind speed data explained up to 75 % and up to 46 % of the variance in turbidity at Paluma Shoals and Middle Reef, respectively. Although the model was based on a brief two-week observational period, it reliably predicted variations in 24-h averaged turbidity and identified periods when turbidity rose above ambient baseline levels, offering reef managers insights into turbidity responses to modified climate and coastal sediment delivery regimes.  相似文献   

7.
Corals inhabiting shallow back reef habitats are often simultaneously exposed to elevated seawater temperatures and high irradiance levels, conditions known to cause coral bleaching. Water flow in many tropical back reef systems is tidally influenced, resulting in semi-diurnal or diurnal flow patterns. Controlled experiments were conducted to test effects of semi-diurnally intermittent water flow on photoinhibition and bleaching of the corals Porites lobata and P. cylindrica kept at elevated seawater temperatures and different irradiance levels. All coral colonies were collected from a shallow back reef pool on Ofu Island, American Samoa. In the high irradiance experiments, photoinhibition and bleaching were less for both species in the intermittent high-low flow treatment than in the constant low flow treatment. In the low irradiance experiments, there were no differences in photoinhibition or bleaching for either species between the flow treatments, despite continuously elevated seawater temperatures. These results suggest that intermittent flow associated with semi-diurnal tides, and low irradiances caused by turbidity or shading, may reduce photoinhibition and bleaching of back reef corals during warming events.  相似文献   

8.
Coral bleaching events threaten coral reef habitats globally and cause severe declines of local biodiversity and productivity. Related to high sea surface temperatures (SST), bleaching events are expected to increase as a consequence of future global warming. However, response to climate change is still uncertain as future low‐latitude climatic conditions have no present‐day analogue. Sea surface temperatures during the Eocene epoch were warmer than forecasted changes for the coming century, and distributions of corals during the Eocene may help to inform models forecasting the future of coral reefs. We coupled contemporary and Eocene coral occurrences with information on their respective climatic conditions to model the thermal niche of coral reefs and its potential response to projected climate change. We found that under the RCP8.5 climate change scenario, the global suitability for coral reefs may increase up to 16% by 2100, mostly due to improved suitability of higher latitudes. In contrast, in its current range, coral reef suitability may decrease up to 46% by 2100. Reduction in thermal suitability will be most severe in biodiversity hotspots, especially in the Indo‐Australian Archipelago. Our results suggest that many contemporary hotspots for coral reefs, including those that have been refugia in the past, spatially mismatch with future suitable areas for coral reefs posing challenges to conservation actions under climate change.  相似文献   

9.
For over 40 years, management of the Great Barrier Reef Marine Park (GBRMP) in Australia has focused on limiting human‐use impacts to facilitate natural resilience and recovery. Compounding acute disturbances and chronic stressors have resulted in degradation of coral reef habitats in many areas of the Marine Park. Given current trends and predictions of escalating climate‐driven disturbances, it is increasingly evident that effective management of the GBRMP requires adaptive and novel approaches to protect and restore coral reef health. Here, we provide an overview of the logistical requirements and early‐stage ecological benefits of repositioning 400 tonnes of moderately sized (1–3 m diameter) Porites spp. coral colonies (bommies) that were displaced by cyclone‐generated swells that impacted reefs in the Whitsunday Islands during March 2017. An ecological survey conducted 16 months after the bommie repositioning revealed that several genera of hard coral had settled onto the bommies and that a range of reef fish species were associating with the restored habitat. Early findings suggest that the repositioning of the displaced bommies has assisted in restoring reef habitat structure and settlement habitat for juvenile corals, while improving natural aesthetics, vessel access and tourist experiences at Manta Ray Bay.  相似文献   

