首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following the complete sequencing of the genome of the free-living nematode, Caenorhabditis elegans, in 1998, rapid advances have been made in assigning functions to many genes. Forward and reverse genetics have been used to identify novel components of synaptic transmission as well as determine the key components of antiparasitic drug targets. The nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels. The functions of these transmembrane proteins and the roles of the different members of their extensive subunit families are increasingly well characterised. The simple nervous system of C. elegans possesses one of the largest nicotinic acetylcholine receptor gene families known for any organism and a combination of genetic, microarray, physiological and reporter gene expression studies have added greatly to our understanding of the components of nematode muscle and neuronal nAChR subtypes. Chemistry-to-gene screens have identified five subunits that are components of nAChRs sensitive to the antiparasitic drug, levamisole. A novel, validated target acting downstream of the levamisole-sensitive nAChR has also been identified in such screens. Physiology and molecular biology studies on nAChRs of parasitic nematodes have also identified levamisole-sensitive and insensitive subtypes and further subdivisions are under investigation.  相似文献   

2.
3.
Cholesterol uptake and efflux are key metabolic processes associated with macrophage physiology and atherosclerosis. Peroxisome proliferator-activated receptor gamma (PPARgamma) and liver X receptor alpha (LXRalpha) have been linked to the regulation of these processes. It remains to be identified how activation of these receptors is connected and regulated by endogenous lipid molecules. We identified CYP27, a p450 enzyme, as a link between retinoid, PPARgamma, and LXR signaling. We show that the human CYP27 gene is under coupled regulation by retinoids and ligands of PPARs via a PPAR-retinoic acid receptor response element in its promoter. Induction of the enzyme's expression results in an increased level of 27-hydroxycholesterol and upregulation of LXR-mediated processes. Upregulated CYP27 activity also leads to LXR-independent elimination of CYP27 metabolites as an alternative means of cholesterol efflux. Moreover, human macrophage-rich atherosclerotic lesions have an increased level of retinoid-, PPARgamma-, and LXR-regulated gene expression and also enhanced CYP27 levels. Our findings suggest that nuclear receptor-regulated CYP27 expression is likely to be a key integrator of retinoic acid receptor-PPARgamma-LXR signaling, relying on natural ligands and contributing to lipid metabolism in macrophages.  相似文献   

4.
Chemotherapy remains a commonly used therapeutic approach for many cancers. Indeed chemotherapy is relatively effective for treatment of certain cancers and it may be the only therapy (besides radiotherapy) that is appropriate for certain cancers. However, a common problem with chemotherapy is the development of drug resistance. Many studies on the mechanisms of drug resistance concentrated on the expression of membrane transporters and how they could be aberrantly regulated in drug resistant cells. Attempts were made to isolate specific inhibitors which could be used to treat drug resistant patients. Unfortunately most of these drug transporter inhibitors have not proven effective for therapy. Recently the possibilities of more specific, targeted therapies have sparked the interest of clinical and basic researchers as approaches to kill cancer cells. However, there are also problems associated with these targeted therapies. Two key signaling pathways involved in the regulation of cell growth are the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways. Dysregulated signaling through these pathways is often the result of genetic alterations in critical components in these pathways as well as mutations in upstream growth factor receptors. Furthermore, these pathways may be activated by chemotherapeutic drugs and ionizing radiation. This review documents how their abnormal expression can contribute to drug resistance as well as resistance to targeted therapy. This review will discuss in detail PTEN regulation as this is a critical tumor suppressor gene frequently dysregulated in human cancer which contributes to therapy resistance. Controlling the expression of these pathways could improve cancer therapy and ameliorate human health.  相似文献   

5.
6.
7.
gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the central nervous system and it acts at the GABA(A) and GABA(B) receptors. A possible role for the GABA(A) receptors in alcohol action has been derived from in vitro cell models, animal studies and human research. GABA(A) subunit mRNA expression in cell models has suggested that the long form of the gamma2 subunit is essential for ethanol enhanced potentiation of GABA(A) receptors, by phosphorylation of a serine contained within the extra eight amino acids. Several animal studies have demonstrated that alterations in drug and alcohol responses may be caused by amino-acid differences at the GABA(A)alpha6 and GABA(A)gamma2 subunits. An Arg(100)/Glu(100) change at the GABA(A)alpha6 subunit conferring altered binding efficacy of the benzodiazepine inverse agonist Ro 15-4513, was found between the AT (alcohol tolerance) and ANT (alcohol non-tolerance) rats. Several loci related to alcohol withdrawal on mouse chromosome 11 which corresponds to the region containing four GABA(A) subunit (beta2, alpha6, alpha1 and gamma2) genes on human chromosome 5q33-34, were also identified. Gene knockout studies of the role of GABA(A)alpha6 and GABA(A)gamma2 subunit genes in mice have demonstrated an essential role in the modulation of other GABA(A) subunit expression and the efficacy of benzodiazepine binding. Absence of the GABA(A)gamma2 subunit gene has more severe effects with many of the mice dying shortly after birth. Disappointingly few studies have examined the effects of response to alcohol in these gene knockout mice. Human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have a role in the development of alcohol dependence, although their contributions may vary between ethnic group and phenotype. In summary, in vitro cell, animal and human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have an important role in alcohol related phenotypes (300 words).  相似文献   

