首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Deregulated expression or activity of kinases can lead to melanomas, but often the particular kinase isoform causing the effect is not well established, making identification and validation of different isoforms regulating disease development especially important. To accomplish this objective, an siRNA screen was undertaken that which identified glycogen synthase kinase 3α (GSK3α) as an important melanoma growth regulator. Melanocytes and melanoma cell lines representing various stages of melanoma tumor progression expressed both GSK3α and GSK3β, but analysis of tumors in patients with melanoma showed elevated expression of GSK3α in 72% of samples, which was not observed for GSK3β. Furthermore, 80% of tumors in patients with melanoma expressed elevated levels of catalytically active phosphorylated GSK3α (pGSK3αY279), but not phosphorylated GSK3β (pGSK3βY216). siRNA‐mediated reduction in GSK3α protein levels reduced melanoma cell survival and proliferation, sensitized cells to apoptosis‐inducing agents and decreased xenografted tumor development by up to 56%. Mechanistically, inhibiting GSK3α expression using siRNA or the pharmacological agent AR‐A014418 arrested melanoma cells in the G0/G1 phase of the cell cycle and induced apoptotic death to retard tumorigenesis. Therefore, GSK3α is a key therapeutic target in melanoma.  相似文献   

2.
ZAK (sterile alpha motif and leucine zipper containing kinase AZK), a serine/threonine kinase with multiple biochemical functions, has been associated with various cell processes, including cell proliferation, cell differentiation, and cardiac hypertrophy. In our previous reports, we found that the activation of ZAKα signaling was critical for cardiac hypertrophy. In this study, we show that the expression of ZAKα activated apoptosis through both a FAS‐dependent pathway and a mitochondria‐dependent pathway by subsequently inducing caspase‐3. ZAKβ, an isoform of ZAKα, is dramatically expressed during cardiac hypertrophy and apoptosis. The interaction between ZAKα and ZAKβ was demonstrated here using immunoprecipitation. The results show that ZAKβ has the ability to diminish the expression level of ZAKα. These findings reveal an inherent regulatory role of ZAKβ to antagonize ZAKα and to subsequently downregulate the cardiac hypertrophy and apoptosis induced by ZAKα.  相似文献   

3.
Abstract : Valproic acid (VPA) is a potent broad‐spectrum anti‐epileptic with demonstrated efficacy in the treatment of bipolar affective disorder. It has previously been demonstrated that both VPA and lithium increase activator protein‐1 (AP‐1) DNA binding activity, but the mechanisms underlying these effects have not been elucidated. However, it is known that phosphorylation of c‐jun by glycogen synthase kinase (GSK)‐3β inhibits AP‐1 DNA binding activity, and lithium has recently been demonstrated to inhibit GSK‐3β. These results suggest that lithium may increase AP‐1 DNA binding activity by inhibiting GSK‐3β. In the present study, we sought to determine if VPA, like lithium, regulates GSK‐3. We have found that VPA concentration‐dependently inhibits both GSK‐3α and ‐3β, with significant effects observed at concentrations of VPA similar to those attained clinically. Incubation of intact human neuroblastoma SH‐SY5Y cells with VPA results in an increase in the subsequent in vitro recombinant GSK‐3β‐mediated 32P incorporation into two putative GSK‐3 substrates (~85 and 200 kDa), compatible with inhibition of endogenous GSK‐3β by VPA. Consistent with GSK‐3β inhibition, incubation of SH‐SY5Y cells with VPA results in a significant time‐dependent increase in both cytosolic and nuclear β‐catenin levels. GSK‐3β plays a critical role in the CNS by regulating various cytoskeletal processes as well as long‐term nuclear events and is a common target for both lithium and VPA ; inhibition of GSK‐3β in the CNS may thus underlie some of the long‐term therapeutic effects of mood‐stabilizing agents.  相似文献   

