首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arctic tundra vegetation composition is expected to undergo rapid changes during the coming decades because of changes in climate. Higher air temperatures generally favor growth of deciduous shrubs, often at the cost of moss growth. Mosses are considered to be very important to critical tundra ecosystem processes involved in water and energy exchange, but very little empirical data are available. Here, we studied the effect of experimental moss removal on both understory evapotranspiration and ground heat flux in plots with either a thin or a dense low shrub canopy in a tundra site with continuous permafrost in Northeast Siberia. Understory evapotranspiration increased with removal of the green moss layer, suggesting that most of the understory evapotranspiration originated from the organic soil layer underlying the green moss layer. Ground heat flux partitioning also increased with green moss removal indicating the strong insulating effect of moss. No significant effect of shrub canopy density on understory evapotranspiration was measured, but ground heat flux partitioning was reduced by a denser shrub canopy. In summary, our results show that mosses may exert strong controls on understory water and heat fluxes. Changes in moss or shrub cover may have important consequences for summer permafrost thaw and concomitant soil carbon release in Arctic tundra ecosystems.  相似文献   

2.
Climate warming is expected to have a large impact on plant species composition and productivity in northern latitude ecosystems. Warming can affect vegetation communities directly through temperature effects on plant growth and indirectly through alteration of soil nutrient availability. In addition, warming can cause permafrost to thaw and thermokarst (ground subsidence) to develop, which can alter the structure of the ecosystem by altering hydrological patterns within a site. These multiple direct and indirect effects of permafrost thawing are difficult to simulate in experimental approaches that often manipulate only one or two factors. Here, we used a natural gradient approach with three sites to represent stages in the process of permafrost thawing and thermokarst. We found that vascular plant biomass shifted from graminoid-dominated tundra in the least disturbed site to shrub-dominated tundra at the oldest, most subsided site, whereas the intermediate site was co-dominated by both plant functional groups. Vascular plant productivity patterns followed the changes in biomass, whereas nonvascular moss productivity was especially important in the oldest, most subsided site. The coefficient of variation for soil moisture was higher in the oldest, most subsided site suggesting that in addition to more wet microsites, there were other microsites that were drier. Across all sites, graminoids preferred the cold, dry microsites whereas the moss and shrubs were associated with the warm, moist microsites. Total nitrogen contained in green plant biomass differed across sites, suggesting that there were increases in soil nitrogen availability where permafrost had thawed.  相似文献   

3.
One of the most important changes in high‐latitude ecosystems in response to climatic warming may be the thawing of permafrost soil. In upland tundra, the thawing of ice‐rich permafrost can create localized surface subsidence called thermokarst, which may change the soil environment and influence ecosystem carbon release and uptake. We established an intermediate scale (a scale in between point chamber measurements and eddy covariance footprint) ecosystem carbon flux study in Alaskan tundra where permafrost thaw and thermokarst development had been occurring for several decades. The main goal of our study was to examine how dynamic ecosystem carbon fluxes [gross primary production (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE)] relate to ecosystem variables that incorporate the structural and edaphic changes that co‐occur with permafrost thaw and thermokarst development. We then examined how these measured ecosystem carbon fluxes responded to upscaling. For both spatially extensive measurements made intermittently during the peak growing season and intensive measurements made over the entire growing season, ecosystem variables including degree of surface subsidence, thaw depth, and aboveground biomass were selected in a mixed model selection procedure as the ‘best’ predictors of GPP, Reco, and NEE. Variables left out of the model (often as a result of autocorrelation) included soil temperature, moisture, and normalized difference vegetation index. These results suggest that the structural changes (surface subsidence, thaw depth, aboveground biomass) that integrate multiple effects of permafrost thaw can be useful components of models used to estimate ecosystem carbon exchange across thermokarst affected landscapes.  相似文献   

4.
Over the past several decades, various trends in vegetation productivity, from increases to decreases, have been observed throughout Arctic–Boreal ecosystems. While some of this variation can be explained by recent climate warming and increased disturbance, very little is known about the impacts of permafrost thaw on productivity across diverse vegetation communities. Active layer thickness data from 135 permafrost monitoring sites along a 10° latitudinal transect of the Northwest Territories, Canada, paired with a Landsat time series of normalized difference vegetation index from 1984 to 2019, were used to quantify the impacts of changing permafrost conditions on vegetation productivity. We found that active layer thickness contributed to the observed variation in vegetation productivity in recent decades in the northwestern Arctic–Boreal, with the highest rates of greening occurring at sites where the near-surface permafrost recently had thawed. However, the greening associated with permafrost thaw was not sustained after prolonged periods of thaw and appeared to diminish after the thaw front extended outside the plants' rooting zone. Highest rates of greening were found at the mid-transect sites, between 62.4° N and 65.2° N, suggesting that more southernly sites may have already surpassed the period of beneficial permafrost thaw, while more northern sites may have yet to reach a level of thaw that supports enhanced vegetation productivity. These results indicate that the response of vegetation productivity to permafrost thaw is highly dependent on the extent of active layer thickening and that increases in productivity may not continue in the coming decades.  相似文献   

