首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated Fe plaque formation and Ca, Cu, Mn, Zn, and P uptake capacities of fifteen kinds of wetland plants. The test plants were cultured in 3 l nutrient solutions for 8 days. Fe plaque was induced by adding 200 mg l−1 Fe2+ as FeSO4·7H2O for 4 days in one set of experiment and 8 days in another. This plaque ranged from 2.38 to 8.67 mg g−1 of plant root after 4 days and from 4.56 to 15.71 mg g−1 of plant root after 8-day treatment. In both experimental durations, the plaque was significantly correlated with root surface area (r = 0.904 and 0.878, P < 0.01). Thus, Canna generalis, Typha latifolia and Thalia dealbata, with their larger root surface areas (>1,400 cm2), formed relatively greater Fe plaque amounts. The amounts of Ca, Cu, Zn and P in the Fe plaques were significantly correlated with Fe plaque amount, (r = 0.819, 0.742, 0.693, 0.917, respectively, for these four elements for the 4-day treatment; and r = 0.917, 0.768, 0.949, 0.872, respectively, for 8-day treatment, P < 0.01). Plants varied widely in accumulating Ca, Cu, Mn, Zn, and P in their tissues. The amounts accumulated on root were significantly correlated with Fe plaque amount in both for 4- and 8-day exposure treatments with Fe (r = 0.973, 0.847, 0.709, 0.837, 0.892, respectively, for 4-day treatment; and r = 0.943, 0.691, 0.843, 0.957, 0.983, respectively, for 8-day treatment, P < 0.01). No such significant correlations were found for the Fe plaque in shoot. Canna generalis, Typha latifolia and Thalia dealbata were superior in Ca, P and Zn uptake, while Canna generalis and Thalia dealbata accumulated Cu and Mn well in case of concentrated wastewater treatment.  相似文献   

2.
W.-J. Liu  Y.-G. Zhu  F.A. Smith 《Plant and Soil》2005,277(1-2):127-138
We have shown previously that phosphorus nutrition and iron plaque on the surface of rice roots influence arsenate uptake and translocation by rice in hydroponic culture. We have now investigated the role of iron (Fe) and manganese (Mn) plaque on arsenate and arsenite uptake and translocation in rice seedlings grown hydroponically. Fe and Mn plaques were clearly visible as reddish or brown coatings on the root surface after 12 h induction, and Fe plaque was much more apparent than Mn plaque. Arsenite or arsenate supply did not decrease plant dry weights significantly. There were significant differences in shoot dry weights but little difference in root dry weights between some plaque treatments. Arsenic (As) concentrations in Fe plaque when arsenate was supplied were significantly higher than those in no plaque (control) and Mn plaque treatments, and much higher than those supplied with arsenite. This showed that Fe plaque on the rice root had higher affinity to arsenate than to arsenite. In Fe plaque treatment, the results indicated that most As was sequestered in roots when arsenite was supplied and most As concentrated in Fe plaque when arsenate was supplied. Most As was accumulated in rice roots in Mn plaque and no plaque treatments for both As species.  相似文献   

3.

Background and Aims

Metal (e.g. Cd and Pb) pollution in agricultural soils and crops have aroused considerable attention in recent years. This study aimed to evaluate the effects of ROL and Fe plaque on Cd and Pb accumulation and distribution in the rice plant.

Methods

A rhizobag experiment was employed to investigate the correlations among radial oxygen loss (ROL), Fe plaque formation and uptake and distribution of Cd and Pb in 25 rice cultivars.

Results

Large differences between the cultivars were found in rates of ROL (1.55 to 6.88 mmol O2 kg?1 root d.w. h?1), Fe plaque formation (Fe: 6,117–48,167 mg kg?1; Mn: 127–1,089 mg kg?1), heavy metals in shoot (Cd: 0.13–0.35 mg kg?1; Pb: 4.8–8.1 mg kg?1) and root tissues (Cd: 1.1–3.5 mg kg?1; Pb: 45–199 mg kg?1), and in Fe plaque (Cd: 0.54–2.6 mg kg?1; Pb: 102–708 mg kg?1). Rates of ROL were positively correlated with Fe plaque formation and metal deposition on root surfaces, but negatively correlated with metal transfer factors of root/plaque and distributions in shoot and root tissues.

Conclusions

ROL-induced Fe plaque promotes metal deposition on to root surfaces, leading to a limitation of Cd and Pb transfer and distribution in rice plant tissues.  相似文献   

4.

