首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aim The tropical Andes are a world biodiversity hotspot. With diverse biomes and dramatic, geologically recent mountain uplift, they offer a system to study the relative contributions of geological and biome history to species richness. There are preliminary indications that historical species assembly in the Andes has been influenced by physiographical heterogeneity and that distinct biomes have evolved in relative isolation despite physical proximity. Here we test this ‘Andean biotic separation hypothesis’ by focusing on the low‐elevation, seasonally dry tropical forest (SDTF) biome to determine whether patterns of plant diversification within the SDTF differ from those in mid‐ and high‐elevation biomes. Location Tropical Andes, South America. Methods Densely sampled time‐calibrated phylogenies for five legume genera (Amicia, Coursetia, Cyathostegia, Mimosa and Poissonia) containing species endemic to the Andean SDTF biome were used to investigate divergence times and levels of geographical structure. Geographical structure was measured using isolation‐by‐distance methods. Meta‐analysis of time‐calibrated phylogenies of Andean plant groups was used to compare the pattern and tempo of endemic species diversification between the major Andean biomes. Results Long‐term persistence of SDTF in the Andes is suggested by old stem ages (5–27 Ma) of endemic genera/clades within genera, and deep divergences coupled with strong geographical structure among and within species. Comparison of species diversification patterns among different biomes shows that the relatively old, geographically confined pattern of species diversification in SDTF contrasts with the high‐elevation grasslands that show rapid and recent radiations driven by ecological opportunities. Main conclusions The SDTF biome has a long history in the Andes. We suggest that the diverse SDTF flora has been assembled gradually over the past c. 19 Ma from lineages exhibiting strong phylogenetic niche conservatism. These patterns suggest that Andean SDTFs have formed stable and strongly isolated ‘islands’ despite the upheavals of Andean uplift. Indeed, the Andean SDTFs may represent some of the most isolated and evolutionarily persistent continental plant communities, similar in many respects to floras of remote oceanic islands.  相似文献   

3.
4.
Tropical peatlands cover over 25 Mha in Southeast Asia and are estimated to contain around 70 Gt of carbon. Peat swamp forest ecosystems are an important part of the region's natural resources supporting unique flora and fauna endemic to Southeast Asia. Over recent years, industrial plantation development on peatland, especially for oil palm cultivation, has created intense debate due to its potentially adverse social and environmental effects. The lack of objective up‐to‐date information on the extent of industrial plantations has complicated quantification of their regional and global environmental consequences, both in terms of loss of forest and biodiversity as well as increases in carbon emissions. Based on visual interpretation of high‐resolution (30 m) satellite images, we find that industrial plantations covered over 3.1 Mha (20%) of the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2010, surpassing the area of Belgium and causing an annual carbon emission from peat decomposition of 230–310 Mt CO2e. The majority (62%) of the plantations were located on the island of Sumatra, and over two‐thirds (69%) of all industrial plantations were developed for oil palm cultivation, with the remainder mostly being Acacia plantations for paper pulp production. Historical analysis shows strong acceleration of plantation development in recent years: 70% of all industrial plantations have been established since 2000 and only 4% of the current plantation area existed in 1990. ‘Business‐as‐usual’ projections of future conversion rates, based on historical rates over the past two decades, indicate that 6–9 Mha of peatland in insular Southeast Asia may be converted to plantations by the year 2020, unless land use planning policies or markets for products change. This would increase the annual carbon emission to somewhere between 380 and 920 Mt CO2e by 2020 depending on water management practices and the extent of plantations.  相似文献   

5.
Systematic investigations of the upper forest line (UFL) primarily concentrate on mid and high latitudes of the Northern Hemisphere, whereas studies of Neotropical UFLs are still fragmentary. This article outlines the extraordinary high tree diversity at the UFL within the Andean Depression and unravels the links between the comparatively low position of the local UFL, high tree‐species diversity, and climate. On the basis of Gentry′s rapid inventory methodology for the tropics, vegetation sampling was conducted at 12 UFL sites, and local climate (temperature, wind, precipitation, and soil moisture) was investigated at six sites. Monotypic forests dominated by Polylepis were only found at the higher located margins of the Andean Depression while the lower situated core areas were characterized by a species‐rich forest, which lacked the elsewhere dominant tree‐species Polylepis. In total, a remarkably high tree‐species number of 255 tree species of 40 different plant families was found. Beta‐diversity was also high with more than two complete species turnovers. A non‐linear relationship between the floristic similarity of the investigated study sites and elevation was detected. Temperatures at the investigated study sites clearly exceeded 5.5°C, the postulated threshold value for the upper tree growth limit in the tropics. Instead, quasi‐permanent trade winds, high precipitation amounts, and high soil water contents affect the local position of the UFL in a negative way. Interestingly, most of the above‐mentioned factors are also contributing to the high species richness. The result is a combination of a clearly marked upper forest line depression combined with an extraordinary forest line complexity, which was an almost unknown paradox.  相似文献   

