首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
全球变暖对北半球多年冻土的影响日益显著,多年冻土退化是现代冰冻圈中与气候变化相关的最紧迫问题之一。本研究基于15种不同地球系统模式(ACCESS-CM2、ACCESS-ESM1-5、BCC-CSM2-MR、CanESM5、CESM2、CESM2-WACCM、EC-Earth3、FGOALS-f3-L、IPSL-CM6A-LR、MIROC6、MPI-ESM1-2-HR、MPI-ESM1-2-LR、MRI-ESM2-0、NorESM2-LM、NorESM2-MM)的CMIP6土壤温度数据,分析了未来不同排放情境(SSP126、SSP245、SSP370和SSP585)下北半球多年冻土面积和活动层厚度(ALT)的时空格局,重点解析了影响ALT变化的主要环境驱动因子。结果表明: 各地球系统模式(ESM)对ALT的模拟能力差异显著。基于性能最优的4个ESM(MPI-ESM1-2-LR、ACCESS-ESM1-5、MPI-ESM1-2-HR和BCC-CSM2-MR)分析发现,2015—2100年间,高排放情境(SSP370、SSP585)下多年冻土面积减少速率显著加快,SSP585情境下冻土面积消退速率为SSP126情境的8倍;SSP126情境下多年冻土面积增加,SSP245、SSP370和SSP585情境下则持续减少。ALT在未来所有情境下均显著增加,最高排放情境SSP585的年增速是最低排放情景SSP126的22倍。每年冻土融化结束时间将逐渐从9月推移至11月,导致冻土融化持续时间逐渐增加。作为关键影响因素,空气温度、空气湿度、植被叶面积指数、积雪和风速在研究区大部分区域对冻土退化表现为明显正效应,土壤水分表现为负效应。未来通过控制温室气体排放,可以明显延缓冻土退化过程,降低北半球多年冻土面临的快速消融风险。  相似文献   

2.
多年冻土和植被是寒区生态系统的重要组成部分。随着全球气候变暖,多年冻土逐渐退化,导致土壤水分以及有机质含量降低,进而对地上植被产生影响。对大兴安岭北坡多年冻土区植物生态特征及其对冻土退化的响应进行了研究。结果表明,调查的30个多年冻土区共有85种植物,隶属于29个科,55个属。其中,蕨类植物1种,占种组成的1.2%;裸子植物1种,占种组成的1.2%;被子植物83种,占种组成的97.6%。在4种生活型中,以地面芽植物的种类最多,为51种,占植物种数的60%;地下芽和高位芽植物次之,分别为12和19种,分别占14.1%和22.4%;地上芽植物较少,为3种,占3.5%。在4种水分生态类型中,以中生植物种类最多,为50种,占植物种数的58.8%;湿生植物次之,为26种,占30.6%;沼生植物为7种,占8.2%;旱生植物最少,为2种,占2.4%。冻土活动层厚度50—150cm范围内,植物的科、属、种数最多,其次是大于150cm范围的冻土区,活动层厚度较小(50cm)时,植物科、属、种数最少。随着活动层厚度的增加,即多年冻土退化,地面芽植物的物种数显著增加(P0.05),高位芽植物的物种数显著减少(P0.05),地上芽和地下芽植物的物种数随活动层厚度的变化不显著。随着活动层厚度的增加,沼生植物的物种数显著降低(P0.05),中生植物的物种数显著增加(P0.05),湿生和旱生植物的物种数随活动层厚度的变化不显著,群落植物组成从湿生逐渐向中生转变。  相似文献   

3.
4.
High‐latitude regions store large amounts of organic carbon (OC) in active‐layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near‐surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long‐term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near‐surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire‐induced thawing of near‐surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance.  相似文献   

5.
    