4.
5.
6.
Glycogen synthase kinase-3β (GSK3β) and casein kinase-1α (CK1α) are multifunctional kinases that play critical roles in the regulation of a number of cellular processes. In spite of their importance, molecular imaging tools for noninvasive and real-time monitoring of their kinase activities have not been devised. Here we report development of the bioluminescent GSK3β and CK1α reporter (BGCR) based on firefly luciferase complementation. Treatment of SW620 cells stably expressing the reporter with inhibitors of GSK3β (SB415286 and LiCl) or CK1α (CKI-7) resulted in dose- and time-dependent increases in BGCR activity that were validated using Western blotting. No increase in bioluminescence was observed in the case of S37A mutant (GSK3β inhibitors) or S45A mutant (CKI-7), demonstrating the specificity of the reporter. Imaging of mice tumor xenograft generated with BGCR-expressing SW620 cells following treatment with LiCl showed unique oscillations in GSK3β activity that were corroborated by phosphorylated GSK3β immunoblotting. Taken together, the BGCR is a novel molecular imaging tool that reveals unique insight into GSK3β and CK1α kinase activities and may provide a powerful tool in experimental therapeutics for rapid optimization of dose and schedule of targeted therapies and for monitoring therapeutic response.  相似文献   

7.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

8.
Serotonin modulates brain physiology and behavior and has major roles in brain diseases involving abnormal mood and cognition. Enhancing brain serotonin has been found to regulate glycogen synthase Kinase-3 (GSK3), but the signaling mechanism and functional significance of this regulation remain to be determined. In this study, we tested the signaling mechanism mediating 5-HT1A receptor-regulated GSK3 in the hippocampus. Using mutant GSK3 knock-in mice, we also tested the role of GSK3 in the behavioral effects of 5-HT1A receptors and the serotonin reuptake inhibitor fluoxetine. The results showed that activation of 5-HT1A receptors by 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) increased phosphorylation of the N-terminal serine of both GSK3α and GSK3β in several areas of the hippocampus. The effect of 8-OH-DPAT was accompanied by an increase in the active phosphorylation of Akt, and was blocked by LY294002, an inhibitor of phosphoinositide 3-kinases (PI3K). Phosphorylation of GSK3β, but not GSK3α, was necessary for 5-HT1A receptors to suppress the hippocampus-associated contextual fear learning. Furthermore, acute fluoxetine treatment up-regulated both phospho-Ser21-GSK3α and phospho-Ser9-GSK3β in the hippocampus. Blocking phosphorylation of GSK3α and GSK3β diminished the anti-immobility effect of fluoxetine treatment in the forced swim test, wherein the effect of GSK3β was more prominent. These results together suggest that PI3K/Akt is a signaling mechanism mediating the GSK3-regulating effect of 5-HT1A receptors in the hippocampus, and regulation of GSK3 is an important intermediate signaling process in the behavioral functions of 5-HT1A receptors and fluoxetine.  相似文献   

9.
The hippocampus is critical for cognition and memory formation and is vulnerable to age‐related atrophy and loss of function. These phenotypes are attenuated by caloric restriction (CR), a dietary intervention that delays aging. Here, we show significant regional effects in hippocampal energy metabolism that are responsive to age and CR, implicating metabolic pathways in neuronal protection. In situ mitochondrial cytochrome c oxidase activity was region specific and lower in aged mice, and the impact of age was region specific. Multiphoton laser scanning microscopy revealed region‐ and age‐specific differences in nicotinamide adenine dinucleotide (NAD)‐derived metabolic cofactors. Age‐related changes in metabolic parameters were temporally separated, with early and late events in the metabolic response to age. There was a significant regional impact of age to lower levels of PGC‐1α, a master mitochondrial regulator. Rather than reversing the impact of age, CR induced a distinct metabolic state with decreased cytochrome c oxidase activity and increased levels of NAD(P)H. Levels of hippocampal PGC‐1α were lower with CR, as were levels of GSK3β, a key regulator of PGC‐1α turnover and activity. Regional distribution and colocalization of PGC‐1α and GSK3β in mouse hippocampus was similar in monkeys. Furthermore, the impact of CR to lower levels of both PGC‐1α and GSK3β was also conserved. The studies presented here establish the hippocampus as a highly varied metabolic environment, reveal cell‐type and regional specificity in the metabolic response to age and delayed aging by CR, and suggest that PGC‐1α and GSK3β play a role in implementing the neuroprotective program induced by CR.  相似文献   