Background and aims

Iron plaque on roots has been hypothesized to be an effective restraint on the uptake of arsenic (As) by rice plants. Evaluating the formation of iron plaque and its effect on As uptake by various rice cultivars is valuable because selecting low As uptake rice cultivars results in reduced risks associated with rice consumption. This study examines iron plaque formation and its effect on As uptake by different genotypes of rice cultivars.

Methods

Hydroponic cultures were conducted in phytotron at day 25/night 20°C and the rice seedlings in fifth-leaf age were treated with Fe (II) at the levels of 0 and 100 mg L?1 in the Kimura B nutrient solutions for 14 days. The amount of iron plaque formation of 28 rice cultivars was determined by using the DCB extractable Fe of roots. Four cultivars representing high and low iron plaque formation capability, from indica and japonica respectively, were selected out of the 28 cultivars and processed for Fe and As treatments. After Fe treatments for 4 days, the seedlings were fed with As (III) at levels of 0, 0.5, and 1 mg L?1 for another 10 days. We were thus able to determine the amounts of iron plaque formation and the As content in iron plaque, roots, and shoots of the four tested cultivars.

Results

Iron plaque formation capability differed among tested twenty-eight rice cultivars. Feeding As to four tested cultivars enhanced iron plaque formation on roots; the As uptake by roots and shoots was decreased by the addition of Fe. Both the retention of As on iron plaque and the decrease of As uptake by the addition of Fe varied among tested cultivars and were not correlated with the iron plaque formation capability.

Conclusions

Iron plaque can sequestrate As on the roots and reduce rice’s As uptake. However, other factors also influence the As uptake, namely the differences in binding affinity of iron plaque to As, the existent As species in the rhizosphere, and the uptake capability of various As species by rice plants. These factors should also be considered when selecting low As uptake rice cultivars.  相似文献   

5.
Zhang  Xike  Zhang  Fusuo  Mao  Daru 《Plant and Soil》1999,209(2):187-192
Under anaerobic conditions, ferric hydroxide deposits on the surface of rice roots have been shown to affect the uptake of some nutrients. In the present experiment, different amount of this iron plaque were induced on the roots of rice (Oryza sativa L. cv. TZ88-145) by supplying different Fe(OH)3 concentrations in nutrient solutions, and the effect of the iron plaque on phosphorus uptake was investigated. Results showed that 1) iron plaque adsorbed phosphorus from the growth medium, and that the amount of phosphorus adsorbed by the plaque was correlated with the amount of plaque; 2) the phosphorus concentration in the shoot increased by up to 72% after 72 h at concentration of Fe(OH)3 in the nutrient solution from 0 to 30 mg Fe/L, corresponding with amounts of iron plaque from 0.2 to 24.5 mg g-1 (root d. wt); 3) the phosphorus concentration in the shoots of rice with iron plaque was higher than that without iron plaque though the concentration in the shoot decreased when Fe(OH)3 was added at 50 mg Fe/L producing 28.3 mg g-1 (root d. wt) of plaque; and 4) the phosphorus concentrations in Fe-deficient and Fe-sufficient rice plants with iron plaque were the same, although phytosiderophores were released from the Fe-deficient roots. The phytosiderophores evidently did not mobilise phosphorus adsorbed on plaque. The results suggest that iron plaque on rice plant roots might be considered a phosphorus reservoir. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
A hydroponics culture experiment was conducted to investigate the effect of iron plaque on Cd uptake by and translocation within rice seedlings grown under controlled growth chamber conditions. Rice seedlings were pre-cultivated for 43 days and then transferred to nutrient solution containing six levels of Fe (0, 10, 30, 50, 80 and 100 mg L−1) for 6 days to induce different amounts of iron plaque on the root surfaces. Seedlings were then exposed to solution containing three levels of Cd (0, 0.1 and 1.0 mg L−1) for 4 days. In order to differentiate the uptake capability of Cd by roots with or without iron plaque, root tips (white root part without iron plaque) and middle root parts (with iron plaque) of pre-cultivated seedlings treated with 0, 30 and 50 mg L−1 Fe were exposed to 109Cd for 24 h. Reddish iron plaque gradually became visible on the surface of rice roots but the visual symptoms of the iron plaque on the roots differed among treatments. In general, the reddish color of the iron plaque became darker with increasing Fe supply, and the iron plaque was more homogeneously distributed all along the roots. The Fe concentrations increased significantly with increasing Fe supply regardless of Cd additions. The Cd concentrations in dithionite–citrate–bicarbonate (DCB)-extracts and in shoots and roots were significantly affected by Cd and Fe supply in the nutrient solution. The Cd concentrations increased significantly with increasing Cd supply in the solution and were undetectable when no Cd was added. The Cd concentrations in DCB-extracts with Fe supplied tended to be higher than that at Fe0 at Cd0.1, and at Cd1.0, DCB-Cd with Fe supplied was significantly lower. Cd concentrations in roots and shoots decreased with increasing Fe supply at both Cd additions. The proportion of Cd in DCB-extracts was significantly lower than in roots or shoots. Compared to the control seedlings without Fe supply, the radioactivity of 109Cd in shoots of seedlings treated with Fe decreased when root tips were exposed to 109Cd and did not change significantly when middle parts of roots were exposed. Our results suggest that root tissue rather than iron plaque on the root surface is a barrier to Cd uptake and translocation within rice plants, and the uptake and translocation of Cd appear to be related to Fe nutritional levels in the plants.  相似文献   

