首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperate forests have recently been identified as being continuing sinks for carbon even in their mature and senescent stages. However, modeling exercises indicate that a warmer and drier climate as predicted for parts of Central Europe may substantially alter the source/sink function of these economically important ecosystems. In a transect study with 14 mature European beech (Fagus sylvatica L.) forests growing on uniform geological substrate, we analyzed the influence of a large reduction of annual precipitation (970–520 mm yr?1) on the carbon stocks in fast and slow pools, independent of the well‐known aging effect. We investigated the C storage in the organic L, F, H layers, the mineral soil to 100 cm, and in the biomass (stem, leaves, fine roots), and analyzed the dependence of these pools on precipitation. Soil organic carbon decreased by about 25% from stands with > 900 mm yr?1 to those with < 600 mm yr?1; while the carbon storage in beech stems slightly increased. Reduced precipitation affected the biomass C pool in particular in the fine root fraction but much less in the leaf biomass and stem fractions. Fine root turnover increased with a precipitation reduction, even though stand fine root biomass and SOC in the organic L, F, and H layers decreased. According to regression analyses, the C storage in the organic layers was mainly controlled by the size of the fine root C pool suggesting an important role of fine root turnover for the C transfer from tree biomass to the SOC pool. We conclude that the long‐term consequence of a substantial precipitation decrease would be a reduction of the mineral soil and organic layer SOC pools, mainly due to higher decomposition rates. This could turn temperate beech forests into significant carbon sources instead of sinks under global warming.  相似文献   

2.
Amazonian forests continuously accumulate carbon (C) in biomass and in soil, representing a carbon sink of 0.42–0.65 GtC yr?1. In recent decades, more than 15% of Amazonian forests have been converted into pastures, resulting in net C emissions (~200 tC ha?1) due to biomass burning and litter mineralization in the first years after deforestation. However, little is known about the capacity of tropical pastures to restore a C sink. Our study shows in French Amazonia that the C storage observed in native forest can be partly restored in old (≥24 year) tropical pastures managed with a low stocking rate (±1 LSU ha?1) and without the use of fire since their establishment. A unique combination of a large chronosequence study and eddy covariance measurements showed that pastures stored between ?1.27 ± 0.37 and ?5.31 ± 2.08 tC ha?1 yr?1 while the nearby native forest stored ?3.31 ± 0.44 tC ha?1 yr?1. This carbon is mainly sequestered in the humus of deep soil layers (20–100 cm), whereas no C storage was observed in the 0‐ to 20‐cm layer. C storage in C4 tropical pasture is associated with the installation and development of C3 species, which increase either the input of N to the ecosystem or the C:N ratio of soil organic matter. Efforts to curb deforestation remain an obvious priority to preserve forest C stocks and biodiversity. However, our results show that if sustainable management is applied in tropical pastures coming from deforestation (avoiding fires and overgrazing, using a grazing rotation plan and a mixture of C3 and C4 species), they can ensure a continuous C storage, thereby adding to the current C sink of Amazonian forests.  相似文献   

3.
The important role of soil carbon (C) in the global C cycle has stimulated interest in better understanding the mechanisms regulating soil C storage and its stabilization. Exotic earthworm invasion of northern forest soils in North America can affect soil C pools, and we examined their effects on these mechanisms by adding 13C labeled leaf litter to adjacent northern hardwood forests with and without earthworms. Two types of labeled litter were produced, one with the 13C more concentrated in structural (S) components and the other in non-structural (NS) components, to evaluate the role of biochemical differences in soil C stabilization. Earthworm invasions have reduced soil C storage in the upper 20 cm of the soil profile by 37 %, mostly by eliminating surface organic horizons. Despite rapid mixing of litter into mineral soil and its incorporation into aggregates, mineral soil C has not increased in the presence of earthworms. Incorporation of litter C into soil and microbial biomass was not affected by biochemical differences between S versus NS labeled litter although NS litter C was assimilated more readily into earthworm biomass and S litter C into fungal hyphae. Apparently, the net effect of earthworm mixing of litter and forest floor C into mineral soil, plus stabilization of that C in aggregates, is counterbalanced by earthworm bioturbation and possible priming effects. Our results support recent arguments that biochemical recalcitrance is not a major contributor to the stabilization of soil C.  相似文献   