10.
Low‐power laser irradiation (LPLI), a non‐damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. However, the underlying mechanisms that LPLI prevents cell apoptosis remain undefined. In this study, based on real‐time single‐cell analysis, we demonstrated for the first time that LPLI inhibits staurosporine (STS)‐induced cell apoptosis by inactivating the GSK‐3β/Bax pathway. LPLI could inhibit the activation of GSK‐3β, Bax, and caspase‐3 induced by STS. In the searching for the mechanism, we found that, LPLI can activate Akt, which was consistence with our former research, even in the presence of STS. In this anti‐apoptotic process, the interaction between Akt and GSK‐3β increased gradually, indicating Akt interacts with and inactivates GSK‐3β directly. Conversely, LPLI decreased the interaction between GSK‐3β and Bax, with the suppression of Bax translocation to mitochondria, suggesting LPLI inhibits Bax translocation through inactivating GSK‐3β. These results were further confirmed by the experiments of co‐immunoprecipitation. Wortmannin, an inhibitor of phosphatidylinositol 3′‐OH kinase (PI3K), potently suppressed the activation of Akt and subsequent anti‐apoptotic processes induced by LPLI. Taken together, we conclude that LPLI protects against STS‐induced apoptosis upstream of Bax translocation via the PI3K/Akt/GSK‐3β pathway. These findings raise the possibility of LPLI as a promising therapy for neuron‐degeneration disease induced by GSK‐3β. J. Cell. Physiol. 224:218–228, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Glycogen synthase kinase 3β (GSK3β), which is abundantly present in the brain, is known to contribute to psychomotor stimulant‐induced locomotor behaviors. However, most studies have been focused in showing that GSK3β is able to attenuate psychomotor stimulants‐induced hyperactivity by increasing its phosphorylation levels in the nucleus accumbens (NAcc). So, here we examined in the opposite direction about the effects of decreased phosphorylation of GSK3β in the NAcc core on both basal and cocaine‐induced locomotor activity by a bilateral microinjection into this site of an artificially synthesized peptide, S9 (0.5 or 5.0 μg/μL), which contains sequences around N‐terminal serine 9 residue of GSK3β. We found that decreased levels of GSK3β phosphorylation in the NAcc core enhance cocaine‐induced hyper‐locomotor activity, while leaving basal locomotor activity unchanged. This is the first demonstration, to our knowledge, that the selective decrease of GSK3β phosphorylation levels in the NAcc core may contribute positively to cocaine‐induced locomotor activity, while this is not sufficient for the generation of locomotor behavior by itself without cocaine. Taken together, these findings importantly suggest that GSK3β may need other molecular targets which are co‐activated (or deactivated) by psychomotor stimulants like cocaine to contribute to generation of locomotor behaviors.  相似文献   

12.
13.
Activity of protein kinase C (PKC), and in particular the PKCγ‐isoform, has been shown to strongly affect and regulate Purkinje cell dendritic development, suggesting an important role for PKC in activity‐dependent Purkinje cell maturation. In this study we have analyzed the role of two additional Ca2+‐dependent PKC isoforms, PKCα and ‐β, in Purkinje cell survival and dendritic morphology in slice cultures using mice deficient in the respective enzymes. Pharmacological PKC activation strongly reduced basal Purkinje cell dendritic growth in wild‐type mice whereas PKC inhibition promoted branching. Purkinje cells from mice deficient in PKCβ, which is expressed in two splice forms by granule but not Purkinje cells, did not yield measurable morphological differences compared to respective wild‐type cells under either experimental condition. In contrast, Purkinje cell dendrites in cultures from PKCα‐deficient mice were clearly protected from the negative effects on dendritic growth of pharmacological PKC activation and showed an increased branching response to PKC inhibition as compared to wild‐type cells. Together with our previous work on the role of PKCγ, these data support a model predicting that normal Purkinje cell dendritic growth is mainly regulated by the PKCγ‐isoform, which is highly activated by developmental processes. The PKCα isoform in this model forms a reserve pool, which only becomes activated upon strong stimulation and then contributes to the limitation of dendritic growth. The PKCβ isoform appears to not be involved in the signaling cascades regulating Purkinje cell dendritic maturation in cerebellar slice cultures. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 95–109, 2003  相似文献   