7.
Improvement of potato has been accomplished using conventional and non-conventional approaches coupled with numerous tissue culture procedures. The aim of the present study was to assess the efficacy of gibberellic acid (GA3) on the morphogenesis of International Potato Center (CIP) potato explants and acclimatization of plantlets in the field. Nodal segments as an explant source (1–1.5 cm) were isolated from 31 CIP potato plantlets and were inoculated into Murashige and Skoog (MS) medium supplemented with 0.0 (control), 0.1, 0.5, or 1.0 mg L?1of GA3. The variation in growth parameters of the cultivars was then observed. The highest shoot induction occurred in MS medium containing 1.0 mg L?1 GA3 with an increase in the inter-nodal distance between nodes as compared to other treatments. Higher concentration (1.0 mg L?1) of GA3 significantly increased plant height and root length in the treated germplasm however; this concentration was inhibitory to the number of nodes and roots per plant. The number of leaves was significantly increased in plants receiving GA3 treatment at lower concentration (0.1 mg L?1). The 31 CIP genotypes were transplanted to the field and checked for yield quality traits. It was concluded from the results that GA3 had significant effects on morphogenesis and was effective in the acclimatization of CIP potato plantlets in field.  相似文献   

8.
Ratoon sugarcane plantlets in southern China have suffered a serious chlorosis problem in recent years. To reveal the causes of chlorosis, plant nutrition in chlorotic sugarcane plantlets and the role of manganese (Mn) in this condition were investigated. The study results showed that the pH of soils growing chlorotic plantlets ranged from 3.74 to 4.84. The symptoms of chlorosis were similar to those of iron (Fe) deficiency while the chlorotic and non-chlorotic plantlets contained similar amount of Fe. Chlorotic plantlets had 6.4-times more Mn in their leaf tissues compared to the control plants. There was a significantly positive correlation between Mn concentration in the leaves and the exchangeable Mn concentration in the soils. Moreover, leaf Mn concentration was related to both seasonal changes in leaf chlorophyll concentration and to the occurrence of chlorosis. Basal stalks of mature sugarcanes contained up to 564.36 mg·kg-1 DW Mn. Excess Mn in the parent stalks resulted in a depress of chlorophyll concentration in the leaves of sugarcanes as indicated by lower chlorophyll concentration in the leaves of plantlets emerged from basal stalks. Ratoon sugarcane plantlets were susceptible to chlorosis due to high Mn accumulation in their leaves (456.90–1626.95 mg·kg-1 DW), while in planted canes chlorosis did not occur because of low Mn accumulation (94.64–313.41mg·kg-1 DW). On the other hand, active Fe content in chlorotic plantlets (3.39 mg kg-1 FW) was only equivalent to 28.2% of the concentration found in the control. These results indicate that chlorosis in ratoon sugarcane plantlets results from excessive Mn accumulated in parent stalks of planted cane sugarcanes grown on excessive Mn acidic soils, while active Fe deficiency in plantlets may play a secondary role in the chlorosis.  相似文献   