4.
Tropical forests are a significant global source of the greenhouse gas nitrous oxide (N2O). Predicted environmental changes for this biome highlight the need to understand how simultaneous changes in precipitation and labile carbon (C) availability may affect soil N2O production. We conducted a small‐scale throughfall and leaf litter manipulation in a lowland tropical forest in southwestern Costa Rica to test how potential changes in both water and litter derived labile C inputs to soils may alter N2O emissions. Experimentally reducing throughfall in this wet tropical forest significantly increased soil emissions of N2O, and our data suggest that at least part of this response was driven by an increase in the concentration of dissolved organic carbon [DOC] inputs delivered from litter to soil under the drier conditions. Furthermore, [DOC] was significantly correlated with N2O emissions across both throughfall and litterfall manipulation plots, despite the fact that native NO3? pools in this site were generally small. Our results highlight the importance of understanding not only the potential direct effects of changing precipitation on soil biogeochemistry, but also the indirect effects resulting from interactions between the hydrologic, C and N cycles. Finally, over all sampling events we observed lower mean N2O emissions (<1 ng N2O‐N cm?2 h?1) than reported for many other lowland tropical forests, perhaps reflecting a more general pattern of increasing relative N constraints to biological activity as one moves from drier to wetter portions of the lowland tropical forest biome.  相似文献   

5.
The responses of litter decomposition to nitrogen (N) and phosphorus (P) additions were examined in an old-growth tropical forest in southern China to test the following hypotheses: (1) N addition would decrease litter decomposition; (2) P addition would increase litter decomposition, and (3) P addition would mitigate the inhibitive effect of N addition. Two kinds of leaf litter, Schima superba Chardn. & Champ. (S.S.) and Castanopsis chinensis Hance (C.C.), were studied using the litterbag technique. Four treatments were conducted at the following levels: control, N-addition (150 kg N ha−1 yr−1), P-addition (150 kg P ha−1 yr−1) and NP-addition (150 kg N ha−1 yr−1 plus 150 kg P ha−1 yr−1). While N addition significantly decreased the decomposition of both litters, P addition significantly inhibited decomposition of C.C., but did not affect the decomposition of S.S. The negative effect of N addition on litter decomposition might be related to the high N-saturation in this old-growth tropical forest; however, the negative effect of P addition might be due to the suppression of “microbial P mining”. Significant interaction between N and P addition was found on litter decomposition, which was reflected by the less negative effect in NP-addition plots than those in N-addition plots. Our results suggest that P addition may also have negative effect on litter decomposition and that P addition would mitigate the negative effect of N deposition on litter decomposition in tropical forests.  相似文献   

6.
Here, we report site‐to‐site variability and 12–14 year trends of dissolved organic carbon (DOC) from organic layers and mineral soils of 22 forests in Bavaria, Germany. DOC concentrations in the organic layer were negatively correlated with mean annual precipitation and elevation whereas air temperature had a positive effect on DOC concentrations. DOC fluxes in subsoils increased by 3 kg ha?1 yr?1 per 100 mm precipitation or per 100 m elevation. The highest DOC concentrations were found under pine stands with mor humus. Average DOC concentrations in organic layer leachates followed the order: pine>oak>spruce>beech. However, the order was different for mean DOC fluxes (spruce>pine>oak>beech) because of varying precipitation regimes among the forest types. In 12 of 22 sites, DOC concentrations of organic layer leachates significantly increased by 0.5 to 3.1 mg C L?1 yr?1 during the sampling period. The increase in DOC concentration coincided with decreasing sulfate concentration, indicating that sulfate concentration is an important driver of DOC solubility in the organic layer of these forest sites. In contrast to the organic layer, DOC concentrations below 60 cm mineral soil depth decreased by <0.1–0.4 mg C L?1 yr?1 at eight sites. The negative DOC trends were attributed to (i) increasing adsorption of DOC by mineral surfaces resulting from desorption of sulfate and (ii) increasing decay of DOC resulting from decreasing stabilization of DOC by organo‐Al complexes. Trends of DOC fluxes from organic layers were consistent with those of DOC concentrations although trends were only significant at seven sites. DOC fluxes in the subsoil were with few exceptions small and trends were generally not significant. Our results suggest that enhanced mobilization of DOC in forest floors contributed to the increase of DOC in surface waters while mineral horizons did not contribute to increasing DOC export of forest soils.  相似文献   

