首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DBA/2J inbred strain of mice has been used extensively in hearing research as it suffers from early‐onset, progressive hearing loss. Initially, it mostly affects high frequencies, but already at 2–3 months hearing loss becomes broad. In search for hearing loss genes other than Cadherin 23 (otocadherin) and fascin‐2, which make a large contribution to the high‐frequency deficits, we used a large set of the genetic reference population of BXD recombinant inbred strains. For frequencies 4, 8, 16 and 32 kHz, auditory brainstem response hearing thresholds were longitudinally determined from 2–3 up to 12 weeks of age. Apart from a significant, broad quantitative trait locus (QTL) for high‐frequency hearing loss on chromosome 11 containing the fascin‐2 gene, we found a novel, small QTL for low‐frequency hearing loss on chromosome 18, from hereon called ahl9. Real‐time quantitative polymerase chain reaction of organs of Corti, isolated from a subset of strains, showed that a limited number of genes at the QTL were expressed in the organ of Corti. Of those genes, several showed significant expression differences based on the parental line contributing to the allele. Our results may aid in the future identification of genes involved in low‐frequency, early‐onset hearing loss.  相似文献   

2.
Anatomical and functional studies support segregation of the hippocampus into ventral and dorsal components along its septotemporal axis. However, it is unknown whether the development of these two components of the hippocampus is influenced by common or separate genetic factors. In this study, we used recombinant inbred strains of mice to determine whether the same or different quantitative trait loci (QTL) influence ventral and dorsal hippocampal volume. Using two sets of strains of recombinant inbred mice (BXD and AXB/BXA), we identified separate QTLs for ventral and dorsal hippocampal volume. In BXD mice, suggestive QTLs for ventral hippocampus were identified on chromosomes 2, 8 and 13, and a significant QTL for dorsal hippocampal volume was identified on chromosome 15. There was also a suggestive QTL for dorsal hippocampal volume on chromosome 13. In AXB/BXA mice, there were no significant or suggestive QTLs for ventral hippocampal volume, but a significant QTL for dorsal hippocampus was identified on chromosome 5. These findings suggest that the development of the ventral and dorsal components of the hippocampus is influenced by separate genetic loci.  相似文献   

3.
We carried out a quantitative trait loci (QTL) mapping experiment in two phenotypically similar inbred mouse strains, C57BL/6J and C58/J, using the open‐field assay, a well‐established model of anxiety‐related behavior in rodents. This intercross was initially carried out as a control cross for an ethylnitrosurea mutagenesis mapping study. Surprisingly, although open‐field behavior is similar in the two strains, we identified significant QTL in their F2 progeny. Marker regression identified a locus on Chr 8 having associations with multiple open‐field measures and a significant interaction between loci on Chr 13 and 17. Together, the Chr 8 locus and the interaction effect form the core set of QTL controlling these behaviors with additional loci on Chr 1 and 6 present in a subset of the behaviors.  相似文献   

4.
Low-temperature (LT) tolerance is an important economic trait in winter wheat (Triticum aestivum L.) that determines the plants’ ability to cope with below freezing temperatures. Essential elements of the LT tolerance mechanism are associated with the winter growth habit controlled by the vernalization loci (Vrn-1) on the group 5 chromosomes. To identify genomic regions, which in addition to vrn-1 determine the level of LT tolerance in hexaploid wheat, two doubled haploid (DH) mapping populations were produced using parents with winter growth habit (vrn-A1, vrn-B1, and vrn-D1) but showing different LT tolerance levels. A total of 107 DH lines were analyzed by genetic mapping to produce a consensus map of 2,873 cM. The LT tolerance levels for the Norstar (LT50=−20.7°C) × Winter Manitou (LT50=−14.3°C) mapping population ranged from −12.0 to −22.0°C. Single marker analysis and interval mapping of phenotyped lines revealed a major quantitative trait locus (QTL) on chromosome 5A and a weaker QTL on chromosome 1D. The 5A QTL located 46 cM proximal to the vrn-A1 locus explained 40% of the LT tolerance variance. Two C-repeat Binding Factor (CBF) genes expressed during cold acclimation in Norstar were located at the peak of the 5A QTL.  相似文献   