Much of the world's boreal forest occurs on permafrost (perennially cryotic ground). As such, changes in permafrost conditions have implications for forest function and, within the zone of discontinuous permafrost (30–80% permafrost in areal extent), distribution. Here, forested peat plateaus underlain by permafrost are elevated above the surrounding permafrost‐free wetlands; as permafrost thaws, ground surface subsidence leads to waterlogging at forest margins. Within the North American subarctic, recent warming has produced rapid, widespread permafrost thaw and corresponding forest loss. Although permafrost thaw‐induced forest loss provides a natural analogue to deforestation occurring in more southerly locations, we know little about how fragmentation relates to subsequent permafrost thaw and forest loss or the role of changing conditions at the edges of forested plateaus. We address these knowledge gaps by (i) examining the relationship of forest loss to the degree of fragmentation in a boreal peatland in the Northwest Territories, Canada; and (ii) quantifying associated biotic and abiotic changes occurring across forest‐wetland transitions and extending into the forested plateaus (i.e., edge effects). We demonstrate that the rate of forest loss correlates positively with the degree of fragmentation as quantified by perimeter to area ratio of peat plateaus (edge : area). Changes in depth of seasonal thaw, soil moisture, and effective leaf area index (LAIe) penetrated the plateau forests by 3–15 m. Water uptake by trees was sevenfold greater in the plateau interior than at the edges with direct implications for tree radial growth. A negative relationship existed between LAIe and soil moisture, suggesting that changes in vegetation physiological function may contribute to changing edge conditions while simultaneously being affected by these changes. Enhancing our understanding of mechanisms contributing to differential rates of permafrost thaw and associated forest loss is critical for predicting future interactions between the land surface processes and the climate system in high‐latitude regions.  相似文献   

6.
    
Permafrost peatlands store one‐third of the total carbon (C) in the atmosphere and are increasingly vulnerable to thaw as high‐latitude temperatures warm. Large uncertainties remain about C dynamics following permafrost thaw in boreal peatlands. We used a chronosequence approach to measure C stocks in forested permafrost plateaus (forest) and thawed permafrost bogs, ranging in thaw age from young (<10 years) to old (>100 years) from two interior Alaska chronosequences. Permafrost originally aggraded simultaneously with peat accumulation (syngenetic permafrost) at both sites. We found that upon thaw, C loss of the forest peat C is equivalent to ~30% of the initial forest C stock and is directly proportional to the prethaw C stocks. Our model results indicate that permafrost thaw turned these peatlands into net C sources to the atmosphere for a decade following thaw, after which post‐thaw bog peat accumulation returned sites to net C sinks. It can take multiple centuries to millennia for a site to recover its prethaw C stocks; the amount of time needed for them to regain their prethaw C stocks is governed by the amount of C that accumulated prior to thaw. Consequently, these findings show that older peatlands will take longer to recover prethaw C stocks, whereas younger peatlands will exceed prethaw stocks in a matter of centuries. We conclude that the loss of sporadic and discontinuous permafrost by 2100 could result in a loss of up to 24 Pg of deep C from permafrost peatlands.  相似文献   

7.
【目的】研究北极地区表层季节性融解冻土(活跃层)及埋藏于其下深层永久冻土(永冻层)的土壤呼吸速率、土壤微生物组差异和活性甲烷氧化微生物。【方法】在相距2700 km的挪威斯瓦尔巴群岛和俄罗斯西伯利亚典型冻土区,共获得4个活跃层及4个永冻层土壤。模拟北极夏季近原位温度(10°C)培养土壤样品,测定土壤呼吸强度;利用稳定性同位素~(13)CH_4示踪土壤甲烷氧化微生物核酸DNA;结合高通量测序16S rR NA基因,实时荧光定量qPCR及土壤理化性质分析,研究活跃层和永冻层土壤微生物群落差异及其对土壤呼吸的影响,揭示活性甲烷氧化微生物的群落组成。【结果】西伯利亚冻土区土壤呼吸速率明显高于挪威斯瓦尔巴岛地区,其平均速率相差高达17倍。冻土区活跃层呼吸速率高于永冻层,活跃层约为61–7293 nmol CO_2/(g dws·d),而永冻层约为47–523 nmol CO_2/(g dws·d)。相应的,在所有活跃层中均发现变形菌和酸杆菌门共计10个微生物科的丰度显著高于永冻层,其中Hyphomicrobiaceae、Solibacteraceae和Sinobacteraceae是优势科,在活跃层中的相对丰度约为4.3%–18.6%,是永冻层的2.6–23.7倍,这些微生物可能是活跃层土壤呼吸强度较高的主要原因。稳定性同位素~(13)CH_4示踪仅发现西伯利亚冻土活跃层能够氧化高浓度甲烷,其中的活性甲烷碳同化微生物为Methylobacterium和Crenothrix。【结论】北极冻土区土壤微生物组存在明显的空间分异规律,并能较好解释土壤呼吸强度变化特征,而活跃层和永冻层垂直深度及其可能引起的物理化学因子可能是冻土区微生物组演替的主要环境驱动力。未来全球变暖情景下,永冻层逐渐融解并形成活跃层,其中的功能微生物将可能经历定向演替,并在北极冻土碳转化中发挥重要作用。  相似文献   

8.
    