7.
Scant information is available on how soil phosphorus (P) availability responds to atmospheric nitrogen (N) deposition, especially in the tropical zones. This study examined the effect of N addition on soil P availability, and compared this effect between forest sites of contrasting land‐use history. Effects of N addition on soil properties, litterfall production, P release from decomposing litter, and soil P availability were studied in a disturbed (reforested pine forest with previous understory vegetation and litter harvesting) and a rehabilitated (reforested mixed pine/broadleaf forest with no understory vegetation and litter harvesting) tropical forest in southern China. Experimental N‐treatments (above ambient) were the following: Control (no N addition), N50 (50 kg N ha?1 yr?1), and N100 (100 kg N ha?1 yr?1). Results indicated that N addition significantly decreased soil P availability in the disturbed forest. In the rehabilitated forest, however, soil P availability was significantly increased by N addition. Decreases in soil P availability may be correlated with decreases in rates of P release from decomposing litter in the N‐treated plots, whereas the increase in soil P availability was correlated with an increase in litterfall production. Our results suggest that response of soil P availability to N deposition in the reforested tropical forests in southern China may vary greatly with temporal changes in tree species composition and soil nutrient status, caused by different land‐use practices.  相似文献   

8.
Wetlands are the largest natural source of the greenhouse gas methane to the atmosphere. Despite the fact that a large percentage of wetlands occur in tropical latitudes, methane emissions from natural tropical wetlands have not been extensively studied. The objective this research was to compare methane emissions from three natural tropical wetlands located in different climatic and ecological areas of Costa Rica. Each wetland was within a distinct ecosystem: (1) a humid flow‐through wetland slough with high mean annual temperatures (25.9 °C) and precipitation (3700 mm yr?1); (2) a stagnant rainforest wetland with high mean annual temperatures (24.9 °C) and precipitation (4400 mm yr?1); or (3) a seasonally wet riverine wetland with very high mean annual temperatures (28.2 °C) and lower mean annual precipitation (1800 mm yr?1). Methane emission rates were measured from sequential gas samples using nonsteady state plastic chambers during six sampling periods over a 29‐month period from 2006 to 2009. Methane emissions were higher than most rates previously reported for tropical wetlands with means (medians) of 91 (52), 601 (79), and 719 (257) mg CH4‐C m?2 day?1 for the three sites, with highest rates seen at the seasonally flooded wetland site. Methane emissions were statistically higher at the seasonally wet site than at the humid sites (P<0.001). Highest methane emissions occurred when surface water levels were between 30 and 50 cm. The interaction of soil temperature, water depth, and seasonal flooding most likely affected methanogenesis in these tropical sites. We estimate that Costa Rican wetlands produce about 0.80 Tg yr?1 of methane, or approximately 0.6% of global tropical wetland emissions. Elevated methane emissions at the seasonally wet/warmer wetland site suggest that some current humid tropical freshwater wetlands of Central America could emit more methane if temperatures increase and precipitation becomes more seasonal with climate change.  相似文献   

9.
How tree root systems will respond to increased drought stress, as predicted for parts of Central Europe, is not well understood. According to the optimal partitioning theory, plants should enhance root growth relative to aboveground growth in order to reduce water limitations. We tested this prediction in a transect study with 14 mature forest stands of European beech (Fagus sylvatica L.) by analysing the response of the fine root system to a large decrease in annual precipitation (970–520 mm yr−1). In 3 years with contrasting precipitation regimes, we investigated leaf area and leaf biomass, fine root biomass and necromass (organic layer and mineral soil to 40 cm) and fine root productivity (ingrowth core approach), and analysed the dependence on precipitation, temperature, soil nutrient availability and stand structure. In contrast to the optimal partitioning theory, fine root biomass decreased by about a third from stands with >950 mm yr−1 to those with <550 mm yr−1, while leaf biomass remained constant, resulting in a significant decrease, and not an increase, in the fine root/leaf biomass ratio towards drier sites. Average fine root diameter decreased towards the drier stands, thereby partly compensating for the loss in root biomass and surface area. Both δ13C‐signature of fine root mass and the ingrowth core data indicated a higher fine root turnover in the drier stands. Principal components analyses (PCA) and regression analyses revealed a positive influence of precipitation on the profile total of fine root biomass in the 14 stands and a negative one of temperature and plant‐available soil phosphorus. We hypothesize that summer droughts lead to increased fine root mortality, thereby reducing root biomass, but they also stimulate compensatory fine root production in the drier stands. We conclude that the optimal partitioning theory fails to explain the observed decrease in the fine root/leaf biomass ratio, but is supported by the data if carbon allocation to roots is considered, which would account for enhanced root turnover in drier environments.  相似文献   