5.
Quantitative trait locus (QTL) mapping is often done in a single segregating population, such as a backcross or an intercross. Both QTL location and effect size are then estimated from the same dataset. This approach results in an over-estimate of effect size for two reasons: (1) LOD scores, which are maximized over numerous point-wise tests, are correlated with estimated effect size and (2) small effect QTLs are often undetected in underpowered experiments, yielding inflated effect sizes for detected QTLs (the Beavis effect). When it is impractical to maintain or generate large population sizes, an alternative is to use two populations, one for initial detection and localization and a second for a locus-matched estimate of effect size, not conditioned on significance. Recombinant inbred (RI) panels are eminently suitable for this approach, as each strain genotype can be sampled repeatedly. We present mapping results from the LXS RI panel for two behavioral phenotypes relating to ethanol response: low-dose ethanol activation and loss of righting following high-dose injection. Both the phenotypes were measured in two or three independent cohorts, which were then used to re-estimate effect size. Many small-effect QTLs replicated using this approach, but in all cases, effect size, in the replicate cohorts, was reduced from the initial estimate, often substantially. Such a reduction will have important consequences for power analyses in which sample sizes are determined for subsequent confirmation studies.  相似文献   

6.
Fatty liver is strongly associated with the metabolic syndrome characterized by obesity, insulin resistance, and type 2 diabetes, but the genetic basis and functional mechanisms linking fatty liver with the metabolic syndrome are largely unknown. The SMXA-5 mouse is one of the SMXA recombinant inbred substrains established from SM/J and A/J strains and is a model for polygenic type 2 diabetes, characterized by moderately impaired glucose tolerance, hyperinsulinemia, and mild obesity. SMXA-5 mice also developed fatty liver, and a high-fat diet markedly worsened this trait, although SM/J and A/J mice are resistant to fatty liver development under a high-fat diet. To dissect loci for fatty liver in the A/J regions of the SMXA-5 genome, we attempted quantitative trait loci (QTLs) analysis in (SM/JxSMXA-5)F2 intercross mice fed a high-fat diet. We mapped a major QTL for relative liver weight and liver lipid content near D12Mit270 on chromosome 12 and designated this QTL Fl1sa. The A/J allele at this locus contributes to the increase in these traits. We confirmed the effect of Fl1sa on lipid accumulation in liver using the A/J-Chr12(SM) consomic strain, which showed significantly less accumulation than A/J mice. This suggests that the SM/J and A/J strains, neither of which develops fatty liver, possess loci causing fatty liver and that the coexistence of these loci causes fatty liver in SMXA-5 mice.  相似文献   

7.
The strength and extent of gene flow from crops into wild populations depends, in part, on the fitness of the crop alleles, as well as that of alleles at linked loci. Interest in crop–wild gene flow has increased with the advent of transgenic plants, but nontransgenic crop–wild hybrids can provide case studies to understand the factors influencing introgression, provided that the genetic architecture and the fitness effects of loci are known. This study used recombinant inbred lines (RILs) generated from a cross between crop and wild sunflowers to assess selection on domestication traits and quantitative trait loci (QTL) in two contrasting environments, in Indiana and Nebraska, USA. Only a small fraction of plants (9%) produced seed in Nebraska, due to adverse weather conditions, while the majority of plants (79%) in Indiana reproduced. Phenotypic selection analysis found that a mixture of crop and wild traits were favoured in Indiana (i.e. had significant selection gradients), including larger leaves, increased floral longevity, larger disk diameter, reduced ray flower size and smaller achene (seed) mass. Selection favouring early flowering was detected in Nebraska. QTLs for fitness were found at the end of linkage groups six (LG6) and nine (LG9) in both field sites, each explaining 11–12% of the total variation. Crop alleles were favoured on LG9, but wild alleles were favoured on LG6. QTLs for numerous domestication traits overlapped with the fitness QTLs, including flowering date, achene mass, head number, and disk diameter. It remains to be seen if these QTL clusters are the product of multiple linked genes, or individual genes with pleiotropic effects. These results indicate that crop trait values and alleles may sometimes be favoured in a noncrop environment and across broad geographical regions.  相似文献   

