首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID50 within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody.  相似文献   

2.
Since 2001, outbreaks of Nipah virus have occurred almost every year in Bangladesh with high case-fatality rates. Epidemiological data suggest that in Bangladesh, Nipah virus is transmitted from the natural reservoir, fruit bats, to humans via consumption of date palm sap contaminated by bats, with subsequent human-to-human transmission. To experimentally investigate this epidemiological association between drinking of date palm sap and human cases of Nipah virus infection, we determined the viability of Nipah virus (strain Bangladesh/200401066) in artificial palm sap. At 22°C virus titers remained stable for at least 7 days, thus potentially allowing food-borne transmission. Next, we modeled food-borne Nipah virus infection by supplying Syrian hamsters with artificial palm sap containing Nipah virus. Drinking of 5×108 TCID50 of Nipah virus resulted in neurological disease in 5 out of 8 hamsters, indicating that food-borne transmission of Nipah virus can indeed occur. In comparison, intranasal (i.n.) inoculation with the same dose of Nipah virus resulted in lethal respiratory disease in all animals. In animals infected with Nipah virus via drinking, virus was detected in respiratory tissues rather than in the intestinal tract. Using fluorescently labeled Nipah virus particles, we showed that during drinking, a substantial amount of virus is deposited in the lungs, explaining the replication of Nipah virus in the respiratory tract of these hamsters. Besides the ability of Nipah virus to infect hamsters via the drinking route, Syrian hamsters infected via that route transmitted the virus through direct contact with naïve hamsters in 2 out of 24 transmission pairs. Although these findings do not directly prove that date palm sap contaminated with Nipah virus by bats is the origin of Nipah virus outbreaks in Bangladesh, they provide the first experimental support for this hypothesis. Understanding the Nipah virus transmission cycle is essential for preventing and mitigating future outbreaks.  相似文献   

3.
Nipah virus, a member of the paramyxovirus family, was first isolated and identified in 1999 when the virus crossed the species barrier from fruit bats to pigs and then infected humans, inducing an encephalitis with up to 40% mortality. At present there is no prophylaxis for Nipah virus. We investigated the possibility of vaccination and passive transfer of antibodies as interventions against this disease. We show that both of the Nipah virus glycoproteins (G and F) when expressed as vaccinia virus recombinants induced an immune response in hamsters which protected against a lethal challenge by Nipah virus. Similarly, passive transfer of antibody induced by either of the glycoproteins protected the animals. In both the active and passive immunization studies, however, the challenge virus was capable of hyperimmunizing the vaccinated animals, suggesting that although the virus replicates under these conditions, the immune system can eventually control the infection.  相似文献   

4.
Nipah virus (NiV) is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G). Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi). Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.  相似文献   

5.
Within the past decade a number of new zoonotic paramyxoviruses emerged from flying foxes to cause serious disease outbreaks in man and livestock. Hendra virus was the cause of fatal infections of horses and man in Australia in 1994, 1999 and 2004. Nipah virus caused encephalitis in humans both in Malaysia in 1998/99, following silent spread of the virus in the pig population, and in Bangladesh from 2001 to 2004 probably as a result of direct bat to human transmission and spread within the human population. Hendra and Nipah viruses are highly pathogenic in humans with case fatality rates of 40% to 70%. Their genetic constitution, virulence and wide host range make them unique paramyxoviruses and they have been given Biosecurity Level 4 status in a new genus Henipavirus within the family Paramyxoviridae. Recent studies on the virulence, host range and cell tropisms of henipaviruses provide insights into the unique biological properties of these emerging human pathogens and suggest approaches for vaccine development and therapeutic countermeasures.  相似文献   

6.
During the outbreak of Nipah virus encephalitis involving pigs and humans in peninsular Malaysia in 1998/1999, a conventional approach was initially undertaken to collect specimens from fruit bats by mist-netting and shooting, as an integral part of wildlife surveillance of the natural reservoir host of Nipah virus. This study describes a novel method of collecting fruit bats' urine samples using plastic sheets for isolation of Nipah virus. This novel approach resulted in the isolation of several other known and unidentified infectious agents besides Nipah virus.  相似文献   

7.

Background

Nipah virus (NiV) is an emerging disease that causes severe encephalitis and respiratory illness in humans. Pigs were identified as an intermediate host for NiV transmission in Malaysia. In Bangladesh, NiV has caused recognized human outbreaks since 2001 and three outbreak investigations identified an epidemiological association between close contact with sick or dead animals and human illness.

Methodology

We examined cattle and goats reared around Pteropus bat roosts in human NiV outbreak areas. We also tested pig sera collected under another study focused on Japanese encephalitis.