10.
Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July 1997 following a 7‐year continuous fertilization. We found that although there was no significant difference in total SOC in the top 0–10 cm of the soils between the fertilization plots (5.42±0.18 kg m?2) and the control plots (5.27±0.22 kg m?2), the proportion of the heavy‐fraction organic C in the total SOC was significantly higher in the fertilized plots (59%) than in the control plots (46%) (P<0.05). The annual decomposition rate of fertilized leaf litter was 13% higher than that of the control leaf litter. We also found that fertilization significantly increased microbial biomass (fungi+bacteria) with 952±48 mg kg?1soil in the fertilized plots and 755±37 mg kg?1soil in the control plots. Our results suggest that fertilization in tropical forests may enhance long‐term C sequestration in the soils of tropical wet forests.  相似文献   

11.
Precipitation is projected to change intensity and seasonal regime under current global projections. However, little is known about how seasonal precipitation changes will affect soil respiration, especially in seasonally dry tropical forests. In a seasonally dry tropical forest in South China, we conducted a precipitation manipulation experiment to simulate a delayed wet season (DW) and a wetter wet season (WW) over a three‐year period. In DW, we reduced 60% throughfall in April and May to delay the onset of the wet season and irrigated the same amount water into the plots in October and November to extend the end of the wet season. In WW, we irrigated 25% annual precipitation into plots in July and August. A control treatment (CT) receiving ambient precipitation was also established. Compared with CT, DW significantly increased soil moisture by 54% during October to November, and by 30% during December to April. The treatment of WW did not significantly affect monthly measured soil moisture. In 2015, DW significantly increased leaf area index and soil microbial biomass but decreased fine root biomass. In contrast, WW significantly decreased fine root biomass and forest floor litter stocks. Soil respiration was not affected by DW, which could be attributed to the increased microbial biomass offsetting the decrease in fine root biomass. In contrast, WW significantly increased soil respiration from 3.40 to 3.90 μmol m?2 s?1 in the third year, mainly due to the increased litter decomposition and soil pH (from 4.48 to 4.68). The present study suggests that both a delayed wet season and a wetter wet season will have significant impacts on soil respiration‐associated ecosystem components. However, the ecosystem components can respond in different directions to the same change in precipitation, which ultimately affected soil respiration.  相似文献   

12.
杨浩  史加勉  郑勇 《生态学报》2024,44(7):2734-2744
森林生态系统在全球碳(C)储量中占据极为重要的地位。菌根真菌广泛存在于森林生态系统中,在森林生态系统C循环过程中发挥重要的作用。阐述了不同菌根类型真菌在森林生态系统C循环过程中的功能,对比了温带/北方森林与热带/亚热带森林中菌根真菌介导的C循环研究方面新近取得的研究结果。发现温带和北方森林的外生菌根(EcM)植物对地上生物量C的贡献相对较小,然而是地下C储量的主要贡献者;以丛枝菌根(AM)共生为主的热带/亚热带森林地表生物量占比较高,表明AM植被对热带/亚热带森林地上生物量C的贡献相对较大。我们还就全球变化背景下,菌根真菌及其介导的森林生态系统C汇功能,以及不同菌根类型树种影响C循环的机制等进行了总结。菌根真菌通过影响凋落物分解、土壤有机质形成及地下根系生物量,进而影响整个森林生态系统的C循环功能。菌根介导的森林C循环过程很大程度上取决于(优势)树木的菌根类型和森林土壤中菌根真菌的群落结构。最后指出了当前研究存在的主要问题以及未来研究展望。本文旨在明确菌根真菌在森林生态系统C循环转化过程中的重要生态功能,有助于准确地评估森林生态系统C汇现状,为应对全球变化等提供重要的依据。  相似文献   