14.
15.
Chronic rhinosinusitis without nasal polyps (CRSsNP) is one of the most common otorhinolaryngologic diseases worldwide. However, the underlying mechanism remains unclear. In this study, the expression of glycogen synthase kinase 3 (GSK‐3) was quantitatively evaluated in patients with CRSsNP (n = 20) and healthy controls (n = 20). The mRNA levels of GSK‐3α and GSK‐3β were examined by qPCR, the immunoreactivities of GSK‐3β and nuclear factor‐κB (NF‐κB) were examined by immunohistochemistry (IHC) staining, and the protein levels of GSK‐3β, phospho‐GSK‐3β (p‐GSK‐3β, s9) and NF‐κB were examined using Western blot analysis. We found that GSK‐3 was highly expressed in both CRSsNP and control groups without significant difference in both GSK‐3β mRNA and protein levels. However, when compared with healthy control group, the GSK‐3β activation index, defined as the ratio of GSK‐3β over p‐GSK‐3β, was significantly decreased, whereas the NF‐κB protein abundance was significantly increased in CRSsNP group (P < 0.05). Strikingly, the GSK‐3β activation index, was highly correlated with NF‐κB protein level, as well as CT scores in CRSsNP group (P < 0.05). It was also highly correlated with the mRNA expressions of inflammation‐related genes, including T‐bet, IFN‐γ and IL‐4 in CRSsNP group (P < 0.05). Our findings suggest that GSK‐3β activation index, reflecting the inhibitory levels of GSK‐3β through phosphorylation, may be a potential indicator for recurrent inflammation of CRSsNP, and that the insufficient inhibitory phosphorylation of GSK‐3β may play a pivotal role in the pathogenesis of CRSsNP.  相似文献   

16.
Topoisomerase II α (TopoIIα) and Topoisomerase II β (TopoIIβ) isoforms are different gene products having conserved catalytic activities. The α isoform is present in proliferating cell, while β isoform is predominantly present in non-proliferating cells namely neurons suggesting its role in non-replicating functions of DNA. The functions of TopoIIα and TopoIIβ isoforms are analyzed in peroxide-mediated DNA damage and double strand breaks (DSBs) repair in neuroblastoma and astrocytoma cells. The results show a strong correlation of TopoIIα level with the progression of DNA damage, while the TopoIIβ expression is correlated with the DNA DSBs repair activity of cells in Ku70, Werner’s helicase and pol-β dependent pathways. The functional roles of TopoIIα and TopoIIβ are assessed using siRNA mediated TopoIIα and TopoIIβ knockdown in cells. The results show that TopoIIαTopoIIβ+ cells are resistant to peroxide-mediated DNA damage, while TopoIIα+TopoIIβ cells are 2-fold more sensitive to peroxide and TopoIIβ deficiency lead to cellular apoptosis. These results are correlated with cell survival from peroxide-mediated insult. The result of this study that TopoIIα accelerates peroxide-mediated DNA damage, while TopoIIβ promotes DNA DSBs repair activity should provide new directions toward understanding of normalytic ageing processes in human brain.  相似文献   