5.
Methane (CH4) emissions from the northern high‐latitude region represent potentially significant biogeochemical feedbacks to the climate system. We compiled a database of growing‐season CH4 emissions from terrestrial ecosystems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosystems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen), whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites with near‐surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table positions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statistically higher than emissions from permafrost‐free sites with comparable environmental conditions. Overall, these results suggest that future changes to terrestrial high‐latitude CH4 emissions will be more proximately related to changes in moisture, soil temperature, and vegetation composition than to increased availability of organic matter following permafrost thaw.  相似文献   

6.
Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a burn severity gradient (i.e. Severely, Moderately, and Unburned tundra) to determine the effect of fire and burn severity on arctic tundra surface energy exchange and temperature for three growing seasons (2008–2010) following the 2007 Anaktuvuk River fire. The three sites were well matched before the fire, experienced similar weather, and had similar energy budget closure, indicating that the measured energy exchange differences between sites were largely attributable to burn severity. Increased burn severity resulted in decreased vegetation and moss cover, organic layer depth, and the rate of postfire vegetation recovery. Albedo and surface greenness steadily recovered with Moderately matching Unburned tundra by the third growing season. Decreased albedo increased net radiation and partly fueled increased latent and ground heat fluxes, soil temperatures, and thaw depth. Decreases in moss cover and the organic layer also influenced the ground thermal regime and increased latent heat fluxes. These changes either offset or decreased the surface warming effect from decreased albedo, resulting in a small surface warming in Severely and a small surface cooling in Moderately relative to Unburned tundra. These results indicate that fires have a significant impact on surface energy balance and highlight the importance of moss and permafrost thaw in regulating arctic surface energy exchange and temperature.  相似文献   

7.
Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large‐scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape‐level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer‐term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased ground saturation that will accompany permafrost thaw.  相似文献   

8.
High‐latitude regions store large amounts of organic carbon (OC) in active‐layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near‐surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long‐term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near‐surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire‐induced thawing of near‐surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance.  相似文献   

9.
Shrub expansion may reduce summer permafrost thaw in Siberian tundra   总被引:1,自引:0,他引:1  
Climate change is expected to cause extensive vegetation changes in the Arctic: deciduous shrubs are already expanding, in response to climate warming. The results from transect studies suggest that increasing shrub cover will impact significantly on the surface energy balance. However, little is known about the direct effects of shrub cover on permafrost thaw during summer. We experimentally quantified the influence of Betula nana cover on permafrost thaw in a moist tundra site in northeast Siberia with continuous permafrost. We measured the thaw depth of the soil, also called the active layer thickness (ALT), ground heat flux and net radiation in 10 m diameter plots with natural B. nana cover (control plots) and in plots in which B. nana was removed (removal plots). Removal of B. nana increased ALT by 9% on average late in the growing season, compared with control plots. Differences in ALT correlated well with differences in ground heat flux between the control plots and B. nana removal plots. In the undisturbed control plots, we found an inverse correlation between B. nana cover and late growing season ALT. These results suggest that the expected expansion of deciduous shrubs in the Arctic region, triggered by climate warming, may reduce summer permafrost thaw. Increased shrub growth may thus partially offset further permafrost degradation by future temperature increases. Permafrost models need to include a dynamic vegetation component to accurately predict future permafrost thaw.  相似文献   

10.
In the Low Arctic, a warming climate is increasing rates of permafrost degradation and altering vegetation. Disturbance associated with warming permafrost can change microclimate and expose areas of ion-rich mineral substrate for colonization by plants. Consequently, the response of vegetation to warming air temperatures may differ significantly from disturbed to undisturbed tundra. Across a latitudinal air temperature gradient, we tested the hypothesis that the microenvironment in thaw slumps would be warmer and more nutrient rich than undisturbed tundra, resulting in altered plant community composition and increased green alder ( Alnus viridis subsp. fruticosa ) growth and reproduction. Our results show increased nutrient availability, soil pH, snow pack, ground temperatures, and active layer thickness in disturbed terrain and suggest that these variables are important drivers of plant community structure. We also found increased productivity, catkin production, and seed viability of green alder at disturbed sites. Altered community composition and enhancement of alder growth and reproduction show that disturbances exert a strong influence on deciduous shrubs that make slumps potential seed sources for undisturbed tundra. Overall, these results indicate that accelerated disturbance regimes have the potential to magnify the effects of warming temperature on vegetation. Consequently, understanding the relative effects of temperature and disturbance on Arctic plant communities is critical to predicting feedbacks between northern ecosystems and global climate change.  相似文献   