《Ecohydrology》2017,10(3)
Little is known about the ecological impacts of permafrost degradation on water fluxes in boreal ecosystems, such as those in Interior Alaska. Low plant water stress suggests a reliance on a diversity of water sources. In addition to rainfall, we hypothesize that deep soil water derived from thawing seasonal ground ice (TSGI) supports plants during dry periods. We analyzed water stable isotopes from soils, plants, ice, and rain collected from stable and unstable permafrost sites. We found that TSGI provides a background water source for plants during wet years (at least 10–20%) and a stable source during dry years (at least 30–50%) and early in the growing season (60–80% in wet and dry years). Plant water uptake patterns “track” the soil thawing front, using deep and shallow layers in wet years and deep layers during dry years. This plasticity allows boreal plants to cope with seasonal drought and exploit available water sources. The availability of TGSI depends on the amount of rainfall the prior year and on permafrost stability. Thawing permafrost may reduce the buffering capacity of TGSI due to less seasonal ice from greater drainage and/or a deeper active layer. This study demonstrates the importance of two buffering mechanisms for plants to cope with rainfall variability within boreal forest underlain by permafrost—availability of TSGI and plasticity in water uptake patterns. We suggest that plant utilization of stored water may be why evapotranspiration in northern latitudes can exceed growing season precipitation.  相似文献   

9.
10.
  总被引:1,自引:0,他引:1  
Climate change is expected to cause extensive vegetation changes in the Arctic: deciduous shrubs are already expanding, in response to climate warming. The results from transect studies suggest that increasing shrub cover will impact significantly on the surface energy balance. However, little is known about the direct effects of shrub cover on permafrost thaw during summer. We experimentally quantified the influence of Betula nana cover on permafrost thaw in a moist tundra site in northeast Siberia with continuous permafrost. We measured the thaw depth of the soil, also called the active layer thickness (ALT), ground heat flux and net radiation in 10 m diameter plots with natural B. nana cover (control plots) and in plots in which B. nana was removed (removal plots). Removal of B. nana increased ALT by 9% on average late in the growing season, compared with control plots. Differences in ALT correlated well with differences in ground heat flux between the control plots and B. nana removal plots. In the undisturbed control plots, we found an inverse correlation between B. nana cover and late growing season ALT. These results suggest that the expected expansion of deciduous shrubs in the Arctic region, triggered by climate warming, may reduce summer permafrost thaw. Increased shrub growth may thus partially offset further permafrost degradation by future temperature increases. Permafrost models need to include a dynamic vegetation component to accurately predict future permafrost thaw.  相似文献   

11.
12.
    
Boreal forests are facing profound changes in their growth environment, including warming‐induced water deficits, extended growing seasons, accelerated snowmelt, and permafrost thaw. The influence of warming on trees varies regionally, but in most boreal forests studied to date, tree growth has been found to be negatively affected by increasing temperatures. Here, we used a network of Pinus sylvestris tree‐ring collections spanning a wide climate gradient the southern end of the boreal forest in Asia to assess their response to climate change for the period 1958–2014. Contrary to findings in other boreal regions, we found that previously negative effects of temperature on tree growth turned positive in the northern portion of the study network after the onset of rapid warming. Trees in the drier portion did not show this reversal in their climatic response during the period of rapid warming. Abundant water availability during the growing season, particularly in the early to mid‐growing season (May–July), is key to the reversal of tree sensitivity to climate. Advancement in the onset of growth appears to allow trees to take advantage of snowmelt water, such that tree growth increases with increasing temperatures during the rapidly warming period. The region's monsoonal climate delivers limited precipitation during the early growing season, and thus snowmelt likely covers the water deficit so trees are less stressed from the onset of earlier growth. Our results indicate that the growth response of P. sylvestris to increasing temperatures strongly related to increased early season water availability. Hence, boreal forests with sufficient water available during crucial parts of the growing season might be more able to withstand or even increase growth during periods of rising temperatures. We suspect that other regions of the boreal forest may be affected by similar dynamics.  相似文献   

13.
Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG—CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle.  相似文献   

14.
    
