首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tropical peatlands are among the most space‐efficient stores of carbon on Earth containing approximately 89 Gt C. Of this, 57 Gt (65%) are stored in Indonesian peatlands. Large‐scale exploitation of land, including deforestation and drainage for the establishment of oil palm plantations, is changing the carbon balance of Indonesian peatlands, turning them from a natural sink to a source via outgassing of CO2 to the atmosphere and leakage of dissolved organic carbon (DOC) into the coastal ocean. The impacts of this perturbation to the coastal environment and at the global scale are largely unknown. Here, we evaluate the downstream effects of released Indonesian peat carbon on coastal ecosystems and on the global carbon cycle. We use a biogeochemical box model in combination with novel and literature observations to investigate the impact of different carbon emission scenarios on the combined ocean–atmosphere system. The release of all carbon stored in the Indonesian peat pool, considered as a worst‐case scenario, will increase atmospheric pCO2 by 8 ppm to 15 ppm within the next 200 years. The expected impact on the Java Sea ecosystems is most significant on the short term (over a few hundred years) and is characterized by an increase of 3.3% in phytoplankton, 32% in seagrass biomass, and 5% decrease in coral biomass. On the long term, however, the coastal ecosystems will recover to reach near pre‐excursion conditions. Our results suggest that the ultimate fate of the peat carbon is in the deep ocean with 69% of it landing in the deep DIC pool after 1000 years, but the effects on the global ocean carbonate chemistry will be marginal.  相似文献   

2.
Rivers are among the world's most modified ecosystems, with poor water quality representing a prominent problem for over 200 years, especially in urban areas. In Western Europe, however, industrial decline, tighter regulation and improved wastewater treatment have combined over recent decades to create conditions conducive to extensive restoration and positive biological change. Here, we evaluate the river macroinvertebrate fauna of England and Wales in relation to water quality, physical habitat and climate over almost two decades. We predicted that biological recovery would be characterized by: (i) greater taxon richness and prevalence of pollution‐sensitive taxa, (ii) larger changes in more heavily urbanized catchments, and (iii) temporal trends in assemblage structure that correlated with improving water quality. Family level richness increased on average by nearly 20% during 1991–2008, accompanied by a widespread shift towards taxa characteristic of well‐oxygenated and less polluted waters. Changes were largest in the most urbanized catchments. A combination of natural gradients and anthropogenic pressures explained the variation among sites, whereas temporal changes correlated with improving water quality and variations in discharge. Positive trends were not universal, however, and there was localized deterioration in some streams draining upland areas and in the lowland south east. Our results are consistent with a large‐scale ecological recovery of English and Welsh rivers since 1990, probably continuing a trend from the mid‐20th century. Based on these results, we suggest: (i) freshwater communities are resilient to long‐term anthropogenic pressures, (ii) biodiversity benefits can arise from investment and long‐term restoration intended largely to enhance ecosystem services such as drinking water and sanitary concerns, and (iii) long‐term monitoring data collected for statutory purposes–based in this case on nearly 50 000 samples–can address scientific questions at spatial and temporal extents seldom achieved in research programmes.  相似文献   

3.
Biomass is considered a low carbon source for various energy or chemical options. This paper assesses it's different possible uses, the competition between these uses, and the implications for long‐term global energy demand and energy system emissions. A scenario analysis is performed using the TIMER energy system model. Under baseline conditions, 170 EJ yr?1 of secondary bioenergy is consumed in 2100 (approximately 18% of total secondary energy demand), used primarily in the transport, buildings and nonenergy (chemical production) sectors. This leads to a reduction of 9% of CO2 emissions compared to a counterfactual scenario where no bioenergy is used. Bioenergy can contribute up to 40% reduction in emissions at carbon taxes greater than 500/tC. As higher CO2 taxes are applied, bioenergy is increasingly diverted towards electricity generation. Results are more sensitive to assumptions about resource availability than technological parameters. To estimate the effectiveness of bioenergy in specific sectors, experiments are performed in which bioenergy is only allowed in one sector at a time. The results show that cross‐sectoral leakage and emissions from biomass conversion limit the total emission reduction possible in each sector. In terms of reducing emissions per unit of bioenergy use, we show that the use of bioelectricity is the most effective, especially when used with carbon capture and storage. However, this technology only penetrates at a high carbon price (>100/tC) and competition with transport fuels may limit its adoption.  相似文献   