9.
Gibberellic acid has been known since 1954 but its effect on rice still remains very important in the agricultural world. Gibberellic acid (GA3) is the main secondary metabolite produced by the Gibberella fujikuroi fungus. This hormone is of great importance in agriculture and the brewing industry, due to its fast and strong effects at low concentrations (μg) on the processes of growth stimulation, flowering, stem elongation, and germination of seeds, among others. Plant promoters of growth production such as the gibberellins, especially the GA3 are a priority in obtaining better harvests in the agricultural area and by extension, improving the food industry. Three routes to obtaining GA3 have been reported: extraction from plants, chemical synthesis and microbial fermentation. The latter being the most common method used to produce GA3. In this investigation, glucose-corn oil mixture was used as a carbon source on the basis of 40 g of carbon in a 7 L stirred tank bioreactor. A pH of 3.5, 29°C, 600 min−1 agitation and 1 vvm aeration were maintained and controlled with a biocontroller connected to the bioreactor, throughout the entire culture time. The carbon source mixture affected the fermentation time as well as the production of the GAs. The production of 380 mg GA3L−1 after 288 h of fermentation was obtained when the glucose-corn oil mixture was employed contrasting the 136 mg GA3L−1 at 264 h of culture when only glucose was used.  相似文献   

10.
A total of 1035 yeast isolates, obtained from rice and sugar cane leaves, were screened primarily for indole-3-acetic acid (IAA) production. Thirteen isolates were selected, due to their IAA production ranging from 1.2 to 29.3 mg g1 DCW. These isolates were investigated for their capabilities of calcium phosphate and ZnO3 solubilisation, and also for production of NH3, polyamine, and siderophore. Their 1-aminocyclopropane-1-carboxylate (ACC) deaminase, catalase and fungal cell wall-degrading enzyme activities were assessed. Their antagonism against rice fungal pathogens was also evaluated. Strain identification, based on molecular taxonomy, of the thirteen yeast isolates revealed that four yeast species – i.e. Hannaella sinensis (DMKU-RP45), Cryptococcus flavus (DMKU-RE12, DMKU-RE19, DMKU-RE67, and DMKU-RP128), Rhodosporidium paludigenum (DMKU-RP301) and Torulaspora globosa (DMKU-RP31) – were capable of high IAA production. Catalase activity was detected in all yeast strains tested. The yeast R. paludigenum DMKU-RP301 was the best IAA producer, yielding 29.3 mg g1 DCW, and showed the ability to produce NH3 and siderophore. Different levels of IAA production (7.2–9.7 mg g1 DCW) were found in four strains of C. flavus DMKU-RE12, DMKU-RE19, and DMKU-RE67, which are rice leaf endophytes, and strain DMKU-RP128, which is a rice leaf epiphyte. NH3 production and carboxymethyl cellulase (CMCase) activity was also detected in these four strains. Antagonism to fungal plant pathogens and production of antifungal volatile compounds were exhibited in T. globosa DMKU-RP31, as well as a moderate level of IAA production (4.9 mg g1 DCW). The overall results indicated that T. globosa DMKU-RP31 might be used in two ways: enhancing plant growth and acting as a biocontrol agent. In addition, four C. flavus were also found to be strains of interest for optimal IAA production.  相似文献   

11.
Effects of post-harvest application of two plant growth regulators viz., gibberellic acid (GA3) and benzyl adenine (BA) with sucrose in the vase solution on cell membrane stability and vase life of gladiolus were investigated. The vase solution treatment combinations of GA3 and BA with sucrose significantly increased the membrane stability index and enhanced the vase life as compared to the sucrose alone treatments or the controls. Vase solution treatment of GA3 (50 mg l−1), followed by BA (50 mg l−1) with sucrose (50 g l−1) significantly increased solution uptake, fresh weight and dry weight of cut spikes. The same treatments also enhanced the concentration of reducing and non-reducing sugars in gladioli petals 4 days after treatment (DAT). Cut spikes in vase solution enriched with 50 mg l−1 GA3 + 50 g l−1 sucrose showed higher antioxidative enzyme activities of superoxide dismutase (SOD) and glutathione reductase (GR), lower lipoxygenase (LOX) activity and lipid peroxidation (measured as TBARS). Petal membrane stability index was also highest in cut spikes 6 DAT with 50 mg l−1 GA3 + 50 g l−1 sucrose vase solution. Treatment of gladiolus cut spikes with 50 mg l−1 GA3 + 50 g l−1 sucrose vase solution showed two fold increase in vase life and improved flower quality with a higher number of open flower per spike at any one time. These results suggest that post-harvest application of GA3 (50 mg l−1) with sucrose (50 g l−1) maintains higher spike fresh and dry weight, improves anti-oxidative defence, stabilizes membrane integrity leading to a delay in petal cell death.  相似文献   