Principal Findings

We detected antibodies against NiV glycoprotein in 26 (6.5%) cattle, 17 (4.3%) goats and 138 (44.2%) pigs by a Luminex-based multiplexed microsphere assay; however, these antibodies did not neutralize NiV. Cattle and goats with NiVsG antibodies were more likely to have a history of feeding on fruits partially eaten by bats or birds (PR = 3.1, 95% CI 1.6–5.7) and drinking palmyra palm juice (PR = 3.9, 95% CI 1.5–10.2).

Conclusions

This difference in test results may be due to the exposure of animals to one or more novel viruses with antigenic similarity to NiV. Further research may identify a novel organism of public health importance.  相似文献   

8.
The structure and connectivity of wildlife host populations may influence zoonotic disease dynamics, evolution and therefore spillover risk to people. Fruit bats in the genus Pteropus, or flying foxes, are the primary natural reservoir for henipaviruses—a group of emerging paramyxoviruses that threaten livestock and public health. In Bangladesh, Pteropus medius is the reservoir for Nipah virus—and viral spillover has led to human fatalities nearly every year since 2001. Here, we use mitochondrial DNA and nuclear microsatellite markers to measure the population structure, demographic history and phylogeography of P. medius in Bangladesh. We combine this with a phylogeographic analysis of all known Nipah virus sequences and strains currently available to better inform the dynamics, distribution and evolutionary history of Nipah virus. We show that P. medius is primarily panmictic, but combined analysis of microsatellite and morphological data shows evidence for differentiation of two populations in eastern Bangladesh, corresponding to a divergent strain of Nipah virus also found in bats from eastern Bangladesh. Our demographic analyses indicate that a large, expanding population of flying foxes has existed in Bangladesh since the Late Pleistocene, coinciding with human population expansion in South Asia, suggesting repeated historical spillover of Nipah virus likely occurred. We present the first evidence of mitochondrial introgression, or hybridization, between P. medius and flying fox species found in South‐East Asia (P. vampyrus and P. hypomelanus), which may help to explain the distribution of Nipah virus strains across the region.  相似文献   

9.
Background Unlike Asian non‐human primates, chronically SIV‐infected African non‐human primates (NHP) display a non‐pathogenic disease course. The different outcomes may be related to the development of an SIV‐mediated breach of the intestinal mucosa in the Asian species that is absent in the African animals. Methods To examine possible mechanisms that could lead to the gut breach, we determined whether the colonic lamina propria (LP) of SIV‐naïve Asian monkeys contained more granzyme B (GrB) producing CD4 T cells than did that of the African species. GrB is a serine protease that may disrupt mucosal integrity by damaging tight junction proteins. Results We found that the colonic LP of Asian NHP contain more CD4+/GrB+ cells than African NHP. We also observed reduced CD4 expression on LP T cells in African green monkeys. Conclusion Both phenotypic differences could protect against SIV‐mediated damage to the intestinal mucosa and could lead to future therapies in HIV+ humans.  相似文献   

10.
Nipah virus (NiV), a zoonotic paramyxovirus belonging to the genus Henipavirus, is classified as a Biosafety Level-4 pathogen based on its high pathogenicity in humans and the lack of available vaccines or therapeutics. Since its initial emergence in 1998 in Malaysia, this virus has become a great threat to domestic animals and humans. Sporadic outbreaks and person-to-person transmission over the past two decades have resulted in hundreds of human fatalities. Epidemiological surveys have shown that NiV is distributed in Asia, Africa, and the South Pacific Ocean, and is transmitted by its natural reservoir, Pteropid bats. Numerous efforts have been made to analyze viral protein function and structure to develop feasible strategies for drug design. Increasing surveillance and preventative measures for the viral infectious disease are urgently needed.  相似文献   

11.
Rift Valley fever (RVF) is a veterinary and human disease in Africa and the Middle East. The causative agent, RVF virus (RVFV), can be naturally transmitted by mosquito, direct contact, or aerosol. We sought to develop a nonhuman primate (NHP) model of severe RVF in humans to better understand the pathogenesis of RVF and to use for evaluation of medical countermeasures. NHP from four different species were exposed to aerosols containing RVFV. Both cynomolgus and rhesus macaques developed mild fevers after inhalation of RVFV, but no other clinical signs were noted and no macaque succumbed to RVFV infection. In contrast, both marmosets and African green monkeys (AGM) proved susceptible to aerosolized RVF virus. Fever onset was earlier with the marmosets and had a biphasic pattern similar to what has been reported in humans. Beginning around day 8 to day 10 postexposure, clinical signs consistent with encephalitis were noted in both AGM and marmosets; animals of both species succumbed between days 9 and 11 postexposure. Marmosets were susceptible to lower doses of RVFV than AGM. Histological examination confirmed viral meningoencephalitis in both species. Hematological analyses indicated a drop in platelet counts in both AGM and marmosets suggestive of thrombosis, as well as leukocytosis that consisted mostly of granulocytes. Both AGM and marmosets would serve as useful models of aerosol infection with RVFV.  相似文献   