6.
1. Aquatic plants are a key component of spatial heterogeneity in a waterscape, contributing to habitat complexity and helping determine diversity at various spatial scales. Theoretically, the more complex a habitat, the higher the number of species present. 2. Few empirical data are available to test the hypothesis that complexity increases diversity in aquatic communities (e.g. Jeffries, 1993 ). Fractal dimension has become widely applied in ecology as a tool to quantify the degree of complexity at different scales. 3. We investigated the hypothesis that complexity in vegetated habitat in two tropical lagoons mediates littoral invertebrate number of taxa (S) and density (N). Aquatic macrophyte habitat complexity was defined using a fractal dimension and a gradient of natural plant complexities. We also considered plant area, plant identity and, only for S, invertebrate density as additional explanatory variables. 4. Our results indicate that habitat complexity provided by the different architectures of aquatic plants, significantly affects both S and total N. However, number of individuals (as a result of passive sampling) also helps to account for S and, together with plant identity and area, contributes to the determination of N. We suggest that measurements of structural complexity, measured through fractal geometry, should be included in studies aimed at explaining attributes of attached invertebrates at small (e.g. plant or leaf) scales.  相似文献   

7.
Benthic invertebrate communities have been poorly studied in Andean streams apart from the Patagonian region. The primary objective of this work was to analyse the faunal composition at three different altitudes and to observe whether there were differences in aquatic insect community structure at spatial and temporal scales. Physicochemical variables were measured on a monthly basis. Sixteen families were found, the most frequent and abundant taxa being Massartellopsis (Ephemeroptera), Andesiops (Ephemeroptera), Metrichia neotropicalis (Trichoptera), Cailloma lucidula (Trichoptera), Austrelmis (Coleoptera), and the Chironomidae (Diptera). There was a change in benthic composition associated with land use and with the diminution of water quality from the headwaters to the mouth of the system. The middle reach was a transitional area where headwater species coexisted with species characteristic of the lower reach, with Austrelmis and the family Chironomidae being the most abundant elements.  相似文献   

8.
Upstream range shifts of freshwater fishes have been documented in recent years due to ongoing climate change. River fragmentation by dams, presenting physical barriers, can limit the climatically induced spatial redistribution of fishes. Andean freshwater ecosystems in the Neotropical region are expected to be highly affected by these future disturbances. However, proper evaluations are still missing. Combining species distribution models and functional traits of Andean Amazon fishes, coupled with dam locations and climatic projections (2070s), we (a) evaluated the potential impacts of future climate on species ranges, (b) investigated the combined impact of river fragmentation and climate change and (c) tested the relationships between these impacts and species functional traits. Results show that climate change will induce range contraction for most of the Andean Amazon fish species, particularly those inhabiting highlands. Dams are not predicted to greatly limit future range shifts for most species (i.e., the Barrier effect). However, some of these barriers should prevent upstream shifts for a considerable number of species, reducing future potential diversity in some basins. River fragmentation is predicted to act jointly with climate change in promoting a considerable decrease in the probability of species to persist in the long‐term because of splitting species ranges in smaller fragments (i.e., the Isolation effect). Benthic and fast‐flowing water adapted species with hydrodynamic bodies are significantly associated with severe range contractions from climate change.  相似文献   

9.
Journal of Mathematical Biology - When two competing species are simultaneously exposed in a polluted environment, one species may be more vulnerable to toxins than the other. To study the impact...  相似文献   

10.
Pristine peatlands are carbon (C)‐accumulating wetland ecosystems sustained by a high water table (WT) and consequent anoxia that slows down decomposition. Persistent WT drawdown as a response to climate and/or land‐use change affects decomposition either directly through environmental factors such as increased oxygenation, or indirectly through changes in plant community composition. This study attempts to disentangle the direct and indirect effects of WT drawdown by measuring the relative importance of environmental parameters (WT depth, temperature, soil chemistry) and litter type and/or litter chemical quality on the 2‐year decomposition rates of above‐ and belowground litter (altogether 39 litter types). Consequences for organic matter accumulation were estimated based on the annual litter production. The study sites were chosen to form a three‐stage chronosequence from pristine (undrained) to short‐term (years) and long‐term (decades) WT drawdown conditions at three nutrient regimes. The direct effects of WT drawdown were overruled by the indirect effects through changes in litter type composition and production. Short‐term responses to WT drawdown were small. In long‐term, dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Furthermore, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. Our results show that the shift in vegetation composition as a response to climate and/or land‐use change is the main factor affecting peatland ecosystem C cycle, and thus dynamic vegetation is a necessity in any model applied for estimating responses of C fluxes to changing environment. We provide possible grouping of litter types into plant functional types that the models could utilize. Furthermore, our results clearly show a drop in soil summer temperature as a response to WT drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models.  相似文献   