8.
9.
10.
The technologies of recombinant gene expression have greatly enhanced the structural and functional analyses of genetic elements and proteins. Vaccinia virus, a large double-stranded DNA virus and the prototypic and best characterized member of the poxvirus family, has been an instrumental tool among these technologies and the recombinant vaccinia virus system has been widely employed to express genes from eukaryotic, prokaryotic, and viral origins. Vaccinia virus is also the prototype live viral vaccine and serves as the basis for well established viral vectors which have been successfully evaluated as human and animal vaccines for infectious diseases and as anticancer vaccines in a variety of animal model systems. Vaccinia virus technology has also been instrumental in a number of unique applications, from the discovery of new viral receptors to the synthesis and assembly of other viruses in culture. Here we provide a simple and detailed outline of the processes involved in the generation of a typical recombinant vaccinia virus, along with an up to date review of relevant literature.  相似文献   

11.
Despite extensive studies, the fundamental mechanisms responsible for the development and progression of cardiovascular diseases have not yet been fully elucidated. Recent experimental and clinical studies have suggested that reactive oxygen species play a major pathological role. Oxidative stress reduction induced by flavonoids has been regarded by many as the most likely mechanism in the protective effects of these compounds; however, there is an emerging view that flavonoids may also exert modulatory actions on protein kinase and lipid kinase signaling pathways. Quercetin, a major flavonoid present in the human diet, has been widely studied, and its biological properties are consistent with its protective role in the cardiovascular system. However, it remains unknown whether the cardioprotective effects of quercetin may also occur through the modulation of genes involved in cell survival. The main goal of this study was to examine the gene expression profiling of cultured rat primary cardiomyocytes treated with quercetin using DNA microarrays and to relate these data to functional effects. Results showed distinct temporal changes in gene expression induced by quercetin and a strong upregulation of phase 2 enzymes, highlighting quercetin ability to act also with an indirect antioxidant mechanism.  相似文献   

12.
The production of useful quantities of G protein-coupled receptors is a major problem not only for screening of various drug compounds but also in performing structural biology studies. To solve this problem, we investigated the possibility of using transgenic silkworms for the production of these receptors. Using the human mu-opioid receptor gene, we constructed three transgenic silkworm strains that produced mu-opioid receptors. The silkworms expressed significant amounts of the receptor in the fat body and silk gland. The product was evaluated using a saturation ligand-binding assay. The expressed receptor exhibited ligand affinity similar to that of an authentic sample, and the yield from the transgenic silkworm was comparable to that obtained using an Sf9-baculovirus expression system. As the mass rearing of transgenic silkworms has already been established, the silkworms can be adapted for production of large quantities of receptors.  相似文献   

13.
Cancer resistance mechanisms, which result from intrinsic genetic alterations of tumor cells or acquired genetic and epigenetic changes, limit the long-lasting benefits of anti-cancer treatments. Tissue transglutaminase (TG2) has emerged as a putative gene involved in tumor cell drug resistance and evasion of apoptosis. Although some reports have indicated that TG2 can suppress tumor growth and enhance the growth inhibitory effects of anti-tumor agents, several studies have presented both pro-survival and anti-apoptotic roles for TG2 in malignant cells. Increased TG2 expression has been found in several tumors, where it was considered a potential negative prognostic marker, and it is often associated with advanced stages of disease, metastatic spread and drug resistance. TG2 mediates drug resistance through the activation of survival pathways and the inhibition of apoptosis, but also by regulating extracellular matrix (ECM) formation, the epithelial-to-mesenchymal transition (EMT) or autophagy. Because TG2 knockdown or inhibition of TG2 enzymatic activity may reverse drug resistance and sensitize cancer cells to drug-induced apoptosis, many small molecules capable of blocking TG2 have recently been developed. Additional insight into the multifunctional nature of TG2 as well as translational studies concerning the correlation between TG2 expression, function or location and cancer behavior will aid in translating these findings into new therapeutic approaches for cancer patients.  相似文献   

14.
15.
Prostaglandins are ubiquitous lipid mediators that play pivotal roles in cardiovascular homeostasis, reproduction, and inflammation, as well as in many important cellular processes including gene expression and cell proliferation. The mechanism of action of these lipid messengers is thought to be primarily dependent on their interaction with specific cell surface receptors that belong to the heptahelical transmembrane spanning G protein-coupled receptor superfamily. Accumulating evidence suggests that these receptors may co-localize at the cell nucleus where they can modulate gene expression through a series of biochemical events. In this context, we have recently demonstrated that prostaglandin E2-EP3 receptors display an atypical nuclear compartmentalization in cerebral microvascular endothelial cells. Stimulation of these nuclear EP3 receptors leads to an increase of eNOS RNA in a cell-free isolated nuclear system. This review will emphasize these findings and describe how nuclear prostaglandin receptors, notably EP3 receptors, may affect gene expression, specifically of eNOS, by identifying putative transducing elements located within this organelle. The potential sources of lipid ligand activators for these intracellular sites will also be addressed. The expressional control of G-protein-coupled receptors located at the perinuclear envelope constitutes a novel and distinctive mode of gene regulation.  相似文献   