12.
Nipah virus (NiV) is a recently emerged zoonotic paramyxovirus whose natural reservoirs are several species of Pteropus fruit bats. NiV provokes a widespread vasculitis often associated with severe encephalitis, with up to 75% mortality in humans. We have analyzed the pathogenesis of NiV infection, using human leukocyte cultures and the hamster animal model, which closely reproduces human NiV infection. We report that human lymphocytes and monocytes are not permissive for NiV and a low level of virus replication is detected only in dendritic cells. Interestingly, despite the absence of infection, lymphocytes could efficiently bind NiV and transfer infection to endothelial and Vero cells. This lymphocyte-mediated transinfection was inhibited after proteolytic digestion and neutralization by NiV-specific antibodies, suggesting that cells could transfer infectious virus to other permissive cells without the requirement for NiV internalization. In NiV-infected hamsters, leukocytes captured and carried NiV after intraperitoneal infection without themselves being productively infected. Such NiV-loaded mononuclear leukocytes transfer lethal NiV infection into naïve animals, demonstrating efficient virus transinfection in vivo. Altogether, these results reveal a remarkable capacity of NiV to hijack leukocytes as vehicles to transinfect host cells and spread the virus throughout the organism. This mode of virus transmission represents a rapid and potent method of NiV dissemination, which may contribute to its high pathogenicity.  相似文献   

13.
Nipah virus (NiV) and Hendra virus (HeV) are emerging zoonotic viruses and the causative agents of severe respiratory disease and encephalitis in humans. Little is known about the mechanisms that govern the development of respiratory and neurological disease. Using a hamster model of lethal NiV and HeV infection, we describe the role of the route and dose of infection on the clinical outcome and determine virus tropism and host responses following infection. Infection of hamster with a high dose of NiV or HeV resulted in acute respiratory distress. NiV initially replicated in the upper respiratory tract epithelium, whereas HeV initiated infection primarily in the interstitium. In contrast, infection with a low dose of NiV or HeV resulted in the development of neurological signs and more systemic spread of the virus through involvement of the endothelium. The development of neurological signs coincided with disruption of the blood-brain barrier (BBB) and expression of tumor necrosis alpha (TNF-α) and interleukin 1 β (IL-1β). In addition, interferon-inducible protein 10 (IP-10) was identified as playing an important role in NiV and HeV pathogenesis. These studies reveal novel information on the development and progression of NiV and HeV clinical disease, provide a mechanism for the differences in transmission observed between NiV and HeV outbreaks, and identify specific cytokines and chemokines that serve as important targets for treatment.  相似文献   

14.
Nipah virus is an emerging zoonotic paramyxovirus that causes severe and often fatal respiratory and neurological disease in humans. The virus was first discovered after an outbreak of encephalitis in pig farmers in Malaysia and Singapore with subsequent outbreaks in Bangladesh or India occurring almost annually. Due to the highly pathogenic nature of NiV, its pandemic potential, and the lack of licensed vaccines or therapeutics, there is a requirement for research and development into highly sensitive and specific diagnostic tools as well as antivirals and vaccines to help prevent and control future outbreak situations.  相似文献   

15.
We have generated a recombinant Newcastle disease virus (NDV) that expresses the green fluorescence protein (GFP) in infected chicken embryo fibroblasts (CEFs). This virus is interferon (IFN) sensitive, and pretreatment of cells with chicken alpha/beta IFN (IFN-alpha/beta) completely blocks viral GFP expression. Prior transfection of plasmid DNA induces an IFN response in CEFs and blocks NDV-GFP replication. However, transfection of known inhibitors of the IFN-alpha/beta system, including the influenza A virus NS1 protein and the Ebola virus VP35 protein, restores NDV-GFP replication. We therefore conclude that the NDV-GFP virus could be used to screen proteins expressed from plasmids for the ability to counteract the host cell IFN response. Using this system, we show that expression of the NDV V protein or the Nipah virus V, W, or C proteins rescues NDV-GFP replication in the face of the transfection-induced IFN response. The V and W proteins of Nipah virus, a highly lethal pathogen in humans, also block activation of an IFN-inducible promoter in primate cells. Interestingly, the amino-terminal region of the Nipah virus V protein, which is identical to the amino terminus of Nipah virus W, is sufficient to exert the IFN-antagonist activity. In contrast, the anti-IFN activity of the NDV V protein appears to be located in the carboxy-terminal region of the protein, a region implicated in the IFN-antagonist activity exhibited by the V proteins of mumps virus and human parainfluenza virus type 2.  相似文献   