11.
12.
We investigate how variation in patch area and forest cover quantified for three different spatial scales (buffer size of 500, 1500 and 3000 m radius) affects species richness and functional diversity of bat assemblages in two ecosystems differing in fragment–matrix contrast: a landbridge island system in Panama and a countryside ecosystem in the Brazilian Amazon. Bats were sampled on 11 islands and the adjacent mainland in Panama, and in eight forest fragments and nearby continuous forest in Brazil. Species–area relationships (SAR) were assessed based on Chao1 species richness estimates, and functional diversity–area relationships (FAR) were quantified using Chao1 functional diversity estimates measured as the total branch length of a trait dendrogram. FARs were calculated using three trait sets: considering five species functional traits (FARALL), and trait subsets reflecting ‘diet breadth’ (FARDIET) and ‘dispersal ability’ (FARDISPERSAL). We found that in both study systems, FARALL was less sensitive to habitat loss than SAR, in the sense that an equal reduction in habitat loss led to a disproportionately smaller loss of functional diversity compared to species richness. However, the inhospitable and static aquatic matrix in the island ecosystem resulted in more pronounced species loss with increasing loss of habitat compared to the countryside ecosystem. Moreover, while we found a significant FARDISPERSAL for the island ecosystem in relation to forest cover within 500 m landscape buffers, FARDIET and FARDISPERSAL were not significant for the countryside ecosystem. Our findings highlight that species richness and functional diversity in island and countryside ecosystems scale fundamentally differently with habitat loss, and suggest that key bat ecological functions, such as pollination, seed dispersal and arthropod suppression, may be maintained in fragments despite a reduction in species richness. Our study reinforces the importance of increasing habitat availability for decreasing the chances of losing species richness in smaller fragments.  相似文献   

13.
梁国付  卢训令  贾振宇  丁圣彦 《生态学报》2016,36(10):2896-2904
以黄河中下游郑州地区为研究区域,根据林地面积比例高低,把确定的260块景观区域划分为林地面积比例高(50%)、中等(50%—30%)、低(30%—10%)和非常低(10%)共4个不同类型;采用概率连接度指数(PC)表征林地栖息地可用性程度。利用R软件里的广义线性模型(GLM),分析了10、50、100、250、500、1000、2000 m和3000 m物种不同扩散能力下,反映林地景观组成和构型特征的林地面积比例(PA),以及林地面积比例(PA)与林地斑块数量(NP)、林地平均斑块大小(PS)、林地斑块隔离度(PI)组合作用对栖息地可用性的影响。结果表明:在林地面积比例高的区域,林地面积比例是决定栖息地可用性程度的重要影响因素;在林地面积比例中等的区域,除林地面积比例外,林地斑块隔离度和平均斑块大小是主要影响因素;在林地面积比例低和较低时,依据物种扩散能力的不同,需要考虑平均斑块大小和林地斑块数量的影响。景观中不同林地面积比例情况下,生物保护措施和管理要依据林地面积比例、林地斑块数量、林地平均斑块大小、以及林地斑块隔离度。  相似文献   

14.
1. The way light stress controls the recruitment of aquatic plants (phanerogams and charophytes) is a key process controlling plant biodiversity, although still poorly understood. Our aim was to investigate how light stress induced by phytoplankton, that is, independent from the aquatic plants themselves, determines the recruitment and establishment of plant species from the propagule bank. The hypotheses were that an increase in light stress (i) decreases abundance and species richness both of established aquatic plants and of propagules in the bank and (ii) decreases the recruitment success of plants from this bank. 2. These hypotheses were tested in 25 shallow lakes representing a light stress gradient, by sampling propagule banks before the recruitment phase and when the lakes are devoid of actively growing plants (i.e. at the end of winter), established vegetation at the beginning of the summer and phytoplankton biomass (chlorophyll a) during the recruitment and establishment phase. 3. The phytoplankton biomass was negatively correlated with the richness and abundance of established vegetation but was not correlated with the propagule bank (neither species richness nor propagule abundance). The similarity between the propagule bank and established vegetation decreased significantly with increasing phytoplankton biomass. 4. The contrast in species composition between the vegetation and the propagule bank at the highest light stress suggests poor recruitment from the propagule bank but prompts questions about its origin. It could result from dispersal of propagules from neighbouring systems. Propagules could also originate from a persistent propagule bank formerly produced in the lake, suggesting strong year‐to‐year variation in light stress and, as a consequence, in recruitment and reproductive success of plants.  相似文献   