Climate and forest structure are considered major drivers of forest demography and productivity. However, recent evidence suggests that the relationships between climate and tree growth are generally non‐stationary (i.e. non‐time stable), and it remains uncertain whether the relationships between climate, forest structure, demography and productivity are stationary or are being altered by recent climatic and structural changes. Here we analysed three surveys from the Spanish Forest Inventory covering c. 30 years of information and we applied mixed and structural equation models to assess temporal trends in forest structure (stand density, basal area, tree size and tree size inequality), forest demography (ingrowth, growth and mortality) and above‐ground forest productivity. We also quantified whether the interactive effects of climate and forest structure on forest demography and above‐ground forest productivity were stationary over two consecutive time periods. Since the 1980s, density, basal area and tree size increased in Iberian forests, and tree size inequality decreased. In addition, we observed reductions in ingrowth and growth, and increases in mortality. Initial forest structure and water availability mainly modulated the temporal trends in forest structure and demography. The magnitude and direction of the interactive effects of climate and forest structure on forest demography changed over the two time periods analysed indicating non‐stationary relationships between climate, forest structure and demography. Above‐ground forest productivity increased due to a positive balance between ingrowth, growth and mortality. Despite increasing productivity over time, we observed an aggravation of the negative effects of climate change and increased competition on forest demography, reducing ingrowth and growth, and increasing mortality. Interestingly, our results suggest that the negative effects of climate change on forest demography could be ameliorated through forest management, which has profound implications for forest adaptation to climate change.  相似文献   

15.
    
《Ecohydrology》2018,11(5)
Evapotranspiration (ET) is a key component of the water cycle, whereby accurate partitioning of ET into evaporation and transpiration provides important information about the intrinsically coupled carbon, water, and energy fluxes. Currently, global estimates of partitioned evaporative and transpiration fluxes remain highly uncertain, especially for high‐latitude ecosystems where measurements are scarce. Forested peat plateaus underlain by permafrost and surrounded by permafrost‐free wetlands characterize approximately 60% (7.0 × 107 km2) of Canadian peatlands. In this study, 22 Picea mariana (black spruce) individuals, the most common tree species of the North American boreal forest, were instrumented with sap flow sensors within the footprint of an eddy covariance tower measuring ET from a forest–wetland mosaic landscape. Sap flux density (JS), together with remote sensing data and in situ measurements of canopy structure, was used to upscale tree‐level JS to overstorey transpiration (TBS). Black spruce trees growing in nutrient‐poor permafrost peat soils were found to have lower mean JS than those growing in mineral soils. Overall, TBS contributed less than 1% to landscape ET. Climate‐change‐induced forest loss and the expansion of wetlands may further minimize the contributions of TBS to ET and increase the contribution of standing water.  相似文献   

16.
    
The effects of changing climate and disturbance on forest water cycling are not well understood. In particular, bryophytes contribute significantly to forest evapotranspiration in poorly drained boreal forests, but few studies have directly measured this flux and how it changes with stand age and soil drainage. We measured bryophyte evaporation (E) in the field (in Canadian Picea mariana forests of varying ages and soil drainages) and under controlled laboratory conditions, and modelled daily E using site‐specific meteorological data to drive a Penman–Monteith‐based model. Field measurements of E averaged 0·37 mm day−1 and ranged from 0·03 (Pleurozium schreberii in a 77‐year‐old dry stand) to 1·43 mm day−1 (Sphagnum riparium in a 43‐year‐old bog). In the laboratory, moss canopy resistance (which ranged from ∼0 to 1500 s m−1) was constant until a moss water content of ∼6 g g−1 and then climbed sharply with further drying; unexpectedly, no difference was observed between the three moss groups (feather mosses, hollow mosses and hummock mosses) tested. Modelled annual E ranged from 0·4 mm day−1, in the well‐drained stands, to ∼1 mm day−1 in the 43‐year‐old bog. The Penman–Monteith modelling approach used was relatively insensitive to most parameters but only explained 35% of the variability in field measurements. Bryophyte E was greater in bogs than in upland stands, was driven by low‐lying mosses and varied with stand age only in the poorly drained stands; this suggests that bryophytes may provide a buffering effect to fire‐driven changes in tree transpiration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
植殷  杨亚宁  王世杰  郑磊  刘仲娌  吕行  晏明全  肖峰 《生态学报》2025,45(12):5888-5899
北极河流可溶性有机碳(Dissolved Organic Carbon, DOC)输出是北冰洋碳循环的重要组成过程, 探究北极DOC浓度变化的影响因素具有重要意义。在定量分析北极DOC浓度变化的影响因素中, 冻土融解过程常被忽略, 因此有必要开展北极冻土融解过程与DOC浓度变化的研究。以北极六大流域多年冻土区为研究对象, 基于DOCUVFW方法, 结合遥感影像数据计算2003-2020年河口DOC浓度, 采用广义相加模型评估了冻土融解深度对河口DOC浓度的贡献, 并进一步分析了冻土的土壤特性对DOC迁移过程的影响。结果表明: (1)2003-2020年期间, 北极地区通过河流由陆地汇入海洋的DOC浓度从76.7 μmol/L增加到101.3 μmol/L, 呈显著上升趋势。(2)冻土融解深度对DOC的影响在初始融解期保持平缓, 随后在快速融解期呈现明显的增加趋势, 贡献率为22.2%-77.1%, 完全融解期呈现略微下降的趋势。(3)根据K-means将北极流域土壤分为4类, 排水能力强的土壤导致河口DOC对活动层融解响应迅速, 排水能力弱的土壤则促进土壤有机碳向DOC的转化; 吸附能力强的土壤致使活动层融解后期DOC输出减少, 吸附能力弱的土壤则促进河口DOC浓度持续增加。  相似文献   