12.
《Free radical research》2013,47(1):259-268
Using the complete sequences for MnSOD from Thermus thermophilus and for FeSOD from E. coli, structural models for both oxidized enzymes have been refined, the Mn protein to an R of 0.186 for all data between 10.0 and 1.8 Å, and the Fe protein to an R of 0.22 for data between 10.0 and 2.5 A. The results of the refinements support the presence of a solvent as a fifth ligand to Mn(III) and Fe(III) and a coordination geometry that is close to trigonal bipyramidal. The putative substrate-entry channel is comprised of residues from both subunits of the dimer; several basic residues that are conserved may facilitate approach of O?2, while other conserved residues maintain interchain packing interactions. Analysis of the azide complex of Fe(III) dismutase suggests that during turnover O?2 binds to the metal at a sixth coordination site without displacing the solvent ligand. Because crystals reduced with dithionitc show no evidence for displacement of the protein ligands, the redox-linked proton acceptor (C. Bull and J.A. Fee (1985), Journol of the American Chemistry Society 107, 3295–3304) is unlikely to be one of the histidines which bind the metal ion. Structural, kinetic, titration, and spectroscopic data can be accommodated in a mechanistic scheme which accounts for the differential titration behaviour of the Fe(II1) and Fc(II) enzymes at neutral and high pH.  相似文献   

13.
Zhang  Xike  Zhang  Fusuo  Mao  Daru 《Plant and Soil》1998,202(1):33-39
This solution culture study examined the effect of the deposition of iron plaque on zinc uptake by Fe-deficient rice plants. Different amounts of iron plaque were induced by adding Fe(OH)3 at 0, 10, 20, 30, and 50 mg Fe/L in the nutrient solution. After 24 h of growth, the amount of iron plaque was correlated positively with the Fe(OH)3 addition to the nutrient solution. Increasing iron plaque up to 12.1 g/kg root dry weight increased zinc concentration in shoots by 42% compared to that at 0.16 g/kg root dry weight. Increasing the amount of iron plaque further decreased zinc concentration. When the amounts of iron plaque reached 24.9 g/kg root dry weight, zinc concentration in shoots was lower than that in shoots without iron plaque, implying that the plaque became a barrier for zinc uptake. While rice plants were pre-cultured in –Fe and +Fe nutrient solution in order to produce the Fe-deficient and Fe-sufficient plants and then Fe(OH)3 was added at 20, 30, and 50 mg Fe/L in nutrient solution, zinc concentrations in shoots of Fe-deficient plants were 54, 48, and 43 mg/kg, respectively, in contrast to 32, 35, and 40 mg/kg zinc in shoots of Fe-sufficient rice plants. Furthermore, Fe(OH)3 addition at 20 mg Fe/L and increasing zinc concentration from 0.065 to 0.65 mg Zn/L in nutrient solution increased zinc uptake more in Fe-deficient plants than in Fe-sufficient plant. The results suggested that root exudates of Fe-deficient plants, especially phytosiderophores, could enhance zinc uptake by rice plants with iron plaque up to a particular amount of Fe.  相似文献   

14.
In mainland China, the most popular pineapple cultivar is ‘Comte de Paris’. Gibberellic acids have been widely applied to enhance fruit growth in various species. To evaluate the effect of gibberellic acid (GA3) on ‘Comte de Paris’ pineapple production and quality, pineapple fruits were sprayed with GA3 at concentrations of 5, 20, 50, or 100 mg l−1 at both 0 and 15 days after flowering (DAF). Fruits were sampled every 15 days from 0 to 60 DAF (maturation) for flow cytometric analysis and histological observation. The results showed that the treatments with the three highest concentrations of GA3 significantly increased fruit weight, and the most effective concentration was 50 mg l−1 GA3, which increased the flesh weight by 20.3% compared to the control. Although treatment with GA3 had little effect on the total soluble solids and fruit juice pH, it increased the vitamin C content. Although flow cytometric analysis showed that the 50 mg l−1 GA3 treatment had only a slight impact on the number of S phase cells, histological observations indicated that the increase of fruit volume and flesh weight under this GA3 treatment was not due to the increase of cell number but a result of the increase of cell area in the fruit flesh.  相似文献   