13.
Recent reviews indicate that N deposition increases soil organic matter (SOM) storage in forests but the undelying processes are poorly understood. Our aim was to quantify the impacts of increased N inputs on soil C fluxes such as C mineralization and leaching of dissolved organic carbon (DOC) from different litter materials and native SOM. We added 5.5 g N m?2 yr?1 as NH4NO3 over 1 year to two beech forest stands on calcareous soils in the Swiss Jura. We replaced the native litter layer with 13C‐depleted twigs and leaves (δ13C: ?38.4 and ?40.8‰) in late fall and measured N effects on litter‐ and SOM‐derived C fluxes. Nitrogen addition did not significantly affect annual C losses through mineralization, but altered the temporal dynamics in litter mineralization: increased N inputs stimulated initial mineralization during winter (leaves: +25%; twigs: +22%), but suppressed rates in the subsequent summer. The switch from a positive to a negative response occurred earlier and more strongly for leaves than for twigs (?21% vs. 0%). Nitrogen addition did not influence microbial respiration from the nonlabeled calcareous mineral soil below the litter which contrasts with recent meta‐analysis primarily based on acidic soils. Leaching of DOC from the litter layer was not affected by NH4NO3 additions, but DOC fluxes from the mineral soils at 5 and 10 cm depth were significantly reduced by 17%. The 13C tracking indicated that litter‐derived C contributed less than 15% of the DOC flux from the mineral soil, with N additions not affecting this fraction. Hence, the suppressed DOC fluxes from the mineral soil at higher N inputs can be attributed to reduced mobilization of nonlitter derived ‘older’ DOC. We relate this decline to an altered solute chemistry by NH4NO3 additions, an increased ionic strength and acidification resulting from nitrification, rather than to a change in microbial decomposition.  相似文献   

14.
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C‐rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (?22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.  相似文献   

15.
Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N‐limited temperate forests. In N‐rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old‐growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low‐N), 100 (Medium‐N), and 150 (High‐N) kg N ha?1 year?1. Soil organic carbon (SOC) content increased under High‐N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High‐N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes, and biodiversity of tropical ecosystems.  相似文献   

16.
Aim Carbon (C) and nitrogen (N) stoichiometry is a critical indicator of biogeochemical coupling in terrestrial ecosystems. However, our current understanding of C : N stoichiometry is mainly derived from observations across space, and little is known about its dynamics through time. Location Global secondary forests. Methods We examined temporal variations in C : N ratios and scaling relationships between N and C for various ecosystem components (i.e. plant tissue, litter, forest floor and mineral soil) using data extracted from 39 chronosequences in forest ecosystems around the world. Results The C : N ratio in plant tissue, litter, forest floor and mineral soil exhibited large variation across various sequences, with an average of 145.8 ± 9.4 (mean ± SE), 49.9 ± 3.0, 38.2 ± 3.1 and 18.5 ± 0.9, respectively. In most sequences, the plant tissue C : N ratio increased significantly with stand age, while the C : N ratio in litter, forest floor and mineral soil remained relatively constant over the age sequence. N and C scaled isometrically (i.e. the slope of the relationship between log‐transformed N and C is not significantly different from 1.0) in litter, forest floor and mineral soil both within and across sequences, but not in plant tissue either within or across sequences. The C : N ratio was larger in coniferous forests than in broadleaf forests and in temperate forests than in tropical forests. In contrast, the N–C scaling slope did not reveal significant differences either between coniferous and broadleaf forests or between temperate and tropical forests. Main conclusions These results suggest that C and N become decoupled in plants but remain coupled in other ecosystem components during stand development.  相似文献   

17.
Secondary forests are becoming increasingly widespread in the tropics, but our understanding of how secondary succession affects carbon (C) cycling and C sequestration in these ecosystems is limited. We used a well-replicated 80-year pasture to forest successional chronosequence and primary forest in Puerto Rico to explore the relationships among litterfall, litter quality, decomposition, and soil C pools. Litterfall rates recovered rapidly during early secondary succession and averaged 10.5 (± 0.1 SE) Mg/ha/y among all sites over a 2-year period. Although forest plant community composition and plant life form dominance changed during succession, litter chemistry as evaluated by sequential C fractions and by 13C-nuclear magnetic resonance spectroscopy did not change significantly with forest age, nor did leaf decomposition rates. Root decomposition was slower than leaves and was fastest in the 60-year-old sites and slowest in the 10- and 30-year-old sites. Common litter and common site experiments suggested that site conditions were more important controls than litter quality in this chronosequence. Bulk soil C content was positively correlated with hydrophobic leaf compounds, suggesting that there is greater soil C accumulation if leaf litter contains more tannins and waxy compounds relative to more labile compounds. Our results suggest that most key C fluxes associated with litter production and decomposition re-establish rapidly—within a decade or two—during tropical secondary succession. Therefore, recovery of leaf litter C cycling processes after pasture use are faster than aboveground woody biomass and species accumulation, indicating that these young secondary forests have the potential to recover litter cycling functions and provide some of the same ecosystem services of primary forests.  相似文献   