8.
Qi B  Korir P  Zhao T  Yu D  Chen S  Gai J 《植物学报(英文版)》2008,50(9):1089-1095
To investigate the genetic mechanism of AI-tolerance in soybean,a recombinant inbred line population (RIL) with 184 F2:7:11 lines derived from the cross of Kefeng No.1 x Nannong 1138-2 (AI-tolerant x AI-sensitive) were tested in pot experimentwith sand culture medium in net room in Nanjing.Four traits,i.e.plant height,number of leaves,shoot dry weight and root dry weight at seedling stage,were evaluated and used to calculate the average membership index (FAi) as the indicator of AI-tolerance.The composite interval mapping (ClM) under WinQTL Cartographer v.2.5 detected five QTLs (i.e.qFAiol,qFAi-2,qFAi-3,qFAi-4 and qFAi-5),explaining 5.20%-9.07% of the total phenotypic variation individually.While with the multiple interval mapping (MIM) of the same software,five QTLs (qFAi-1,qFAi-5,qFAi-6,qFAi-7,and qFAi-8) explaining 5.7%-24.60% of the total phenotypic variation individually were mapped.Here qFAi-1 and qFAi-5 were detected by both CIM and MIM with the locations in a same flanking marker region,GMKF046-GMKF080 on B1 and satt278-sat_95 on L,respectively.While qFAi-2 under CIM and qFAi-6 under MIM both on D1b2 were located in neighboring regions with their confidence intervals overlapped and might be the same locus.Segregation analysis under major gene plus polygene inheritance model showed that Al-tolerance was controlled by two major genes (h2mg =33.05%) plus polygenes (h2pg=52.73%).Both QTL mapping and segregation analysis confirmed two QTLs responsible for Al-tolerance with relatively low heritability,and there might be a third QTL,confounded with the polygenes in segregation analysis.  相似文献   

9.
A startle reflex in response to an intense acoustic stimulus is inhibited when a barely detectable pulse precedes the startle stimulus by 30-500 ms. It has been theorized that this phenomenon, named prepulse inhibition (PPI) of a startle response, is an automatic early-stage gating process contributing to the ability to focus attention. Deficits in PPI may therefore contribute to deficits in attentional processing. Both deficits are observed in schizophrenia spectrum disorders. Here, we investigated whether there is overlap in genetic control of PPI and attentional processing phenotypes in the panel of BXD recombinant inbred strains of mice. Using an individually titrated prepulse intensity to handle differences in perceived prepulse intensities among strains, we identified a significant quantitative trait locus (QTL) for PPI at the mid-distal end of chromosome 17. A measure of attentional processing in the five-choice serial reaction time task, response variability, mapped to a different locus on proximal-mid chromosome 16. In addition, the estimated genetic and environmental correlations between PPI and several attentional phenotypes were low and not significant. Taken together, the observation of separate genetic loci for PPI and attention and the absence of genetic and environmental correlations indicate that differences in sensorimotor gating do not contribute to differences in attentional performance. Therefore, it is worth pursuing the causative genes residing in both attention and PPI QTL, as these may contribute to separate molecular pathways implicated in neuropsychiatric diseases, such as schizophrenia.  相似文献   

10.
Summary Methods are presented for determining linkage between a marker locus and a nearby locus affecting a quantitative trait (quantitative trait locus=QTL), based on changes in the marker allele frequencies in selection lines derived from the F-2 of a cross between inbred lines, or in the high and low phenotypic classes of an F-2 or BC population. The power of such trait-based (TB) analyses was evaluated and compared with that of methods for determining linkage based on the mean quantitative trait value of marker genotypes in F-2 or BC populations [marker-based (MB) analyses]. TB analyses can be utilized for marker-QTL linkage determination in situations where the MB analysis is not applicable, including analysis of polygenic resistance traits where only a part of the population survives exposure to the Stressor and analysis of marker-allele frequency changes in selection lines. TB analyses may be a useful alternative to MB analyses when interest is centered on a single quantitative trait only and costs of scoring for markers are high compared with costs of raising and obtaining quantitative trait information on F-2 or BC individuals. In this case, a TB analysis will enable equivalent power to be obtained with fewer individuals scored for the marker, but more individuals scored for the quantitative trait. MB analyses remain the method of choice when more than one quantitative trait is to be analyzed in a given population.Contribution from the ARO, Bet Dagan, Israel. No. 1698-E, 1986 series  相似文献   