4.
Site fidelity is an important evolutionary trait to understand, as misinterpretation of philopatric behavior could lead to confusion over the key drivers of population dynamics and the environmental or anthropogenic factors influencing populations. Our objective was to explore the hypothesis that emperor penguins are strictly philopatric using satellite imagery, counts from aerial photography, and literature reports on emperor penguin distributions. We found six instances over three years in which emperor penguins did not return to the same location to breed. We also report on one newly‐discovered colony on the Antarctic Peninsula that may represent the relocation of penguins from the Dion Islands, recently confirmed as having been abandoned. Using evidence from aerial surveys and the historical literature, we suggest that emigration may have been partly responsible for the population decline at Pointe Géologie during the 1970s. Our study is the first to use remote sensing imagery to suggest that emperor penguins can and do move between, and establish new, colonies. Metapopulation dynamics of emperor penguins have not been previously considered and represent an exciting, and important, avenue for future research. Life history plasticity is increasingly being recognized as an important aspect of climate change adaptation, and in this regard our study offers new insight for the long‐term future of emperor penguins.  相似文献   

5.
What determines the stability of communities under environmental fluctuations remains one of the most debated questions in ecology. Scholars generally agree that the similarity in year‐to‐year fluctuations between species is an important determinant of this stability. Concordant fluctuations in species abundances through time (synchrony) decrease stability while discordance in fluctuations (anti‐synchrony) should stabilize communities. Researchers have interpreted the community‐wide degree of synchrony in temporal fluctuations as the outcome of different processes. However, existing synchrony measures depend not only on year‐to‐year species fluctuations, but also on long‐term directional trends in species composition, for example due to land‐use or climate change. The neglected effect of directional trends in species composition could cause an apparent increase in synchrony that is not due to year‐to‐year fluctuations, as species that simultaneously increase (or decrease) in abundance over time will appear correlated, even if they fluctuate discordantly from year to year. The opposite pattern is also conceivable, where different species show contrasting trends in their abundances, thus overestimating year‐to‐year anti‐synchrony. Therefore, trends in species composition may limit our understanding of potential ecological mechanisms behind synchrony between species. We propose two easily implementable solutions, with corresponding R functions, for testing and accounting for the effect of trends in species composition on overall synchrony. The first approach is based on computing synchrony over the residuals of fitted species trends over time. The second approach, applicable to already existing indices, is based on three‐terms local variance, i.e. computing variance over three‐years‐long, movable windows. We demonstrate these methods using simulations and data from real plant communities under long‐term directional changes, discussing when one approach can be preferred. We show that accounting for long‐term temporal trends is necessary and that separation of effect of trends and year‐to‐year fluctuation provides a better understanding of ecological mechanisms and their connections with ecological theory.  相似文献   

6.
Long‐term data sets, covering several decades, could help to reveal the effects of observed climate change on herbivore damage to plants. However, sufficiently long time series in ecology are scarce. The research presented here analyzes a long‐term data set collected by the Hungarian Forest Research Institute over the period 1961–2009. The number of hectares with visible defoliation was estimated and documented for several forest insect pest species. This resulted in a unique time series that provides us with the opportunity to compare insect damage trends with trends in weather patterns. Data were analyzed for six lepidopteran species: Thaumetopoea processionea, Tortrix viridana, Rhyacionia buoliana, Malacosoma neustria, Euproctis chrysorrhoea, and Lymantria dispar. All these species exhibit outbreak dynamics in Hungary. Five of these species prefer deciduous tree species as their host plants, whereas R. buoliana is a specialist on Pinus spp. The data were analyzed using general linear models and generalized least squares regression in relation to mean monthly temperature and precipitation. Temperature increased considerably, especially over the last 25 years (+1.6°C), whereas precipitation exhibited no trend over the period. No change in weather variability over time was observed. There was increased damage caused by two species on deciduous trees. The area of damage attributed to R. buoliana decreased over the study period. There was no evidence of increased variability in damage. We conclude that species exhibiting a trend toward outbreak‐level damage over a greater geographical area may be positively affected by changes in weather conditions coinciding with important life stages. Strong associations between the geographical extent of severe damage and monthly temperature and precipitation are difficult to confirm, studying the life‐history traits of species could help to increase understanding of responses to climate change.  相似文献   