15.
This article discusses the results of efforts to reclaim As-contaminated soil from a former timber-treating plant. The study site, commonly referred to as the Rocker Timber Framing site, is located along Silver Bow Creek approximately 7 miles west of the Butte Mining District, MT, USA. The plant operations resulted in contamination of the soils with a highly caustic solution containing 5% As (III). Contaminated soil resulted in the groundwater plumes that contained up to 25?mg L?1 As, with As (V) being the predominant species. The objective of this study was to evaluate the effectiveness of Fe (II) treatment for remediation of As-contaminated soils. Laboratory-treatability studies were conducted on samples of saturated zone (AS1) and va-dose zone (AV1) soils. The AS1 soil was a mixture of coarse alluvium and potentially some mill tailings from adjacent mining operations. The AV1 soil consisted primarily of fill, including soil, construction debris, and timber fragments. Initial concentrations of total As in AS1 and AV1 soils were 683 and 4814?µg kg?1, respectively. Water-soluble As concentrations were 15.4 and 554?µg L?1, respectively, in a 20:1 solution to soil extract. Batch equilibration were performed by placing 10?g of soil into 20 vessels and adding increasing amounts of FeSO4.7H2O. Amendment increments were made as multiples of molar ratios of total As present in each soil. Treatability studies were run with and without a pH buffer of CaCO3 (added at a 2:1 molar ratio to the FeSO4.7H2O treatment). Solution concentrations of As in the AS1 and AV1 soils (without CaCO3) decreased from 554 to 15.4?µ L?1 and 3802 to 0.64?µ L?1, respectively, as the Fe:As molar ratios increased from 0 to 2, whereas for the AS1 soil the solution As concentration increased at the Fe:As molar ratios >2 and reverse trend was observed for the AV1 soils. The decrease in As solution concentration for the AS1 soil is attributable to the dramatic decrease in soil pH with increasing Fe:As molar ratios. In the case of soils treated with CaCO3, the solution concentrations decreased from 564 to 0.65?µg L?1 and 3790 to 0.79?µg L?1 for the AS1 and AV1 soils, respectively,as the Fe:As molar ratios increased from 0 to 50. Generally, in both the soils, the CaCO3-treated soil contained significantly more solution As compared with the non-CaCO3-treated soil at the comparable Fe:As molar ratios. This is attributable to higher solution pH on CaCO3 treatment. Our rapid engineering study indicates that treating both the soils with Fe:As molar ratio of 2 lowered the As water quality limit to <50?µL?1, whereas treating the AS1 and AV1 soils with Fe:As molar ratio of 2 and 3, respectively, lowered the As water quality limit to ≤15?µg L?1. The concentrations of the Cu and Zn were below the instrument detection limits for the AS1 and AV1 soils without CaCO3 treatment. Sequential extraction of Fe-treated soils illustrated that As was relatively stable. Less than 1% of the As was extractable using a modified TCLP approach and <70% of the As was extractable using a harsh acid modified hydroxylamine hydrochloride extraction.  相似文献   

16.
A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe3O4). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35°C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO2 was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO3). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.  相似文献   

17.
An efficient in vitro propagation protocol, applicable both to young and mature explants of two Thymus spp., results in genetically stable plantlets. In vitro-grown shoot tips of Thymus vulgaris L. were exposed to cytokinins (6-benzyladenine, kinetin, and thidiazuron) alone or in combination with auxins, gibberellic acid (GA3) and/or silver nitrate in order to optimize in vitro shoot proliferation. Optimum shoot proliferation (97% regeneration rate, with 8.6 shoots produced per explant) was obtained when semi-solid Murashige and Skoog (MS) medium was supplemented with 1 mg L−1 kinetin and 0.3 mg L−1 GA3. Rooting of the shoots was easily obtained on semi-solid MS medium that was either hormone-free or supplemented with auxins. However, the best root apparatus (92.5% rooting rate, with 19 adventitious roots per shoot) developed on MS medium supplemented with 0.05 mg L−1 2,4-dichlorophenoxyacetic acid. Genetic stability was confirmed in the in vitro-germinated mother plant as well as the shoots that underwent two, four, six, eight, or ten cycles of in vitro subculturing by random amplified polymorphic DNA (RAPD) analysis. When applied to the micropropagation of mature shoot tips of T. longicaulis C. Presl subsp. longicaulis var. subisophyllus (Borbás) Jalas, the optimized in vitro propagation protocol resulted in a 97.5% shoot regeneration rate, with five shoots formed per explant, and 100% rooting. Rooted plantlets of both species were transferred to 250-mL plastic pots and successfully acclimatized by gradually reducing the relative humidity.  相似文献   