18.
19.
Although boreal forests are currently sinks for atmospheric C, there is some concern that they may not remain so under hypothesized warming of the boreal climate. The ecosystem model ecosys was used to evaluate possible changes in ecosystem C exchange and accumulation under changes in atmospheric CO2 concentration (Ca) proposed in emissions scenario IS92a, and accompanying changes in air temperature and precipitation proposed by general circulation models running under IS92a. Ecosys was first tested under current climate by comparing modelled rates of C exchange and accumulation with those measured in a mixed aspen–hazelnut stand in central Saskatchewan. The model was then run with daily increments of Ca, temperature and precipitation, and differences in C exchange and accumulation between current and changing climates were evaluated. Model results indicated that over a 120‐y period, a mixed aspen–hazelnut stand currently accumulates about 14 kg C m?2. Under the hypothesized changes in climate this stand would accumulate an additional 8.5 kg C m?2, largely through higher rates of CO2 fixation and longer growing seasons under higher Ca and temperature. This additional accumulation would be entirely as aspen wood, while soil organic matter would change little. This accumulation would therefore be vulnerable to losses from fire and insects.  相似文献   

20.
    
  1. Freshwaters are among the most globally threatened habitats and their biodiversity is declining at an unparalleled rate. In an attempt to slow this decline, multiple approaches have been used to conserve, restore or enhance waterbodies. However, evaluating their effectiveness is time‐consuming and expensive. Identifying species or assemblages across a range of ecological conditions that can provide a surrogate for wider freshwater biodiversity is therefore of significant value for conservation management and planning.
  2. For lakes and ponds in three contrasting landscapes of Britain (lowland agricultural, eastern England; upland, north‐west England; urban, central Scotland) we examined the link between macrophyte species, macrophyte morpho‐group diversity (an indicator of structural diversity) and the richness of three widespread aquatic macroinvertebrate groups (molluscs, beetles, and odonates) using structural equation modelling. We hypothesised that increased macrophyte richness and, hence, increased vegetation structural complexity, would increase macroinvertebrate richness after accounting for local and landscape conditions.
  3. We found that macrophyte richness, via macrophyte morpho‐group diversity, was an effective surrogate for mollusc, beetle, and odonate richness in ponds after accounting for variation caused by physical variables, water chemistry, and surrounding land use. However, only mollusc richness could be predicted by macrophyte morpho‐group diversity in lakes, with no significant predicted effect on beetles or odonates.
  4. Our results indicate that macrophyte morpho‐group diversity can be viewed as a suitable surrogate of macroinvertebrate biodiversity across diverse landscapes, particularly in ponds and to a lesser extent in lakes. This has important implications for the restoration, conservation, and creation of standing water habitats and for assessing their effectiveness in addressing the decline of global freshwater biodiversity. Management actions prioritising the development of species‐rich and structurally diverse macrophyte assemblages will be likely to benefit wider freshwater biodiversity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号