7.
Due to anthropogenic CO2 emissions, our oceans have gradually become warmer and more acidic. To better understand the consequences of this, there is a need for long‐term (months) and multistressor experiments. Earlier research demonstrates that the effects of global climate change are specific to species and life stages. We exposed berried Norway lobsters (Nephrops norvegicus), during 4 months to the combination of six ecologically relevant temperatures (5–18°C) and reduced pH (by 0.4 units). Embryonic responses were investigated by quantifying proxies for development rate and fitness including: % yolk consumption, mean heart rate, rate of oxygen consumption, and oxidative stress. We found no interactions between temperature and pH, and reduced pH only affected the level of oxidative stress significantly, with a higher level of oxidative stress in the controls. Increased temperature and % yolk consumed had positive effects on all parameters except on oxidative stress, which did not change in response to temperature. There was a difference in development rate between the ranges of 5–10°C (Q10: 5.4) and 10–18°C (Q10: 2.9), implicating a thermal break point at 10°C or below. No thermal limit to a further increased development rate was found. The insensitivity of N. norvegicus embryos to low pH might be explained by adaptation to a pH‐reduced external habitat and/or internal hypercapnia during incubation. Our results thus indicate that this species would benefit from global warming and be able to withstand the predicted decrease in ocean pH in the next century during their earliest life stages. However, future studies need to combine low pH and elevated temperature treatments with hypoxia as hypoxic events are frequently and increasingly occurring in the habitat of benthic species.  相似文献   

8.
Numerous studies have demonstrated that soil respiration rates increase under experimental warming, although the long‐term, multiyear dynamics of this feedback are not well constrained. Less is known about the effects of single, punctuated events in combination with other longer‐duration anthropogenic influences on the dynamics of soil carbon (C) loss. In 2012 and 2013, we assessed the effects of decadal‐scale anthropogenic global change – warming, increased nitrogen (N) deposition, elevated carbon dioxide (CO2), and increased precipitation – on soil respiration rates in an annual‐dominated Mediterranean grassland. We also investigated how controlled fire and an artificial wet‐up event, in combination with exposure to the longer‐duration anthropogenic global change factors, influenced the dynamics of C cycling in this system. Decade‐duration surface soil warming (1–2 °C) had no effect on soil respiration rates, while +N addition and elevated CO2 concentrations increased growing‐season soil CO2 efflux rates by increasing annual aboveground net primary production (NPP) and belowground fine root production, respectively. Low‐intensity experimental fire significantly elevated soil CO2 efflux rates in the next growing season. Based on mixed‐effects modeling and structural equation modeling, low‐intensity fire increased growing‐season soil respiration rates through a combination of three mechanisms: large increases in soil temperature (3–5 °C), significant increases in fine root production, and elevated aboveground NPP. Our study shows that in ecosystems where soil respiration has acclimated to moderate warming, further increases in soil temperature can stimulate greater soil CO2 efflux. We also demonstrate that punctuated short‐duration events such as fire can influence soil C dynamics with implications for both the parameterization of earth system models (ESMs) and the implementation of climate change mitigation policies that involve land‐sector C accounting.  相似文献   