18.
Amazonian forest fragments and second-growth forests often differ substantially from undisturbed forests in their microclimate, plant-species composition, and soil fauna. To determine if these changes could affect litter decomposition, we quantified the mass loss of two contrasting leaf-litter mixtures, in the presence or absence of soil macroinvertebrates, and in three forest habitats. Leaf-litter decomposition rates in second-growth forests (>10 years old) and in fragment edges (<100 m from the edge) did not differ from that in the forest interior (>250 m from the edges of primary forests). In all three habitats, experimental exclusion of soil invertebrates resulted in slower decomposition rates. Faunal-exclosure effects were stronger for litter of the primary forest, composed mostly of leaves of old-growth trees, than for litter of second-growth forests, which was dominated by leaves of successional species. The latter had a significantly lower initial concentration of N, higher C:N and lignin:N ratios, and decomposed at a slower rate than did litter from forest interiors. Our results indicate that land-cover changes in Amazonia affect decomposition mainly through changes in plant species composition, which in turn affect litter quality. Similar effects may occur on fragment edges, particularly on very disturbed edges, where successional trees become dominant. The drier microclimatic conditions in fragment edges and second-growth forests (>10 years old) did not appear to inhibit decomposition. Finally, although soil invertebrates play a key role in leaf-litter decomposition, we found no evidence that differences in the abundance, species richness, or species composition of invertebrates between disturbed and undisturbed forests significantly altered decomposition rates.  相似文献   

19.
Moisture availability has the potential to affect tropical forest productivity at scales ranging from leaf to ecosystem. We compared data for leaf photosynthetic, chemical and structural traits of canopy trees, litterfall production and seasonal availability of soil water at four sites across a precipitation gradient (1,800–3,500 mm year–1) in lowland Panamanian forest to determine how productivity at leaf and ecosystem scales may be related. We found stronger seasonality in soil water potential at drier sites. Values were close to zero at all sites during the wet season and varied between a minimum of –2.5 MPa and –0.3 MPa at the driest and wettest sites, respectively, during the dry season. Leaf photosynthesis and nitrogen concentration decreased with increasing precipitation, whereas leaf thickness increased with increasing precipitation. Leaf toughness and fiber/N ratios increased with increasing precipitation indicating reduced nutritional content and palatability with precipitation. Seasonality of litter production and quality decreased with increasing precipitation, but the amount of litterfall produced was not substantially different among sites. It appears that in Neotropical forest, moisture availability is associated with leaf photosynthetic and defensive traits that influence litterfall timing and quality. Therefore, variation in leaf physiological traits has the potential to influence decomposition and nutrient cycling through effects on litter quality.  相似文献   

20.
Litter decomposition represents one of the largest annual fluxes of carbon (C) from terrestrial ecosystems, particularly for tropical forests, which are generally characterized by high net primary productivity and litter turnover. We used data from the Long-Term Intersite Decomposition Experiment (LIDET) to (1) determine the relative importance of climate and litter quality as predictors of decomposition rates, (2) compare patterns in root and leaf litter decomposition, (3) identify controls on net nitrogen (N) release during decay, and (4) compare LIDET rates with native species studies across five bioclimatically diverse neotropical forests. Leaf and root litter decomposed fastest in the lower montane rain and moist forests and slowest in the seasonally dry forest. The single best predictor of leaf litter decomposition was the climate decomposition index (CDI), explaining 51% of the variability across all sites. The strongest models for predicting leaf decomposition combined climate and litter chemistry, and included CDI and lignin ( R 2=0.69), or CDI, N and nonpolar extractives ( R 2=0.69). While we found no significant differences in decomposition rates between leaf and root litter, drivers of decomposition differed for the two tissue types. Initial stages of decomposition, determined as the time to 50% mass remaining, were driven primarily by precipitation for leaf litter ( R 2=0.93) and by temperature for root litter ( R 2=0.86). The rate of N release from leaf litter was positively correlated with initial N concentrations; net N immobilization increased with decreasing initial N concentrations. This study demonstrates that decomposition is sensitive to climate within and across tropical forests. Our results suggest that climate change and increasing N deposition in tropical forests are likely to result in significant changes to decomposition rates in this biome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号