11.
Linda K. Dixon 《Genetica》1993,91(1-3):151-165
Recombinant inbred strains have been used in a number of organisms for segregation and linkage analysis of quantitative traits. One major advantage of the recombinant inbred (RI) methodology is that the genetic identity of individuals within a strain permits replicate measures of the same recombinant genotype. Such replicability is important for traits such as aging inDrosophila, where phenotypic expression is highly influenced by different environmental conditions. RI strain methodology has an added advantage for DNA marker-based linkage analysis of traits measured over the lifespan of the organism. The DNA can be extracted from individuals of the same genotype as those measured in a longevity study. In this paper an argument is presented for the use of a set of recombinant inbred strains to map the quantitative trait loci involved in the aging process inDrosophila. A unique use of a set of stable, transposable moleular markers to trace the quantitative trait loci involved is suggested.  相似文献   

12.
13.
Blast is an economically important disease of rice. To map genes controlling blast resistance, recombinant inbred lines (RIL) were developed from Khao Dawk Mali 105, an aromatic, blast-susceptible cultivar and the blast resistance donor, CT 9993-5-10-M (CT). A linkage map encompassing 2112 cM was constructed from 141 RILs using 90 restriction fragment length polymorphisms (RFLPs) and 31 simple sequence repeats (SSR). Virulent isolates of blast fungus were identified by screening differential host sets against 87 single-spore isolates collected from the north and northeast of Thailand. Fifteen virulent blast isolates were selected for leaf blast screening. Neck blast was evaluated both under natural conditions and controlled inoculations. Quantitative trait loci (QTLs) for broad resistance spectrum (BRS) to leaf blast were located on chromosomes 7 and 9. In particular, the QTL(ch9) was mapped near the Pi5(t) locus. The QTL(ch7) was located close to a previously mapped partial resistance QTL. Both loci showed significant allelic interaction. Genotypes having CT alleles at both QTL(ch7) and QTL(ch9) were the most resistant. Two neck-blast QTLs were mapped on chromosomes 5 and 6. The inconsistent map locations between the leaf and neck blast QTLs indicate the complexity of fixing both leaf and neck blast resistance. The coincidence of BRS and field resistance QTLs on chromosome 7 supports the idea that BRS may reflect the broad resistance spectrum to leaf blast in rice. These findings laid the foundation for the development of a marker-assisted scheme for improving Khoa Dawk Mali 105 and the majority of aromatic Thai rice varieties that are susceptible to blast.  相似文献   

14.
Ethanol's taste attributes undoubtedly contribute to the development of drug preference. Ethanol's taste is both sweet and bitter. Taster status for bitter 6-n-propylthiouracil (PROP) has been proposed as a genetic marker for alcoholism; however, human results are conflicting. We collected preference scores for both tastants in 4 mouse strains selected on the basis of previously reported taste preference, with the generally accepted idea that inbred mice show minimal within-strain variation. Eighty-eight male mice (22 per strain) participated. The strains were as follows: C57BL/6J, ethanol preferring; BALB/cJ, ethanol avoiding; SWR/J, PROP avoiding; and C3HeB/FeJ, PROP neutral. Using a brief-access (1-min trials) 2-bottle preference test, we assessed the taste response of each strain to PROP and ethanol on separate days. Although PROP avoiding versus neutral mice could be segregated into significantly different populations, this was not the case for ethanol avoiding versus preferring mice, and all strains showed high variability. On average, only BALB/cJ, SWR/J, and C3HeB/FeJ mice conformed to their literature-reported preferences; nonetheless, there were a substantial number of discordant animals. C57BL/6J did not conform to previous results, indicating that they are ethanol preferring. Finally, we did not observe a significant relationship between PROP and ethanol preferences across strains. The high variability per strain and the number of animals in disagreement with their respective literature-reported preference raise concerns regarding their utility for investigations underlying mechanisms of taste-mediated ingestive responses. Absent postingestive consequences, the brief-access results suggest a possible degree of previously masked polymorphisms in taste preferences or a more recent drift in underlying genetic factors. The absence of a relationship between PROP and ethanol indicates that the bitter quality in ethanol may be more highly related to other bitter compounds that are mediated by different genetic influences.  相似文献   