9.
Perennial grasses are promising feedstocks for bioenergy production in the Midwestern USA. Few experiments have addressed how drought influences their carbon fluxes and storage. This study provides a direct comparison of ecosystem‐scale measurements of carbon fluxes associated with miscanthus (Miscanthus × giganteus), switchgrass (Panicum virgatum), restored native prairie and maize (Zea mays)/soybean (Glycine max) ecosystems. The main objective of this study was to assess the influence of a naturally occurring drought during 2012 on key components of the carbon cycle and plant development relative to non‐extreme years. The perennials reached full maturity 3–5 years after establishment. Miscanthus had the highest gross primary production (GPP) and lowest net ecosystem exchange (NEE) in 2012 followed by similar values for switchgrass and prairie, and the row crops had the lowest GPP and highest NEE. A post‐drought effect was observed for miscanthus. Over the duration of the experiment, perennial ecosystems were carbon sinks, as indicated by negative net ecosystem carbon balance (NECB), while maize/soybean was a net carbon source. Our observations suggest that perennial ecosystems, and in particular miscanthus, can provide a high yield and a large potential for CO2 fixation even during drought, although drought may negatively influence carbon uptake in the following year, questioning the long‐term consequence of its maintained productivity.  相似文献   

10.
Although species traits have the potential to disentangle long‐term effects of multiple, potentially confounded drivers in ecosystems, this issue has received very little attention in the literature. We aimed at filling this gap by assessing the relative effects of hydroclimatic and water quality factors on the trait composition of invertebrate assemblages over 30 years in the Middle Loire River (France). Using a priori predictions on the long‐term variation of trait‐based adaptations over the three decades, we evaluated the ability of invertebrate traits to indicate the effects of warming, discharge reduction and water quality improvement. Hydroclimatic and water quality factors contributed to up to 65% of the variation in trait composition. More than 70% of the initial trait response predictions made according to observed long‐term hydroclimatic changes were confirmed. They supported a general climate‐induced trend involving adapted resistance and resilience strategies. A partial confounding effect of water quality improvement acting on trophic processes was also highlighted, indicating that improved water quality management can significantly help to reduce some adverse effects of climate change. This trait‐based approach can have wider implications for investigating long‐term changes driven by multiple, potentially confounded factors, as frequently encountered in the context of global change.  相似文献   

11.
Question: We provide a method to calculate the power of ordinal regression models for detecting temporal trends in plant abundance measured as ordinal cover classes. Does power depend on the shape of the unobserved (latent) distribution of percentage cover? How do cover class schemes that differ in the number of categories affect power? Methods: We simulated cover class data by “cutting‐up” a continuous logit‐beta distributed variable using 7‐point and 15‐point cover classification schemes. We used Monte Carlo simulation to estimate power for detecting trends with two ordinal models, proportional odds logistic regression (POM) and logistic regression with cover classes re‐binned into two categories, a model we term an assessment point model (APM). We include a model fit to the logit‐transformed percentage cover data for comparison, which is a latent model. Results: The POM had equal or higher power compared to the APM and latent model, but power varied in complex ways as a function of the assumed latent beta distribution. We discovered that if the latent distribution is skewed, a cover class scheme with more categories might yield higher power to detect trend. Conclusions: Our power analysis method maintains the connection between the observed ordinal cover classes and the unmeasured (latent) percentage cover variable, allowing for a biologically meaningful trend to be defined on the percentage cover scale. Both the shape of the latent beta distribution and the alternative hypothesis should be considered carefully when determining sample size requirements for long‐term vegetation monitoring using cover class measurements.  相似文献   

12.
铁作为浮游植物所必需的微量元素,限制了全球超过三分之一海域的初级生产力,尤其是在高营养盐、低叶绿素海域(high nutrient low chlorophyll,HNLC)。长期以来海洋铁施肥被认为是一项可以降低大气二氧化碳含量的地球工程策略。然而通过13次海洋人工铁施肥(artificial ocean iron fertilization,aOIF)实验发现,铁的额外添加对海洋深层碳输出量的促进作用要显著低于预期。本文简要地总结了碳在海洋和大气中的循环过程,回顾了人工铁施肥实验对生物碳泵和碳通量等的影响,分析了从海洋铁施肥到海洋碳汇关键生物地球化学过程的影响因素。综上分析发现,科学界对生物碳泵过程及其调控机制的认识仍十分浅薄,考虑到海洋铁施肥还会对海洋生态系统带来一定的负面作用,铁施肥能否作为降低大气中CO2的有效手段,以达到碳中和并缓解温室效应仍需进一步研究。  相似文献   