17.
Recent reports demonstrate that PKR is constitutively active in a variety of tumors and is required for tumor maintenance and growth. Here we report acute leukemia cell lines contain elevated levels of p‐T451 PKR and PKR activity as compared to normal controls. Inhibition of PKR with a specific inhibitor, as well as overexpression of a dominant‐negative PKR, inhibited cell proliferation and induced cell death. Interestingly, PKR inhibition using the specific inhibitor resulted in a time‐dependent augmentation of AKT S473 and GSK‐3α S21 phosphorylation, which was confirmed in patient samples. Increased phosphorylation of AKT and GSK‐3α was not dependent on PI3K activity. PKR inhibition augmented levels of p‐S473 AKT and p‐S21/9 GSK‐3α/β in the presence of the PI3K inhibitor, LY294002, but was unable to augment GSK‐3α or β phosphorylation in the presence of the AKT inhibitor, A443654. Pre‐treatment with the PKR inhibitor blocked the ability of A443654 and LY294002 to promote phosphorylation of eIF2α, indicating the mechanism leading to AKT phosphorylation and activation did not require eIF2α phosphorylation. The effects of PKR inhibition on AKT and GSK‐3 phosphorylation were found to be, in part, PP2A‐dependent. These data indicate that, in acute leukemia cell lines, constitutive basal activity of PKR is required for leukemic cell homeostasis and growth and functions as a negative regulator of AKT, thereby increasing the pool of potentially active GSK‐3. J. Cell. Physiol. 221: 232–241, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

18.
19.
In in vitro studies class-I PI3Ks (phosphoinositide 3-kinases), class-II PI3Ks and mTOR (mammalian target of rapamycin) have all been described as having roles in the regulation of glucose metabolism. The relative role each plays in the normal signalling processes regulating glucose metabolism in vivo is less clear. Knockout and knockin mouse models have provided some evidence that the class-I PI3K isoforms p110α, p110β, and to a lesser extent p110γ, are necessary for processes regulating glucose metabolism and appetite. However, in these models the PI3K activity is chronically reduced. Therefore we analysed the effects of acutely inhibiting PI3K isoforms alone, or PI3K and mTOR, on glucose metabolism and food intake. In the present study impairments in glucose tolerance, insulin tolerance and increased hepatic glucose output were observed in mice treated with the pan-PI3K/mTOR inhibitors PI-103 and NVP-BEZ235. The finding that ZSTK474 has similar effects indicates that these effects are due to inhibition of PI3K rather than mTOR. The p110α-selective inhibitors PIK75 and A66 also induced these phenotypes, but inhibitors of p110β, p110δ or p110γ induced only minor effects. These drugs caused no significant effects on BMR (basal metabolic rate), O2 consumption or water intake, but BEZ235, PI-103 and PIK75 did cause a small reduction in food consumption. Surprisingly, pan-PI3K inhibitors or p110α inhibitors caused reductions in animal movement, although the cause of this is not clear. Taken together these studies provide pharmacological evidence to support a pre-eminent role for the p110α isoform of PI3K in pathways acutely regulating glucose metabolism.  相似文献   

20.
Glycogen synthase kinase-3 (GSK-3) is a widely expressed serine/threonine kinase regulates a variety of cellular processes including proliferation, differentiation and death. Mammals harbor two structurally similar isoforms GSK-3α and β that have overlapping as well as unique functions. Of the two, GSK-3β has been studied (and reviewed) in far greater detail with analysis of GSK-3α often as an afterthought. It is now evident that systemic, chronic inhibition of either GSK-3β or both GSK-3α/β is not clinically feasible and if achieved would likely lead to adverse clinical conditions. Emerging evidence suggests important and specific roles for GSK-3α in fatty acid accumulation, insulin resistance, amyloid-β-protein precursor metabolism, atherosclerosis, cardiomyopathy, fibrosis, aging, fertility, and in a variety of cancers. Selective targeting of GSK-3α may present a novel therapeutic opportunity to alleviate a number of pathological conditions. In this review, we assess the evidence for roles of GSK-3α in a variety of pathophysiological settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号