10.
Aim Elucidating the environmental limits of coral reefs is central to projecting future impacts of climate change on these ecosystems and their global distribution. Recent developments in species distribution modelling (SDM) and the availability of comprehensive global environmental datasets have provided an opportunity to reassess the environmental factors that control the distribution of coral reefs at the global scale as well as to compare the performance of different SDM techniques. Location Shallow waters world‐wide. Methods The SDM methods used were maximum entropy (Maxent) and two presence/absence methods: classification and regression trees (CART) and boosted regression trees (BRT). The predictive variables considered included sea surface temperature (SST), salinity, aragonite saturation state (ΩArag), nutrients, irradiance, water transparency, dust, current speed and intensity of cyclone activity. For many variables both mean and SD were considered, and at weekly, monthly and annually averaged time‐scales. All were transformed to a global 1° × 1° grid to generate coral reef probability maps for comparison with known locations. Model performance was compared in terms of receiver operating characteristic (ROC) curves and area under the curve (AUC) scores. Potential geographical bias was explored via misclassification maps of false positive and negative errors on test data. Results Boosted regression trees consistently outperformed other methods, although Maxent also performed acceptably. The dominant environmental predictors were the temperature variables (annual mean SST, and monthly and weekly minimum SST), followed by, and with their relative importance differing between regions, nutrients, light availability and ΩArag. No systematic bias in SDM performance was found between major coral provinces, but false negatives were more likely for cells containing ‘marginal’ non‐reef‐forming coral communities, e.g. Bermuda. Main conclusions Agreement between BRT and Maxent models gives predictive confidence for exploring the environmental limits of coral reef ecosystems at a spatial scale relevant to global climate models (c. 1° × 1°). Although SST‐related variables dominate the coral reef distribution models, contributions from nutrients, ΩArag and light availability were critical in developing models of reef presence in regions such as the Bahamas, South Pacific and Coral Triangle. The steep response in SST‐driven probabilities at low temperatures indicates that latitudinal expansion of coral reef habitat is very sensitive to global warming.  相似文献   

11.
Ecological persistence interrupted in Caribbean coral reefs   总被引:2,自引:0,他引:2  
The recent mass mortality of Caribbean reef corals dramatically altered reef community structure and begs the question of the past stability and persistence of coral assemblages before human disturbance began. We report within habitat stability in coral community composition in the Pleistocene fossil record of Barbados for at least 95 000 years despite marked variability in global sea level and climate. Results were consistent for surveys of both common and rare taxa. Comparison of Pleistocene and modern community structure shows that Recent human impacts have changed coral community structure in ways not observed in the preceding 220 000 years.  相似文献   

12.
Coral cover on Caribbean reefs has declined rapidly since the early 1980's. Diseases have been a major driver, decimating communities of framework building Acropora and Orbicella coral species, and reportedly leading to the emergence of novel coral assemblages often dominated by domed and plating species of the genera Agaricia, Porites and Siderastrea. These corals were not historically important Caribbean framework builders, and typically have much smaller stature and lower calcification rates, fuelling concerns over reef carbonate production and growth potential. Using data from 75 reefs from across the Caribbean we quantify: (i) the magnitude of non‐framework building coral dominance throughout the region and (ii) the contribution of these corals to contemporary carbonate production. Our data show that live coral cover averages 18.2% across our sites and coral carbonate production 4.1 kg CaCO3 m?2 yr?1. However, non‐framework building coral species dominate and are major carbonate producers at a high proportion of sites; they are more abundant than Acropora and Orbicella at 73% of sites; contribute an average 68% of the carbonate produced; and produce more than half the carbonate at 79% of sites. Coral cover and carbonate production rate are strongly correlated but, as relative abundance of non‐framework building corals increases, average carbonate production rates decline. Consequently, the use of coral cover as a predictor of carbonate budget status, without species level production rate data, needs to be treated with caution. Our findings provide compelling evidence for the Caribbean‐wide dominance of non‐framework building coral taxa, and that these species are now major regional carbonate producers. However, because these species typically have lower calcification rates, continued transitions to states dominated by non‐framework building coral species will further reduce carbonate production rates below ‘predecline’ levels, resulting in shifts towards negative carbonate budget states and reducing reef growth potential.  相似文献   

13.
Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature‐driven decline in habitat suitability for many of the most significant and bio‐diverse tropical coral regions, particularly in the central Indo‐Pacific. This is accompanied by a temperature‐driven poleward range expansion of favorable conditions accelerating up to 40–70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered ‘marginal’ for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short‐term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral reef ecosystems is essential to their conservation and management under a changing climate.  相似文献   