13.
木质素在海洋中的生物转化及其对海洋碳循环的影响   总被引:1,自引:0,他引:1  
彭倩楠  林璐 《微生物学报》2020,60(9):1959-1971
微型生物参与的海洋碳汇是海洋重要的储碳途径,可调节全球气候变化。木质素是地球上第二大光合而成的碳库,其在海洋中的生物地球化学过程与海洋碳循环密切相关。异养微生物所主导的代谢活动是木质素生物转化的主要途径。近年来,迅速发展的高通量测序技术与传统微生物技术相结合,在探索自然生境中木质素代谢菌群,发现木质素代谢新物种,挖掘相关功能基因等方面已取得一系列成果。然而绝大多数的研究主要集中于陆地生态系统,对于海洋生态系统的研究仍较少。陆源有机碳在海洋中的转化过程仍是一个"谜",故解析海洋木质素碳转化是海洋碳循环研究的重要任务。本文综述了参与海洋木质素转化的功能微生物、木质素代谢机理以及微生物碳代谢活动与海洋碳汇过程的内在联系,为今后的研究提供参考。  相似文献   

14.
Field observations and time series of vegetation greenness data from satellites provide evidence of changes in terrestrial vegetation activity over the past decades for several regions in the world. Changes in vegetation greenness over time may consist of an alternating sequence of greening and/or browning periods. This study examined this effect using detection of trend changes in normalized difference vegetation index (NDVI) satellite data between 1982 and 2008. Time series of 648 fortnightly images were analyzed using a trend breaks analysis (BFAST) procedure. Both abrupt and gradual changes were detected in large parts of the world, especially in (semi‐arid) shrubland and grassland biomes where abrupt greening was often followed by gradual browning. Many abrupt changes were found around large‐scale natural influences like the Mt Pinatubo eruption in 1991 and the strong 1997/98 El Niño event. The net global figure – considered over the full length of the time series – showed greening since the 1980s. This is in line with previous studies, but the change rates for individual short‐term segments were found to be up to five times higher. Temporal analysis indicated that the area with browning trends increased over time while the area with greening trends decreased. The Southern Hemisphere showed the strongest evidence of browning. Here, periods of gradual browning were generally longer than periods of gradual greening. Net greening was detected in all biomes, most conspicuously in croplands and least conspicuously in needleleaf forests. For 15% of the global land area, trends were found to change between greening and browning within the analysis period. This demonstrates the importance of accounting for trend changes when analyzing long‐term NDVI time series.  相似文献   

15.
Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO2. However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high‐resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5‐class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present‐day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification.  相似文献   

16.
17.
Long‐term observational studies conducted at large (regional) spatial scales contribute to better understanding of landscape effects on population and evolutionary dynamics, including the conditions that affect long‐term viability of species, but large‐scale studies are expensive and logistically challenging to keep running for a long time. Here, we describe the long‐term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia) that has been conducted since 1991 in a large network of 4000 habitat patches (dry meadows) within a study area of 50 by 70 km in the Åland Islands in Finland. We explain how the landscape structure has been described, including definition, delimitation, and mapping of the habitat patches; methods of field survey, including the logistics, cost, and reliability of the survey; and data management using the EarthCape biodiversity platform. We describe the long‐term metapopulation dynamics of the Glanville fritillary based on the survey. There has been no long‐term change in the overall size of the metapopulation, but the level of spatial synchrony and hence the amplitude of fluctuations in year‐to‐year metapopulation dynamics have increased over the years, possibly due to increasing frequency of exceptional weather conditions. We discuss the added value of large‐scale and long‐term population studies, but also emphasize the need to integrate more targeted experimental studies in the context of long‐term observational studies. For instance, in the case of the Glanville fritillary project, the long‐term study has produced an opportunity to sample individuals for experiments from local populations with a known demographic history. These studies have demonstrated striking differences in dispersal rate and other life‐history traits of individuals from newly established local populations (the offspring of colonizers) versus individuals from old, established local populations. The long‐term observational study has stimulated the development of metapopulation models and provided an opportunity to test model predictions. This combination of empirical studies and modeling has facilitated the study of key phenomena in spatial dynamics, such as extinction threshold and extinction debt.  相似文献   