18.
Cut flowers face the problem of short display life and lose their aesthetic value rapidly. In order to enhance the vase life of gladiolus, its cut spikes were subjected to different levels of gibberellic acid (GA3), viz., 0, 25, 50, 100 and 200 mg L?1 in vase solution, during two consecutive years 2010 and 2011. The GA3 treatment significantly influenced the vase quality attributes and antioxidants capacity of gladiolus cut flowers. Gibberellic acid at 25 mg L?1 caused the longest time taken to open the floret and increased the floret opening, vase life duration and fresh weight. The highest antioxidative activities of superoxide dismutase and free radicals scavenging were also recorded with GA3 at 25 mg L?1. The highest peroxidase, catalase activity and the lowest membrane leakage were recorded with GA3 at 50 mg L?1. Present study concludes that GA3 applied at lower concentrations (25 mg L?1) renders greater beneficial effects on vase life quality, membrane stability and antioxidant activities in gladiolus cut spike, and further higher application rates cause no improvement in the flower longevity.  相似文献   

19.
Abstract

Gibberellins (GAs) are well known for plant growth promotion. GAs production by fungi has received little attention, although substantial work has been carried out on other aspects of plant growth-promoting fungi (PGPF). We investigated GAs production and plant growth-promoting capacity of an endophytic fungus isolated from the roots of soil grown soybean plants. The endophytic fungus is reported as GAs producer and as PGPF for the first time in this study. Nine endophytic isolates were collected from the roots of soybean, and culture filtrates (CFs) obtained from their pure cultures were screened on Waito-C, a dwarf rice cultivar, for the presence of GAs. Of these, seven fungal isolates promoted shoot length as compared to control (distilled water), while one inhibited it. Three fungal isolates were selected on the basis of higher shoot elongation as compared to wild type Gibberella fujikuroi, which was used as positive control. The growth-prompting capacity of selected fungal isolates SB5-1, SB3-2, and SB3-3 was bio-assayed on soybean cv. Hwangkeumkong. Fungal isolate SB5-1 provided maximum plant height (31.6 cm), shoot length (21.1 cm), whole plant fresh biomass (2.41 g), shoot fresh biomass (1.99 g), and leaf area (24.37 cm2). The CF of isolate SB5-1 was analyzed for the presence of GAs, and it was found that all physiologically active GAs were present (GA1, 0.15 ng/ml, GA3, 1.2 ng/ml, GA4, 7.37 ng/ml, and GA7, 3.18 ng/ml) in conjunction with physiologically inactive GA5, GA9, GA15, GA19, GA20, and GA24. The fungal isolate SB5-1 was identified as a new strain of Cephalotheca sulfurea through molecular and phylogenetic approaches.  相似文献   

20.
Several of the 16,17-dihydro gibberellins (GAs) inhibit elongation in a variety of species. In a study of their mechanism of action we have investigated the effect of exo-16,17-dihydro-Ga5 (diHGA5) on the metabolism of GA20 in dwarf rice (Oryza sativa cv. Tan-ginbozu). A mixture of [3H]- and [3H]-GA20 (100 ng per plant) was applied in microdrops to 4 d old seedlings which were harvested 72 h later. Concurrent treatment with diHGA5 at 100 ng or 333 ng per plant reduced GA20-induced elongation of the second leaf sheath by 41–66%. There was a concomitant reduction in the amount of [2H2]GA1 present at harvest, measured by gas chromatography-mass spectrometry-selected ion monitoring. The [2H2]GA29 content was also reduced. There was no clear effect of diHGA5 on the total radioactivity recovered, or on conversion of the [3H]GA20 to putative [3H]GA conjugates, or on the amount of [2H2]GA20 found. No free [2H2]GA8 was detected. In other experiments there was little effect of diHGA5 on elongation induced by treatment with GA1. We conclude that diHGA5 inhibited GA20-induced elongation in dwarf rice shoots at least partly by reducing the 3-hydroxylation of GA20 to GA1.Abbreviations diHGA5 = exo- 16, 17-dihydro-gibberellin A5 - GA = gibberellin - GC-MS-SIM = gas chromatography-mass spectrometry-selected ion monitoring  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号