15.
Genetic reference populations, particularly the BXD recombinant inbred (BXD RI) strains derived from C57BL/6J and DBA/2J mice, are a valuable resource for the discovery of the bio‐molecular substrates and genetic drivers responsible for trait variation and covariation. This approach can be profitably applied in the analysis of susceptibility and mechanisms of drug and alcohol use disorders for which many predisposing behaviors may predict the occurrence and manifestation of increased preference for these substances. Many of these traits are modeled by common mouse behavioral assays, facilitating the detection of patterns and sources of genetic coregulation of predisposing phenotypes and substance consumption. Members of the Tennessee Mouse Genome Consortium (TMGC) have obtained phenotype data from over 250 measures related to multiple behavioral assays across several batteries: response to, and withdrawal from cocaine, 3,4‐methylenedioxymethamphetamine; “ecstasy” (MDMA), morphine and alcohol; novelty seeking; behavioral despair and related neurological phenomena; pain sensitivity; stress sensitivity; anxiety; hyperactivity and sleep/wake cycles. All traits have been measured in both sexes in approximately 70 strains of the recently expanded panel of BXD RI strains. Sex differences and heritability estimates were obtained for each trait, and a comparison of early (N = 32) and recent (N = 37) BXD RI lines was performed. Primary data are publicly available for heritability, sex difference and genetic analyses using the MouseTrack database, and are also available in GeneNetwork.org for quantitative trait locus (QTL) detection and genetic analysis of gene expression. Together with the results of related studies, these data form a public resource for integrative systems genetic analysis of neurobehavioral traits.  相似文献   

16.
 To detect quantitative trait loci (QTLs) controlling seed dormancy, 98 BC1F5 lines (backcross inbred lines) derived from a backcross of Nipponbare (japonica)/Kasalath (indica)//Nipponbare were analyzed genetically. We used 245 RFLP markers to construct a framework linkage map. Five putative QTLs affecting seed dormancy were detected on chromosomes 3, 5, 7 (two regions) and 8, respectively. Phenotypic variations explained by each QTL ranged from 6.7% to 22.5% and the five putative QTLs explained about 48% of the total phenotypic variation in the BC1F5 lines. Except for those of the QTLs on chromosome 8, the Nipponbare alleles increased the germination rate. Five putative QTLs controlling heading date were detected on chromosomes 2, 3, 4, 6 and 7, respectively. The phenotypic variation explained by each QTL for heading date ranged from 5.7% to 23.4% and the five putative QTLs explained about 52% of the total phenotypic variation. The Nipponbare alleles increased the number of days to heading, except for those of two QTLs on chromosomes 2 and 3. The map location of a putative QTL for heading date coincided with that of a major QTL for seed dormancy on chromosome 3, although two major heading-date QTLs did not coincide with any seed dormancy QTLs detected in this study. Received: 10 October 1997 / Accepted: 12 January 1998  相似文献   

17.
Cotton is widely cultivated globally because it provides natural fibre for the textile industry and human use. To identify quantitative trait loci (QTLs)/genes associated with fibre quality and yield, a recombinant inbred line (RIL) population was developed in upland cotton. A consensus map covering the whole genome was constructed with three types of markers (8295 markers, 5197.17 centimorgans (cM)). Six fibre yield and quality traits were evaluated in 17 environments, and 983 QTLs were identified, 198 of which were stable and mainly distributed on chromosomes 4, 6, 7, 13, 21 and 25. Thirty‐seven QTL clusters were identified, in which 92.8% of paired traits with significant medium or high positive correlations had the same QTL additive effect directions, and all of the paired traits with significant medium or high negative correlations had opposite additive effect directions. In total, 1297 genes were discovered in the QTL clusters, 414 of which were expressed in two RNA‐Seq data sets. Many genes were discovered, 23 of which were promising candidates. Six important QTL clusters that included both fibre quality and yield traits were identified with opposite additive effect directions, and those on chromosome 13 (qClu‐chr13‐2) could increase fibre quality but reduce yield; this result was validated in a natural population using three markers. These data could provide information about the genetic basis of cotton fibre quality and yield and help cotton breeders to improve fibre quality and yield simultaneously.  相似文献   

