首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major challenge in ecology is to understand how populations are affected by increased climate variability. Here, we assessed the effects of observed climate variability on different organismal groups (amphibians, insects, mammals, herbaceous plants and reptiles) by estimating the extent to which interannual variation in the annual population growth rates (CVλ) and the absolute value of the long-term population growth rate (|log λ|) were associated with short-term climate variability. We used empirical data (≥ 20 consecutive years of annual abundances) from 59 wild populations in the Northern Hemisphere, and quantified variabilities in population growth rates and climatic conditions (temperature and precipitation in active and inactive seasons) calculated over four- and eight-year sliding time windows. We observed a positive relationship between the variability of growth rate (CVλ) and the variability of temperature in the active season at the shorter timescale only. Moreover, |log λ| was positively associated with the variability of precipitation in the inactive season at both timescales. Otherwise, the direction of the relationships between population dynamics and climate variability (if any) depended largely on the season and organismal group in question. Both CVλ and |log λ| correlated negatively with species' lifespan, indicating general differences in population dynamics between short-lived and long-lived species that were not related to climate variability. Our results suggest that although temporal variation in population growth rates and the magnitude of long-term population growth rates are partially associated with short-term interannual climate variability, demographic responses to climate fluctuations might still be population-specific rather than specific to given organismal groups, and driven by other factors than the observed climate variability.  相似文献   

2.
3.
We must consider the role of multitrophic interactions when examining species' responses to climate change. Many plant species, particularly trees, are limited in their ability to shift their geographic ranges quickly under climate change. Consequently, for herbivorous insects, geographic mosaics of host plant specialization could prohibit range shifts and adaptation when insects become separated from suitable host plants. In this study, we examined larval growth and survival of an oak specialist butterfly (Erynnis propertius) on different oaks (Quercus spp.) that occur across its range to determine if individuals can switch host plants if they move into new areas under climate change. Individuals from Oregon and northern California, USA that feed on Q. garryana and Q. kelloggii in the field experienced increased mortality on Q. agrifolia, a southern species with low nutrient content. In contrast, populations from southern California that normally feed on Q. agrifolia performed well on Q. agrifolia and Q. garryana and poorly on the northern, high elevation Q. kelloggii. Therefore, colonization of southern E. propertius in higher elevations and some northern locales may be prohibited under climate change but latitudinal shifts to Q. garryana may be possible. Where shifts are precluded due to maladaptation to hosts, populations may not accrue warm‐adapted genotypes. Our study suggests that, when interacting species experience asynchronous range shifts, historical local adaptation may preclude populations from colonizing new locales under climate change.  相似文献   

4.
Aim To identify hypotheses for how climate change affects long‐term population persistence that can be used as a framework for future syntheses of ecological responses to climate change. Location Global. Methods We surveyed ecological and evolutionary concepts related to how a changing climate might alter population persistence. We organized established concepts into a two‐stage framework that relates abiotic change to population persistence via changes in the rates or outcomes of ecological and evolutionary processes. We surveyed reviews of climate change responses, and evaluated patterns in light of our conceptual framework. Results We classified hypotheses for population responses to climate change as one of two types: (1) hypotheses that relate rates of ecological and evolutionary processes (plasticity, dispersal, population growth and evolution) to abiotic change, and (2) hypotheses that relate changes in these processes to four fundamental population‐level responses (colonization, acclimatization, adaptation or extinction). We found that a disproportionate emphasis on response in the climate change literature is difficult to reconcile with ecological and evolutionary theories that emphasize processes. We discuss a set of 24 hypotheses that represent gaps in the literature that limit our ability determine whether observed climate change responses are sufficient to facilitate persistence through future climate change. Main conclusions Though theory relates environmental change to fundamental ecological and evolutionary processes and population‐level responses, clear hypotheses based on theory have not been systematically formulated and tested in the context of climate change. Stronger links between basic theory and observed impacts of climate change are required to assess which responses are common, likely or able to facilitate population persistence despite ongoing environmental change. We anticipate that a hypothesis‐testing framework will reveal that indirect effects of climate change responses are more pervasive than previously thought and related to a few general processes, even though the patterns they create are incredibly diverse.  相似文献   