14.
Marine heat waves are increasing in magnitude, duration, and frequency as a result of climate change and are the principal global driver of mortality in reef‐building corals. Resilience‐based genetic management may increase coral heat tolerance, but it is unclear how temperature responses are regulated at the genome level and thus how corals may adapt to warming naturally or through selective breeding. Here we combine phenotypic, pedigree, and genomic marker data from colonies sourced from a warm reef on the Great Barrier Reef reproductively crossed with conspecific colonies from a cooler reef to produce combinations of warm purebreds and warm‐cool hybrid larvae and juveniles. Interpopulation breeding created significantly greater genetic diversity across the coral genome compared to breeding between populations and maintained diversity in key regions associated with heat tolerance and fitness. High‐density genome‐wide scans of single nucleotide polymorphisms (SNPs) identified alleles significantly associated with larval families reared at 27.5°C (87–2,224 loci), including loci putatively associated with proteins involved in responses to heat stress (cell membrane formation, metabolism, and immune responses). Underlying genetics of these families explained 43% of PCoA multilocus variation in survival, growth, and bleaching responses at 27.5°C and 31°C at the juvenile stage. Genetic marker contribution to total variation in fitness traits (narrow‐sense heritability) was high for survival but not for growth and bleaching in juveniles, with heritability of these traits being higher at 31°C relative to 27.5°C. While based on only a limited number of crosses, the mechanistic understanding presented here demonstrates that allele frequencies are affected by one generation of selective breeding, key information for the assessments of genetic intervention feasibility and modelling of reef futures.  相似文献   

15.
One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef‐building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamics of the reef architecture is therefore important to envision the ability of corals to maintain functional habitats in an era of climate change. Here, we develop a mechanistic model of reef topographical complexity for contemporary Caribbean reefs. The model describes the dynamics of corals and other benthic taxa under climate‐driven disturbances (hurricanes and coral bleaching). Corals have a simplified shape with explicit diameter and height, allowing species‐specific calculation of their colony surface and volume. Growth and the mechanical (hurricanes) and biological erosion (parrotfish) of carbonate skeletons are important in driving the pace of extension/reduction in the upper reef surface, the net outcome being quantified by a simple surface roughness index (reef rugosity). The model accurately simulated the decadal changes of coral cover observed in Cozumel (Mexico) between 1984 and 2008, and provided a realistic hindcast of coral colony‐scale (1–10 m) changing rugosity over the same period. We then projected future changes of Caribbean reef rugosity in response to global warming. Under severe and frequent thermal stress, the model predicted a dramatic loss of rugosity over the next two or three decades. Critically, reefs with managed parrotfish populations were able to delay the general loss of architectural complexity, as the benefits of grazing in maintaining living coral outweighed the bioerosion of dead coral skeletons. Overall, this model provides the first explicit projections of reef rugosity in a warming climate, and highlights the need of combining local (protecting and restoring high grazing) to global (mitigation of greenhouse gas emissions) interventions for the persistence of functional reef habitats.  相似文献   

16.
Live corals are the key habitat forming organisms on coral reefs, contributing to both biological and physical structure. Understanding the importance of corals for reef fishes is, however, restricted to a few key families of fishes, whereas it is likely that a vast number of fish species will be adversely affected by the loss of live corals. This study used data from published literature together with independent field based surveys to quantify the range of reef fish species that use live coral habitats. A total of 320 species from 39 families use live coral habitats, accounting for approximately 8 % of all reef fishes. Many of the fishes reported to use live corals are from the families Pomacentridae (68 spp.) and Gobiidae (44 spp.) and most (66 %) are either planktivores or omnivores. 126 species of fish associate with corals as juveniles, although many of these fishes have no apparent affiliation with coral as adults, suggesting an ontogenetic shift in coral reliance. Collectively, reef fishes have been reported to use at least 93 species of coral, mainly from the genus Acropora and Porities and associate predominantly with branching growth forms. Some fish associate with a single coral species, whilst others can be found on more than 20 different species of coral indicating there is considerable variation in habitat specialisation among coral associated fish species. The large number of fishes that rely on coral highlights that habitat degradation and coral loss will have significant consequences for biodiversity and productivity of reef fish assemblages.  相似文献   

17.

Aim

The capacity for poleward range expansions beyond the tropics in corals hinges on ecophysiological constraints and resulting responses to climatic variability. We aimed to determine how future warming will affect coral habitat suitability at the poleward range edges of these foundational species in the Northwest Pacific.

Location

Northwest Pacific.

Methods

We generated models integrating thermal physiological constraints of corals adapted to extreme seasonality in Hong Kong, specifically the minimum annual temperature and the proportion of time annually spent at seasonal extremes. With these models, we projected habitat suitability for five coral species under current and future climatic conditions across the Northwest Pacific.