18.
Selenium is essential for many organisms, but is toxic at higher levels. To investigate the genetic basis of selenate tolerance in Arabidopsis thaliana, quantitative trait loci (QTL) associated with selenate tolerance in accessions Landsberg erecta and Columbia were mapped using recombinant inbred lines (RILs). The selenate tolerance index (TI(D10) = root growth + 30 microm selenate/root growth control x 100%) was fourfold higher for parental line Col-4 (59%) than for parent Ler-0 (15%). Among the 96 F8 RILs, TI(D10) ranged from 11 to 75% (mean 37%). Using composite interval mapping, three QTL were found on chromosomes 1, 3 and 5, which together explained 24% of variation in TI(D10) and 32% of the phenotypic variation for the difference in root length +/- Se (RL(D10)). Highly significant epistatic interactions between the QTL and markers on chromosome 2 explained additional variation for both traits. Potential candidate genes for Se tolerance in each of the QTL regions are discussed. These results offer insight into the genetic basis of selenate tolerance, and may be useful for identification of selenate-tolerance genes.  相似文献   

19.
The previous results from a genome scan for total number of piglets born and number of piglets born alive in a F2 Iberian by Meishan intercross showed several single and epistatic QTL. One of the most interesting results was obtained for SSC12, where two QTL affecting both traits showed epistatic interaction. In this study, we proposed two genes ( SLC9A3R1 and NOS2 ) as biological and potentially positional candidates underlying these QTL. Both cDNAs were characterized and 23 polymorphisms were detected. A chromosome scan was conducted with 12 markers, plus one SNP in SLC9A3R1 and one in NOS2, covering 110 cM of SSC12. The epistatic QTL (QTL1 at 15 cM and QTL2 at 97 cM) were confirmed, and SLC9A3R1 and NOS2 were mapped around the QTL1 and QTL2 regions respectively. Several SNPs in both genes were tested with standard animal model and marker assisted association tests. The most significant results were obtained with the NOS2 haplotype defined by one missense SNP c.2192C > T (Val to Ala) and a 15 bp duplication at the 3'UTR. This duplication seems to include AU-rich elements, and could be a target site for miRNA, therefore there are statistical and biological indications to consider this haplotype as the potential causal mutation underlying QTL2. SLC9A3R1 results were not conclusive. Although the interaction between the SNPs was not significant, we cannot reject the possibility of interaction of the NOS2 haplotype with other polymorphisms closely linked to the SL9A3R1 SNPs analysed.  相似文献   

20.
You A  Lu X  Jin H  Ren X  Liu K  Yang G  Yang H  Zhu L  He G 《Genetics》2006,172(2):1287-1300
This study was conducted to determine whether quantitative trait loci (QTL) controlling traits of agronomic importance detected in recombinant inbred lines (RILs) are also expressed in testcross (TC) hybrids of rice. A genetic map was constructed using an RIL population derived from a cross between B5 and Minghui 63, a parent of the most widely grown hybrid rice cultivar in China. Four TC hybrid populations were produced by crossing the RILs with three maintaining lines for the widely used cytoplasmic male-sterile (CMS) lines and the genic male-sterile line Peiai64s. The mean values of the RILs for the seven traits investigated were significantly correlated to those of the F1 hybrids in the four TC populations. Twenty-seven main-effect QTL were identified in the RILs. Of these, the QTL that had the strongest effect on each of the seven traits in the RILs was detected in two or more of the TC populations, and six other QTL were detected in one TC population. Epistatic analysis revealed that the effect of epistatic QTL was relatively weak and cross combination specific. Searching publicly available QTL data in rice revealed the positional convergence of the QTL with the strongest effect in a wide range of populations and under different environments. Since the main-effect QTL is expressed across different testers, and in different genetic backgrounds and environments, it is a valuable target for gene manipulation and for further application in rice breeding. When a restorer line that expresses main-effect QTL is bred, it could be used in a number of cross combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号