5.
We link spatially explicit climate change predictions to a dynamic metapopulation model. Predictions of species'' responses to climate change, incorporating metapopulation dynamics and elements of dispersal, allow us to explore the range margin dynamics for two lagomorphs of conservation concern. Although the lagomorphs have very different distribution patterns, shifts at the edge of the range were more pronounced than shifts in the overall metapopulation. For Romerolagus diazi (volcano rabbit), the lower elevation range limit shifted upslope by approximately 700 m. This reduced the area occupied by the metapopulation, as the mountain peak currently lacks suitable vegetation. For Lepus timidus (European mountain hare), we modelled the British metapopulation. Increasing the dispersive estimate caused the metapopulation to shift faster on the northern range margin (leading edge). By contrast, it caused the metapopulation to respond to climate change slower, rather than faster, on the southern range margin (trailing edge). The differential responses of the leading and trailing range margins and the relative sensitivity of range limits to climate change compared with that of the metapopulation centroid have important implications for where conservation monitoring should be targeted. Our study demonstrates the importance and possibility of moving from simple bioclimatic envelope models to second-generation models that incorporate both dynamic climate change and metapopulation dynamics.  相似文献   

6.
Estimates of species extinction risk under climate change are generally based on differences in present and future climatically suitable areas. However, the locations of potentially suitable future environments (affecting establishment success), and the degree of climatic suitability in already occupied and new locations (affecting population viability) may be equally important determinants of risk. A species considered to be at low risk because its future distribution is predicted to be large, may actually be at high risk if these areas are out of reach, given the species' dispersal and migration rates or if all future suitable locations are only marginally suitable and the species is unlikely to build viable populations in competition with other species. Using bioclimatic models of 17 representative European woody species, we expand on current ways of risk assessment and suggest additional measures based on (a) the distance between presently occupied areas and areas predicted to be climatically suitable in the future and (b) the degree of change in climatic suitability in presently occupied and unoccupied locations. Species of boreal and temperate deciduous forests are predicted to face higher risk from loss of climatically suitable area than species from warmer and drier parts of Europe by 2095 using both the moderate B1 and the severe A1FI emission scenario. However, the average distance from currently occupied locations to areas predicted suitable in the future is generally shorter for boreal species than for southern species. Areas currently occupied will become more suitable for boreal and temperate species than for Mediterranean species whereas new suitable areas outside a species' current range are expected to show greater increases in suitability for Mediterranean species than for boreal and temperate species. Such additional risk measures can be easily derived and should give a more comprehensive picture of the risk species are likely to face under climate change.  相似文献   

7.
Why do areas with high numbers of small-range species occur where they do? We found that, for butterfly and plant species in Europe, and for bird species in the Western Hemisphere, such areas coincide with regions that have rare climates, and are higher and colder areas than surrounding regions. Species with small range sizes also tend to occur in climatically diverse regions, where species are likely to have been buffered from extinction in the past. We suggest that the centres of high small-range species richness we examined predominantly represent interglacial relict areas where cold-adapted species have been able to survive unusually warm periods in the last ca 10 000 years. We show that the rare climates that occur in current centres of species rarity will shrink disproportionately under future climate change, potentially leading to high vulnerability for many of the species they contain.  相似文献   

8.
Continuing downward trends in the population sizes of many species, in the conservation status of threatened species, and in the quality, extent and connectedness of habitats are of increasing concern. Identifying the attributes of declining populations will help predict how biodiversity will be impacted and guide conservation actions. However, the drivers of biodiversity declines have changed over time and average trends in abundance or distributional change hide significant variation among species. While some populations are declining rapidly, the majority remain relatively stable and others are increasing. Here we dissect out some of the changing drivers of population and geographic range change, and identify biological and geographical correlates of winners and losers in two large datasets covering local population sizes of vertebrates since 1970 and the distributions of Galliform birds over the last two centuries. We find weak evidence for ecological and biological traits being predictors of local decline in range or abundance, but stronger evidence for the role of local anthropogenic threats and environmental change. An improved understanding of the dynamics of threat processes and how they may affect different species will help to guide better conservation planning in a continuously changing world.  相似文献   