11.
Much of the world's boreal forest occurs on permafrost (perennially cryotic ground). As such, changes in permafrost conditions have implications for forest function and, within the zone of discontinuous permafrost (30–80% permafrost in areal extent), distribution. Here, forested peat plateaus underlain by permafrost are elevated above the surrounding permafrost‐free wetlands; as permafrost thaws, ground surface subsidence leads to waterlogging at forest margins. Within the North American subarctic, recent warming has produced rapid, widespread permafrost thaw and corresponding forest loss. Although permafrost thaw‐induced forest loss provides a natural analogue to deforestation occurring in more southerly locations, we know little about how fragmentation relates to subsequent permafrost thaw and forest loss or the role of changing conditions at the edges of forested plateaus. We address these knowledge gaps by (i) examining the relationship of forest loss to the degree of fragmentation in a boreal peatland in the Northwest Territories, Canada; and (ii) quantifying associated biotic and abiotic changes occurring across forest‐wetland transitions and extending into the forested plateaus (i.e., edge effects). We demonstrate that the rate of forest loss correlates positively with the degree of fragmentation as quantified by perimeter to area ratio of peat plateaus (edge : area). Changes in depth of seasonal thaw, soil moisture, and effective leaf area index (LAIe) penetrated the plateau forests by 3–15 m. Water uptake by trees was sevenfold greater in the plateau interior than at the edges with direct implications for tree radial growth. A negative relationship existed between LAIe and soil moisture, suggesting that changes in vegetation physiological function may contribute to changing edge conditions while simultaneously being affected by these changes. Enhancing our understanding of mechanisms contributing to differential rates of permafrost thaw and associated forest loss is critical for predicting future interactions between the land surface processes and the climate system in high‐latitude regions.  相似文献   

12.
Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330–1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools.  相似文献   

13.
Question: How do pre‐fire conditions (community composition and environmental characteristics) and climate‐driven disturbance characteristics (fire severity) affect post‐fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14 black spruce stands before and after multiple, naturally occurring wildfires. We used a combination of vegetation table sorting, univariate (ANOVA, paired t‐tests), and multivariate (detrended correspondence analysis) statistics to determine the impact of fire severity and site moisture on community composition, dominant species and growth forms. Results: Severe wildfires caused a 50% reduction in number of plant species in our study sites. The largest species loss, and therefore the greatest change in species composition, occurred in severely burned sites. This was due mostly to loss of non‐vascular species (mosses and lichens) and evergreen shrubs. New species recruited most abundantly to severely burned sites, contributing to high species turnover on these sites. As well as the strong effect of fire severity, pre‐fire and post‐fire mineral soil pH had an effect on post‐fire vegetation patterns, suggesting a legacy effect of site acidity. In contrast, pre‐fire site moisture, which was a strong determinant of pre‐fire community composition, showed no relationship with post‐fire community composition. Site moisture was altered by fire, due to changes in permafrost, and therefore post‐fire site moisture overrode pre‐fire site moisture as a strong correlate. Conclusions: In the rapidly warming climate of interior Alaska, changes in fire severity had more effect on post‐fire community composition than did environmental factors (moisture and pH) that govern landscape patterns of unburned vegetation. This suggests that climate change effects on future community composition of black spruce forests may be mediated more strongly by fire severity than by current landscape patterns. Hence, models that represent the effects of climate change on boreal forests could improve their accuracy by including dynamic responses to fire disturbance.  相似文献   