15.
Aim To compare the ability of island biogeography theory, niche theory and species–energy theory to explain patterns of species richness and density for breeding bird communities across islands with contrasting characteristics. Location Thirty forested islands in two freshwater lakes in the boreal forest zone of northern Sweden (65°55′ N to 66°09′ N; 17°43′ E to 17°55′ E). Methods We performed bird censuses on 30 lake islands that have each previously been well characterized in terms of size, isolation, habitat heterogeneity (plant diversity and forest age), net primary productivity (NPP), and invertebrate prey abundance. To test the relative abilities of island biogeography theory, niche theory and species–energy theory to describe bird community patterns, we used both traditional statistical approaches (linear and multiple regressions) and structural equation modelling (SEM; in which both direct and indirect influences can be quantified). Results Using regression‐based approaches, area and bird abundance were the two most important predictors of bird species richness. However, when the data were analysed by SEM, area was not found to exert a direct effect on bird species richness. Instead, terrestrial prey abundance was the strongest predictor of bird abundance, and bird abundance in combination with NPP was the best predictor of bird species richness. Area was only of indirect importance through its positive effect on terrestrial prey abundance, but habitat heterogeneity and spatial subsidies (emerging aquatic insects) also showed important indirect influences. Thus, our results provided the strongest support for species–energy theory. Main conclusions Our results suggest that, by using statistical approaches that allow for analyses of both direct and indirect influences, a seemingly direct influence of area on species richness can be explained by greater energy availability on larger islands. As such, animal community patterns that seem to be in line with island biogeography theory may be primarily driven by energy availability. Our results also point to the need to consider several aspects of habitat quality (e.g. heterogeneity, NPP, prey availability and spatial subsidies) for successful management of breeding bird diversity at local spatial scales and in fragmented or insular habitats.  相似文献   

16.
In landscapes dominated by agriculture, conspicuous edges often occur between landscape elements. However, there is disagreement about the existence and intensity of edge effects, and information about species‐specific responses remains scarce. Studying such edge effects can help elucidate functional landscape connectivity and contribute to agricultural management. We, therefore, assessed whether sun‐grown coffee represents a barrier to dung beetles in an Andean agricultural landscape. We also evaluated whether the response to edge effects differs among species. We found that diversity and abundance tend to decrease from forest to sun‐grown coffee and that there are sharp increases in species turnover at the forest–coffee edge. We detected several different species‐specific responses to the forest–coffee edge, suggesting differences in the mobility of the species (or spillover) and in the degree of penetration that takes place from forest patches to sun‐grown coffee plantations. This study demonstrates that the sun‐grown coffee matrix constitutes a barrier to forest species and suggests that the forest–coffee ecotone is more complex than expected. Our results support the notion that the conservation value of native forest patches in agricultural scenarios depends on the functional connectivity of forest units in the landscape to maximize the opportunities species have to disperse through the agricultural matrix.  相似文献   

17.
18.
19.
Abstract Decomposition of the organic matter is a key process in the functioning of aquatic and terrestrial ecosystems, although different factors influence processing rates between and within these habitats. Most patterns were described for temperate regions, with fewer studies in tropical, warmer sites. In this study, we carried out a factorial experiment to compare processing rates of mixed species of leaf litter between terrestrial and aquatic habitats at a tropical site, using ?ne and coarse mesh cages to allow or prevent colonization by macroinvertebrates. The experiment was followed for 10 weeks, and loss of leaf litter mass through time was evaluated using exponential models. We found no interaction between habitat and mesh size and leaf litter breakdown rates did not differ between ?ne and coarse mesh cages, suggesting that macroinvertebrates do not influence leaf litter decomposition in either habitat at our studied site. Leaf breakdown rates were faster in aquatic than in terrestrial habitats and the magnitude of these differences were comparable to studies in temperate regions, suggesting that equivalent factors can influence between‐habitat differences detected in our study.  相似文献   

20.
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) are highly influenced by changes in the microbiota and of microbiota-derived metabolites, including short chain fatty acids, bile acids, and tryptophan derivatives. This review will discuss the effects of microbiota-derived metabolites on neuroinflammation driven by central nervous system-resident cells and peripheral immune cells, and their influence on outcomes of EAE and MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号