9.
Despite widespread concern, the continuing effectiveness of networks of protected areas under projected 21st century climate change is uncertain. Shifts in species' distributions could mean these resources will cease to afford protection to those species for which they were originally established. Using modelled projected shifts in the distributions of sub-Saharan Africa's entire breeding avifauna, we show that species turnover across the continent's Important Bird Area (IBA) network is likely to vary regionally and will be substantial at many sites (> 50% at 42% of IBAs by 2085 for priority species). Persistence of suitable climate space across the network as a whole, however, is notably high, with 88–92% of priority species retaining suitable climate space in ≥ 1 IBA(s) in which they are currently found. Only 7–8 priority species lose climatic representation from the network. Hence, despite the likelihood of significant community disruption, we demonstrate that rigorously defined networks of protected areas can play a key role in mitigating the worst impacts of climate change on biodiversity.  相似文献   

10.
The first expected symptoms of a climate change‐generated biodiversity crisis are range contractions and extinctions at lower elevational and latitudinal limits to species distributions. However, whilst range expansions at high elevations and latitudes have been widely documented, there has been surprisingly little evidence for contractions at warm margins. We show that lower elevational limits for 16 butterfly species in central Spain have risen on average by 212 m (± SE 60) in 30 years, accompanying a 1.3 °C rise (equivalent to c. 225 m) in mean annual temperature. These elevational shifts signify an average reduction in habitable area by one‐third, with losses of 50–80% projected for the coming century, given maintenance of the species thermal associations. The results suggest that many species have already suffered climate‐mediated habitat losses that may threaten their long‐term chances of survival.  相似文献   

11.
Climatic shifts may increase the extinction risk of populations, especially when they are already suffering from other anthropogenic impacts. Our ability to predict the consequences of climate change on endangered species is limited by our scarce knowledge of the effects of climate variability on the population dynamics of most organisms and by the uncertainty of climate projections, which depend strongly on the region of the earth being considered. In this study, we analysed a long‐term monitoring programme (1988–2009) of Hermann's tortoise (Testudo hermanni) aimed at evaluating the consequences of the drastic changes in temperature and precipitation patterns predicted for the Mediterranean region on the demography of a long‐lived species with low dispersal capability and already suffering a large number of threats. Capture–recapture modelling of a population in the Ebro Delta (NE Spain) allowed us to assess the effect of climate variability on the survival of tortoises. Winter rainfall was found to be the major driver of juvenile and immature survival, whereas that of adults remained high and constant across the study. Furthermore, local climate series obtained ad hoc from regional climate simulations, for this and 10 additional Mediterranean locations where tortoises occurred, provided us with reliable future climate forecasts, which were used to simulate the fate of these populations under three precipitation scenarios (mean, wet and dry) using stochastic population modelling. We show that a shift to a more arid climate would have negative consequences for population persistence, enhancing juvenile mortality and increasing quasiextinction risk because of a decrease in recruitment. These processes varied depending on the population and the climate scenario we considered, but our results suggest that unless other human‐induced causes of mortality are suppressed (e.g. poaching, fire, habitat fragmentation), climate variability will increase extinction risk within most of the species’ current range.  相似文献   

12.
Climate change is expected to drive species ranges towards the poles and to have a strong influence on species distributions. In this study, we focused on diadromous species that are of economical and ecological importance in the whole of Europe. We investigated the potential distribution of all diadromous fish regularly encountered in Europe, North Africa and the Middle East (28 species) under conditions predicted for twenty‐first century climate change. To do so, we investigated the 1900 distribution of each species in 196 basins spread across all of Europe, North Africa and the Middle East. Four levels were used to semiquantitatively describe the abundance of species, that is missing, rare, common and abundant. We then selected five variables describing the prevailing climate in the basins, the physical nature of the basins and reflecting historical events known to have affected freshwater fish distribution. Logistic regressions with a four‐level ordinal response variable were used to develop species‐specific models. These predictive models related the observed distribution of these species in 1900 to the most explanatory combination of variables. Finally, we selected the A2 SRES scenario and the HadCM3 (Hadley Centre Coupled Model version 3) global climate model (GCM) to obtain climate variables (temperature and precipitation) at the end of this century. We used these 2100 variables in our models and obtained maps of climatically suitable and unsuitable basins, percentages of contraction or expansion for each species. Twenty‐two models were successfully built, that is there were five species for which no model could be established because their distribution range was too narrow and the Acipenser sturio model failed during calibration. All the models selected temperature or/and precipitation as explanatory variables. Responses to climate change were species‐specific but could be classified into three categories: little or no change in the distribution (five species), expansion of the distribution range (three species gaining suitable basins mainly northward) and contraction of the distribution (14 species losing suitable basins). Shifting ranges were in accordance with those found in other studies and underlined the high sensitivity of diadromous fish to modifications in their environment.  相似文献   