16.
Several recent microarray studies have compared gene-expression patterns n humans, chimpanzees and other non-human primates to identify evolutionary changes that contribute to the distinctive cognitive and behavioural characteristics of humans. These studies support the surprising conclusion that the evolution of the human brain involved an upregulation of gene expression relative to non-human primates, a finding that could be relevant to understanding human cerebral physiology and function. These results show how genetic and genomic methods can shed light on the basis of human neural and cognitive specializations, and have important implications for neuroscience, anthropology and medicine.  相似文献   

17.
It has been known for over 20 years that osteoporosis is highly influenced by genetic factors. Bone mineral density (BMD) has also been shown to be highly heritable. Other known risk factors for osteoporotic fractures such as reduced bone quality, femoral neck geometry and bone turnover are now also known to be heritable. Susceptibility to osteoporosis is mediated, in all likelihood, by multiple genes each having small effect. Different approaches are being used currently to identify the many genes responsible. These include linkage studies in man and experimental animals as well as candidate gene studies and alterations in gene expression. Linkage studies have identified multiple quantitative trait loci (QTL) for regulation of BMD and, with twin studies, have indicated that the effects of these loci are partly site-dependent and sex-specific. On the whole, the genes responsible for BMD regulation at these QTL have not yet been isolated. Most studies have used the candidate gene approach. The vitamin D receptor gene (VDR), the collagen type I alpha 1 gene (COLIA1) and estrogen receptor gene (ER) alpha have been most widely investigated and found to play a role in regulating BMD, but the effects are modest and together probably account for less than 5% of the heritable contribution to BMD. Genes may vary in their influence of particular intermediate phenotypes, and we now know that not all genes influencing BMD will be important in fracture. In addition, the study of other diseases such as osteoarthritis and metabolic bone syndromes may prove fruitful in highlighting genes which overlap to osteoporosis as well. As large scale genetic testing becomes more cost-effective, recent findings have illustrated the potential of novel approaches. These include combining large multi-national populations for candidate gene analysis, meta-analyses, DNA pooling studies and gene expression studies.  相似文献   

18.
19.
Neuregulin 1 and susceptibility to schizophrenia   总被引:11,自引:0,他引:11       下载免费PDF全文
The cause of schizophrenia is unknown, but it has a significant genetic component. Pharmacologic studies, studies of gene expression in man, and studies of mouse mutants suggest involvement of glutamate and dopamine neurotransmitter systems. However, so far, strong association has not been found between schizophrenia and variants of the genes encoding components of these systems. Here, we report the results of a genomewide scan of schizophrenia families in Iceland; these results support previous work, done in five populations, showing that schizophrenia maps to chromosome 8p. Extensive fine-mapping of the 8p locus and haplotype-association analysis, supplemented by a transmission/disequilibrium test, identifies neuregulin 1 (NRG1) as a candidate gene for schizophrenia. NRG1 is expressed at central nervous system synapses and has a clear role in the expression and activation of neurotransmitter receptors, including glutamate receptors. Mutant mice heterozygous for either NRG1 or its receptor, ErbB4, show a behavioral phenotype that overlaps with mouse models for schizophrenia. Furthermore, NRG1 hypomorphs have fewer functional NMDA receptors than wild-type mice. We also demonstrate that the behavioral phenotypes of the NRG1 hypomorphs are partially reversible with clozapine, an atypical antipsychotic drug used to treat schizophrenia.  相似文献   

20.
To accurately analyze the function of transgene(s)of interest in transgenic mice,and togenerate credible transgenic animal models for multifarious human diseases to precisely mimic human dis-ease states,it is critical to tightly regulate gene expression in the animals in a conditional manner.The abilityto turn gene expression on or off in the restricted cells or tissues at specific time permits unprecedentedflexibility in dissecting gene functions in health and disease.Pioneering studies in conditional transgene ex-pression have brought about the development of a wide variety of controlled gene expression systems,whichmeet this criterion.Among them,the tetracycline-controlled expression systems(e.g.Tet-off system andTet-on system)have been used extensively in vitro and in vivo.In recent years,some strategies derived fromtetracycline-inducible system alone,as well as the combined use of Tet-based systems and Cre/lox P switch-ing gene expression system,have been newly developed to allow more flexibility for exploring gene functionsin health and disease,and produce credible transgenic animal models for various human diseases.In thisreview these newly developed strategies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号