14.
Climate warming can result in both abiotic (e.g., permafrost thaw) and biotic (e.g., microbial functional genes) changes in Arctic tundra. Recent research has incorporated dynamic permafrost thaw in Earth system models (ESMs) and indicates that Arctic tundra could be a significant future carbon (C) source due to the enhanced decomposition of thawed deep soil C. However, warming‐induced biotic changes may influence biologically related parameters and the consequent projections in ESMs. How model parameters associated with biotic responses will change under warming and to what extent these changes affect projected C budgets have not been carefully examined. In this study, we synthesized six data sets over 5 years from a soil warming experiment at the Eight Mile Lake, Alaska, into the Terrestrial ECOsystem (TECO) model with a probabilistic inversion approach. The TECO model used multiple soil layers to track dynamics of thawed soil under different treatments. Our results show that warming increased light use efficiency of vegetation photosynthesis but decreased baseline (i.e., environment‐corrected) turnover rates of SOC in both the fast and slow pools in comparison with those under control. Moreover, the parameter changes generally amplified over time, suggesting processes of gradual physiological acclimation and functional gene shifts of both plants and microbes. The TECO model predicted that field warming from 2009 to 2013 resulted in cumulative C losses of 224 or 87 g/m2, respectively, without or with changes in those parameters. Thus, warming‐induced parameter changes reduced predicted soil C loss by 61%. Our study suggests that it is critical to incorporate biotic changes in ESMs to improve the model performance in predicting C dynamics in permafrost regions.  相似文献   

15.
The fate of terrestrially-derived dissolved organic carbon (DOC) is important to carbon (C) cycling in both terrestrial and aquatic environments, and recent evidence suggests that climate warming is influencing DOC dynamics in northern ecosystems. To understand what determines the fate of terrestrial DOC, it is essential to quantify the chemical nature and potential biodegradability of this DOC. We examined DOC chemical characteristics and biodegradability collected from soil pore waters and dominant vegetation species in four boreal black spruce forest sites in Alaska spanning a range of hydrologic regimes and permafrost extents (Well Drained, Moderately Well Drained, Poorly Drained, and Thermokarst Wetlands). DOC chemistry was characterized using fractionation, UV–Vis absorbance, and fluorescence measurements. Potential biodegradability was assessed by incubating the samples and measuring CO2 production over 1 month. Soil pore water DOC from all sites was dominated by hydrophobic acids and was highly aromatic, whereas the chemical composition of vegetation leachate DOC varied significantly with species. There was no seasonal variability in soil pore water DOC chemical characteristics or biodegradability; however, DOC collected from the Poorly Drained site was significantly less biodegradable than DOC from the other three sites (6% loss vs. 13–15% loss). The biodegradability of vegetation-derived DOC ranged from 10 to 90% loss, and was strongly correlated with hydrophilic DOC content. Vegetation such as Sphagnum moss and feathermosses yielded DOC that was quickly metabolized and respired. In contrast, the DOC leached from vegetation such as black spruce was moderately recalcitrant. Changes in DOC chemical characteristics that occurred during microbial metabolism of DOC were quantified using fractionation and fluorescence. The chemical characteristics and biodegradability of DOC in soil pore waters were most similar to the moderately recalcitrant vegetation leachates, and to the microbially altered DOC from all vegetation leachates.  相似文献   

16.
Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high‐arctic tundra heath sites in NE‐Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above‐ and belowground tundra carbon turnover, possibly governed by microbial resource availability.  相似文献   

17.
Permafrost nitrogen status and its determinants on the Tibetan Plateau   总被引:1,自引:0,他引:1  
It had been suggested that permafrost thaw could promote frozen nitrogen (N) release and modify microbial N transformation rates, which might alter soil N availability and then regulate ecosystem functions. However, the current understanding of this issue is confined to limited observations in the Arctic permafrost region, without any systematic measurements in other permafrost regions. Based on a large‐scale field investigation along a 1,000 km transect and a laboratory incubation experiment with a 15N pool dilution approach, this study provides the comprehensive evaluation of the permafrost N status, including the available N content and related N transformation rates, across the Tibetan alpine permafrost region. In contrast to the prevailing view, our results showed that the Tibetan alpine permafrost had lower available N content and net N mineralization rate than the active layer. Moreover, the permafrost had lower gross rates of N mineralization, microbial immobilization and nitrification than the active layer. Our results also revealed that the dominant drivers of the gross N mineralization and microbial immobilization rates differed between the permafrost and the active layer, with these rates being determined by microbial properties in the permafrost while regulated by soil moisture in the active layer. In contrast, soil gross nitrification rate was consistently modulated by the soil content in both the permafrost and the active layer. Overall, patterns and drivers of permafrost N pools and transformation rates observed in this study offer new insights into the potential N release upon permafrost thaw and provide important clues for Earth system models to better predict permafrost biogeochemical cycles under a warming climate.  相似文献   