13.
Sea‐level rise (SLR) due to global warming will result in the loss of many coastal areas. The direct or primary effects due to inundation and erosion from SLR are currently being assessed; however, the indirect or secondary ecological effects, such as changes caused by the displacement of human populations, have not been previously evaluated. We examined the potential ecological consequences of future SLR on >1,200 islands in the Southeast Asian and the Pacific region. Using three SLR scenarios (1, 3, and 6 m elevation, where 1 m approximates most predictions by the end of this century), we assessed the consequences of primary and secondary SLR effects from human displacement on habitat availability and distributions of selected mammal species. We estimate that between 3–32% of the coastal zone of these islands could be lost from primary effects, and consequently 8–52 million people would become SLR refugees. Assuming that inundated urban and intensive agricultural areas will be relocated with an equal area of habitat loss in the hinterland, we project that secondary SLR effects can lead to an equal or even higher percent range loss than primary effects for at least 10–18% of the sample mammals in a moderate range loss scenario and for 22–46% in a maximum range loss scenario. In addition, we found some species to be more vulnerable to secondary than primary effects. Finally, we found high spatial variation in vulnerability: species on islands in Oceania are more vulnerable to primary SLR effects, whereas species on islands in Indo‐Malaysia, with potentially 7–48 million SLR refugees, are more vulnerable to secondary effects. Our findings show that primary and secondary SLR effects can have enormous consequences for human inhabitants and island biodiversity, and that both need to be incorporated into ecological risk assessment, conservation, and regional planning.  相似文献   

14.
15.
Phenological shifts, changes in the seasonal timing of life cycle events, are among the best documented responses of species to climate change. However, the consequences of these phenological shifts for population dynamics remain unclear. Population growth could be enhanced if species that advance their phenology benefit from longer growing seasons and gain a pre-emptive advantage in resource competition. However, it might also be reduced if phenological advances increase exposure to stresses, such as herbivores and, in colder climates, harsh abiotic conditions early in the growing season. We exposed subalpine grasslands to ~3 K of warming by transplanting intact turfs from 2000 m to 1400 m elevation in the eastern Swiss Alps, with turfs transplanted within the 2000 m site acting as a control. In the first growing season after transplantation, we recorded species’ flowering phenology at both elevations. We also measured species’ cover change for three consecutive years as a measure of plant performance. We used models to estimate species’ phenological plasticity (the response of flowering time to the change in climate) and analysed its relationship with cover changes following climate change. The phenological plasticity of the 18 species in our study varied widely but was unrelated to their changes in cover. Moreover, early- and late-flowering species did not differ in their cover response to warming, nor in the relationship between cover changes and phenological plasticity. These results were replicated in a similar transplant experiment within the same subalpine community, established one year earlier and using larger turfs. We discuss the various ecological processes that can be affected by phenological shifts, and argue why the population-level consequences of these shifts are likely to be species- and context-specific. Our results highlight the importance of testing assumptions about how warming-induced changes in phenotypic traits, like phenology, impact population dynamics.  相似文献   

16.
The changes in species' geographical distribution demanded by climate change are often critically limited by the availability of key interacting species. In such cases, species' persistence will depend on the rapid evolution of biotic interactions. Understanding evolutionary limits to such adaptation is therefore crucial for predicting biological responses to environmental change. The recent poleward range expansion of the UK brown argus butterfly has been associated with a shift in female preference from its main host plant, rockrose (Cistaceae), onto Geraniaceae host plants throughout its new distribution. Using reciprocal transplants onto natural host plants across the UK range, we demonstrate reduced fitness of females from recently colonised Geraniaceae‐dominated habitat when moved to ancestral rockrose habitats. By contrast, individuals from ancestral rockrose habitats show no reduction in fitness on Geraniaceae. Climate‐driven range expansion in this species is therefore associated with the rapid evolution of biotic interactions and a significant loss of adaptive variation.  相似文献   