Results

Climate model projections reveal an easing of thermal constraints on the leading-edge of coral ecophysiological limits with an expansion of thermally suitable habitat poleward by 2°–7° in latitude depending on the coral species and model considered. We also highlight a potential divergence of present and future thermal regimes that may lead to a mismatch in suitability for corals currently inhabiting high latitude reefs.

Main Conclusions

Understanding the thermal constraints on coral distributions and defining the potential range of corals under climate change is critical for adaptive management that focuses on coral conservation and ensuring ecosystem function of existing subtropical and temperate ecosystems.  相似文献   

18.
Coral reef monitoring is a reliable tool to assess the effect of climate change as corals are sensitive to increases in water temperatures between 30 °C and 35 °C resulting in bleaching - a whitening process when the corals lose their color and the reefs begin to die. Existing satellite-based monitoring products facilitate coral bleaching monitoring over large spatial scales, but their use in predicting local scale stress that influences the bleaching severity across reefs is limited. In this paper, we describe a Stationary Reef Monitoring System (SRMS) that monitors the time evolution of coral reefs through the photography of nearby coral clusters. Simultaneously, the SRMS measures and records environmental parameters such as temperature, solar irradiance (PAR), and salinity in the waters surrounding the coral colonies. When deployed in the sea, the SRMS detected a 0.1–0.4 °C variability in temperature between the in situ and satellite datasets. The SRMS uses color photography along with quantitative data on environmental parameters to monitor the health of corals and eliminates the need for physical/visual verification of coral health by a diver. By this approach, one can determine the stress thresholds of corals and identify the vulnerable and resilient reefs so as to prioritize conservation efforts.  相似文献   

19.
Coral reefs are threatened by global and local stressors. Yet, reefs appear to respond differently to different environmental stressors. Using a global dataset of coral reef occurrence as a proxy for the long‐term adaptation of corals to environmental conditions in combination with global environmental data, we show here how global (warming: sea surface temperature; acidification: aragonite saturation state, Ωarag) and local (eutrophication: nitrate concentration, and phosphate concentration) stressors influence coral reef habitat suitability. We analyse the relative distance of coral communities to their regional environmental optima. In addition, we calculate the expected change of coral reef habitat suitability across the tropics in relation to an increase of 0.1°C in temperature, an increase of 0.02 μmol/L in nitrate, an increase of 0.01 μmol/L in phosphate and a decrease of 0.04 in Ωarag. Our findings reveal that only 6% of the reefs worldwide will be unaffected by local and global stressors and can thus act as temporary refugia. Local stressors, driven by nutrient increase, will affect 22% of the reefs worldwide, whereas global stressors will affect 11% of these reefs. The remaining 61% of the reefs will be simultaneously affected by local and global stressors. Appropriate wastewater treatments can mitigate local eutrophication and could increase areas of temporary refugia to 28%, allowing us to ‘buy time’, while international agreements are found to abate global stressors.  相似文献   

20.
Southeastern Australian waters are warming at nearly four times the global average rate (~0.7°C · century?1) driven by strengthening incursions of the warm oligotrophic East Australian Current. The growth rate hypothesis (GRH) predicts that nutrient depletion will impact more severely on seaweeds at high latitudes with compressed growth seasons. This study investigates the effects of temperature and nutrients on the ecophysiology of the habitat‐forming seaweed Phyllospora comosa in a laboratory experiment using temperature (12°C, 17°C, 22°C) and nutrient (0.5, 1.0, 3.0 μM NO3?) scenarios representative of observed variation among geographic regions. Changes in growth, photosynthetic characteristics (via chlorophyll fluorescence), pigment content, tissue chemistry (δ13C, % C, % N, C:N) and nucleic acid characteristics (absolute RNA and DNA, RNA:DNA ratios) were determined in seaweeds derived from cool, high‐latitude and warm, low‐latitude portions of the species’ range. Performance of P. comosa was unaffected by nitrate availability but was strongly temperature‐dependent, with photosynthetic efficiency, growth, and survival significantly impaired at 22°C. While some physiological processes (photosynthesis, nucleic acid, and accessory pigment synthesis) responded rapidly to temperature, others (C/N dynamics, carbon concentrating processes) were largely invariant and biogeographic variation in these characteristics may only occur through genetic adaptation. No link was detected between nutrient availability, RNA synthesis and growth, and the GRH was not supported in this species. While P. comosa at high latitudes may be less susceptible to oligotrophy than predicted by the GRH, warming water temperatures will have deleterious effects on this species across its range unless rapid adaptation is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号