18.
The application of calcium‐ and magnesium‐rich materials to soil, known as liming, has long been a foundation of many agro‐ecosystems worldwide because of its role in counteracting soil acidity. Although liming contributes to increased rates of respiration from soil thereby potentially reducing soils ability to act as a CO2 sink, the long‐term effects of liming on soil organic carbon (Corg) sequestration are largely unknown. Here, using data spanning 129 years of the Park Grass Experiment at Rothamsted (UK), we show net Corg sequestration measured in the 0–23 cm layer at different time intervals since 1876 was 2–20 times greater in limed than in unlimed soils. The main cause of this large Corg accrual was greater biological activity in limed soils, which despite increasing soil respiration rates, led to plant C inputs being processed and incorporated into resistant soil organo‐mineral pools. Limed organo‐mineral soils showed: (1) greater Corg content for similar plant productivity levels (i.e. hay yields); (2) higher 14C incorporation after 1950s atomic bomb testing and (3) lower C : N ratios than unlimed organo‐mineral soils, which also indicate higher microbial processing of plant C. Our results show that greater Corg sequestration in limed soils strongly reduced the global warming potential of long‐term liming to permanent grassland suggesting the net contribution of agricultural liming to global warming could be lower than previously estimated. Our study demonstrates that liming might prove to be an effective mitigation strategy, especially because liming applications can be associated with a reduced use of nitrogen fertilizer which is a key cause for increased greenhouse gas emissions from agro‐ecosystems.  相似文献   

19.
Coral restoration is widely used around the world to address dramatic declines in coral cover; however, very few studies have looked specifically at the temporal response of fish assemblages (i.e. abundance and diversity) to coral restoration. Several critical reef functions and processes are driven by fishes, thereby making their recovery and responses around restoration structures key indicators of success. This study evaluates fish abundance and community composition on restoration plots following 8–12 years of restoration activity, in four locations (two Caribbean and two Indo‐Pacific). Responses were very complex with region‐, site‐, and body size‐specific patterns. Overall, fish abundance only increased in Indo‐Pacific sites where damselfish responded positively to increased coral cover and topographic complexity. Restoration effects on other fish families and particularly on larger bodied reef fish were negative or neutral at all locations. If restoration initiatives are going to substantively improve the condition and recovery of degraded reef fish communities, restoration efforts need to be planned, designed, and monitored based on fish‐specific habitat requirements and locally specific community dynamics.  相似文献   

20.
Ocean acidity has increased by 30% since preindustrial times due to the uptake of anthropogenic CO2 and is projected to rise by another 120% before 2100 if CO2 emissions continue at current rates. Ocean acidification is expected to have wide‐ranging impacts on marine life, including reduced growth and net erosion of coral reefs. Our present understanding of the impacts of ocean acidification on marine life, however, relies heavily on results from short‐term CO2 perturbation studies. Here, we present results from the first long‐term CO2 perturbation study on the dominant reef‐building cold‐water coral Lophelia pertusa and relate them to results from a short‐term study to compare the effect of exposure time on the coral's responses. Short‐term (1 week) high CO2 exposure resulted in a decline of calcification by 26–29% for a pH decrease of 0.1 units and net dissolution of calcium carbonate. In contrast, L. pertusa was capable to acclimate to acidified conditions in long‐term (6 months) incubations, leading to even slightly enhanced rates of calcification. Net growth is sustained even in waters sub‐saturated with respect to aragonite. Acclimation to seawater acidification did not cause a measurable increase in metabolic rates. This is the first evidence of successful acclimation in a coral species to ocean acidification, emphasizing the general need for long‐term incubations in ocean acidification research. To conclude on the sensitivity of cold‐water coral reefs to future ocean acidification further ecophysiological studies are necessary which should also encompass the role of food availability and rising temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号