17.
Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature – collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate – particularly precipitation and water availability – is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land‐use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local‐scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study.  相似文献   

18.
Accurately predicting the future distribution of species is crucial for understanding how species will response to global environmental change and for evaluating the effectiveness of current protected areas (PAs). Here, we assessed the effect of climate and land use change on the projected suitable habitats of Davidia involucrata Baill under different future scenarios using the following two types of models: (a) only climate covariates (climate SDMs) and (b) climate and land use covariates (full SDMs). We found that full SDMs perform significantly better than climate SDMs in terms of both AUC (p < .001) and TSS (p < .001) and also projected more suitable habitat than climate SDMs both in the whole study area and in its current suitable range, although D. involucrate is predicted to loss at least 26.96% of its suitable area under all future scenarios. Similarly, we found that these range contractions projected by climate SDMs would negate the effectiveness of current PAs to a greater extent relative to full SDMs. These results suggest that although D. involucrate is extremely vulnerability to future climate change, conservation intervention to manage habitat may be an effective option to offset some of the negative effects of a changing climate on D. involucrate and can improve the effectiveness of current PAs. Overall, this study highlights the necessity of integrating climate and land use change to project the future distribution of species.  相似文献   

19.
Aim To compare theoretical approaches towards estimating risks of plant species loss to anthropogenic climate change impacts in a biodiversity hotspot, and to develop a practical method to detect signs of climate change impacts on natural populations. Location The Fynbos biome of South Africa, within the Cape Floristic Kingdom. Methods Bioclimatic modelling was used to identify environmental limits for vegetation at both biome and species scale. For the biome as a whole, and for 330 species of the endemic family Proteaceae, tolerance limits were determined for five temperature and water availability‐related parameters assumed critical for plant survival. Climate scenarios for 2050 generated by the general circulation models HadCM2 and CSM were interpolated for the region. Geographic Information Systems‐based methods were used to map current and future modelled ranges of the biome and 330 selected species. In the biome‐based approach, predictions of biome areal loss were overlayed with species richness data for the family Proteaceae to estimate extinction risk. In the species‐based approach, predictions of range dislocation (no overlap between current range and future projected range) were used as an indicator of extinction risk. A method of identifying local populations imminently threatened by climate change‐induced mortality is also described. Results A loss of Fynbos biome area of between 51% and 65% is projected by 2050 (depending on the climate scenario used), and roughly 10% of the endemic Proteaceae have ranges restricted to the area lost. Species range projections suggest that a third could suffer complete range dislocation by 2050, and only 5% could retain more than two thirds of their range. Projected changes to individual species ranges could be sufficient to detect climate change impacts within ten years. Main conclusions The biome‐level approach appears to underestimate the risk of species diversity loss from climate change impacts in the Fynbos Biome because many narrow range endemics suffer range dislocation throughout the biome, and not only in areas identified as biome contractions. We suggest that targeted vulnerable species could be monitored both for early warning signs of climate change and as empirical tests of predictions.  相似文献   

20.
Rapid climate change will impose strong directional selection pressures on natural plant populations. Climate-linked genetic variation in natural populations indicates that an evolutionary response is possible. We investigated such a response by comparing individuals subjected to elevated drought and warming treatments with individuals establishing in an unmanipulated climate within the same population. We report that reduction in seedling establishment in response to climate manipulations is nonrandom and results from the selection pressure imposed by artificially warmed and droughted conditions. When compared against control samples, high single-locus genetic divergence occurred in drought and warming treatment samples, with genetic differentiation up to 37 times higher than background (mean neutral locus) genetic differentiation. These loci violate assumptions of selective neutrality, indicating the signature of natural selection by drought. Our results demonstrate that rapid evolution in response to climate change may be widespread in natural populations, based on genetic variation already present within the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号