18.
The two major disturbance types of boreal black spruce forest in north–central Quebec, Canada – natural disturbance by wildfire and anthropogenic disturbance by harvest – may affect processes of recovery differently and leave distinct post‐disturbance soil and vegetation spatial patterns. We tested whether 1) spatial patterns of physico‐chemical soil organic layer properties, black spruce diameter and density, and understory ericaceous shrub cover, differ between these two principal disturbance types; 2) operations associated with forest harvest result in distinct, regular spatial patterns of these same variables related to presence of machine trails; and 3) ericaceous shrub presence is a potential factor contributing to the legacy of spatial patterns after harvest. We explored these patterns on black spruce‐feathermoss forest stands, including fire‐origin stands (18 and 98 years) and stands originating from harvest (16 and 62 years) in central Quebec, Canada. We used two spatial analysis methods, spectral analysis and principal component analysis in the frequency domain, to characterize and relate spatial patterns of these soil and vegetation variables, measured along 50‐m transects on each site. Spatial patterns of distribution of soil and vegetation variables were different on the burned and the harvested forest sites. Wildfire gave rise to spatial patterns in soil and vegetation variables at multiple scales, reflecting the complexity generated by variable burn intensity. Patterns following forest harvest were mainly related to the regular structure defined by trails created by logging operations. In contrast to burned sites, ericaceous shrub patterns on harvested sites were strongly associated with spatial arrangements of spruce diameter and density, promoting absence of canopy closure and persistence of trails. Moreover, different spatial signatures did not converge in the long‐term (62–98 years) between the two disturbance types. The divergence in spatial structure between natural and anthropogenic disturbances has implications for ecosystem structure and function in the longer term.  相似文献   

19.

Background and aims

The warming of the planet in recent decades has caused rapid, widespread permafrost degradation on the Qinghai–Tibet Plateau. These changes may significantly affect soil moisture content and nutrient supply, thereby affecting ecosystem structure and function. This study aimed to describe the dynamic changes in thaw depth, assess the relationship between thaw depth and soil moisture content, and analyze the changes in species composition and water-use efficiency in response to permafrost degradation.

Methods

We surveyed species composition, thaw depth, ground temperature, soil moisture, nutrient content, and foliar stable carbon isotope compositions to gain insights into the response of alpine grassland ecosystems to permafrost degradation on the Qinghai-Tibet Plateau.

Results

Moisture content of the surface layer decreased with increasing thaw depth. The correlation between thaw depth and surface soil moisture content was strongest in June and decreased in July and August. The strongest correlation occurred at a depth of 20 cm to 30 cm. The dominant species shifted from Cyperaceae in alpine meadow to mesoxerophytes in alpine steppe before finally shifting to xerophytes in alpine desert steppe. Thaw depth correlation was significantly negative with organic C content (r?=??0.49, P?<?0.05) and with total N content (r?=??0.62, P?<?0.01). The leaf δ13C of Carex moorcroftii increased with increasing thaw depth and followed a linear relationship (R 2?=?0.85, P?=?0.008).

Conclusions

Permafrost degradation decreases surface soil moisture and soil nutrient supply capacity. Increasing permafrost degradation decreases the number of plant families and species, with hygrophytes and mesophytes gradually replaced by mesoxerophytes and xerophytes. The water-use efficiency of plants improved in response to increasing water stress as surface layers dried during permafrost degradation. Permafrost on the Qinghai–Tibetan Plateau is expected to further degrade as global warming worsens. Therefore, more attention should be dedicated to the response of alpine ecosystems during permafrost degradation.  相似文献   

20.
Permafrost, covering approximately 25% of the land area in the Northern Hemisphere, is one of the key components of terrestrial ecosystem in cold regions. As a product of cold climate, permafrost is extremely sensitive to climate change. Climate warming over past decades has caused degradation in permafrost widely and quickly. Permafrost degradation has the potential to significantly change soil moisture content, alter soil nutrients availability and influence on species composition. In lowland ecosystems the loss of ice-rich permafrost has caused the conversion of terrestrial ecosystem to aquatic ecosystem or wetland. In upland ecosystems permafrost thaw has resulted in replacement of hygrophilous community by xeromorphic community or shrub. Permafrost degradation resulting from climate warming may dramatically change the productivity and carbon dynamics of alpine ecosystems. This paper reviewed the effects of permafrost degradation on ecosystem structure and function. At the same time, we put forward critical questions about the effects of permafrost degradation on ecosystems on Qinghai–Tibetan Plateau, included: (1) carry out research about the effects of permafrost degradation on grassland ecosystem and the response of alpine ecosystem to global change; (2) construct long-term and located field observations and research system, based on which predict ecosystem dynamic in permafrost degradation; (3) pay extensive attention to the dynamic of greenhouse gas in permafrost region on Qinghai–Tibetan Plateau and the feedback of greenhouse gas to climate change; (4) quantitative study on the change of water-heat transport in permafrost degradation and the effects of soil moisture and heat change on vegetation growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号