16.
Isolation of Nipah virus from Malaysian Island flying-foxes   总被引:17,自引:0,他引:17  
In late 1998, Nipah virus emerged in peninsular Malaysia and caused fatal disease in domestic pigs and humans and substantial economic loss to the local pig industry. Surveillance of wildlife species during the outbreak showed neutralizing antibodies to Nipah virus mainly in Island flying-foxes (Pteropus hypomelanus) and Malayan flying-foxes (Pteropus vampyrus) but no virus reactive with anti-Nipah virus antibodies was isolated. We adopted a novel approach of collecting urine from these Island flying-foxes and swabs of their partially eaten fruits. Three viral isolates (two from urine and one from a partially eaten fruit swab) that caused Nipah virus-like syncytial cytopathic effect in Vero cells and stained strongly with Nipah- and Hendra-specific antibodies were isolated. Molecular sequencing and analysis of the 11,200-nucleotide fragment representing the beginning of the nucleocapsid gene to the end of the glycoprotein gene of one isolate confirmed the isolate to be Nipah virus with a sequence deviation of five to six nucleotides from Nipah virus isolated from humans. The isolation of Nipah virus from the Island flying-fox corroborates the serological evidence that it is one of the natural hosts of the virus.  相似文献   

17.
The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are emerging zoonotic paramyxoviruses that can cause severe and often lethal neurologic and/or respiratory disease in a wide variety of mammalian hosts, including humans. There are presently no licensed vaccines or treatment options approved for human or veterinarian use. Guinea pigs, hamsters, cats, and ferrets, have been evaluated as animal models of human HeV infection, but studies in nonhuman primates (NHP) have not been reported, and the development and approval of any vaccine or antiviral for human use will likely require efficacy studies in an NHP model. Here, we examined the pathogenesis of HeV in the African green monkey (AGM) following intratracheal inoculation. Exposure of AGMs to HeV produced a uniformly lethal infection, and the observed clinical signs and pathology were highly consistent with HeV-mediated disease seen in humans. Ribavirin has been used to treat patients infected with either HeV or NiV; however, its utility in improving outcome remains, at best, uncertain. We examined the antiviral effect of ribavirin in a cohort of nine AGMs before or after exposure to HeV. Ribavirin treatment delayed disease onset by 1 to 2 days, with no significant benefit for disease progression and outcome. Together our findings introduce a new disease model of acute HeV infection suitable for testing antiviral strategies and also demonstrate that, while ribavirin may have some antiviral activity against the henipaviruses, its use as an effective standalone therapy for HeV infection is questionable.Hendra virus (HeV) and Nipah virus (NiV) are members of the genus Henipavirus (family Paramyxoviridae) that can cause severe respiratory illness and/or encephalitis in a wide variety of mammals, including horses, pigs, and humans (7, 23). HeV was identified as the causative agent of an acute respiratory disease in horses in 1994 in Queensland, Australia (23), and to date there have been 14 outbreaks in Australia since, with at least one occurrence per year since 2006, most recently in May 2010 (ProMed-mail no. 20100522.1699 [International Society for Infectious Diseases, http://www.promedmail.org]). Every outbreak of HeV has involved horses as the initial infected host, and there have been a total of seven human cases arising from exposure to infected horses. Four human fatalities have occurred (22), with the most recent occurring in August of 2009 (ProMed-mail no. 20090826.2998 and 20090903.3098). All patients initially presented with influenza-like illnesses (ILIs) after an incubation period of 7 to 16 days. While two individuals recovered from ILI, one patient developed pneumonitis and died from multiorgan failure. Three of the lethal cases developed encephalitic manifestations (mild confusion and ataxia), with two patients experiencing seizures (22, 23, 27).Data on the histopathology of fatal human HeV cases are limited, but the pathology includes small necrotic plaques in the cerebrum and cerebellum, in addition to mild parenchymal inflammation (21, 27). Severe parenchymal inflammation and necrosis were observed in the lungs. More extensive histopathologic data are available from 32 autopsies of fatal human NiV cases (28). Similarly to the HeV cases, pathology was characterized by systemic vasculitis and parenchymal necrosis in the central nervous system (CNS), while in the lung, pathological findings mainly included vasculitis, fibrinoid necrosis, alveolar hemorrhage, pulmonary edema, and aspiration pneumonia. Other organs that were affected included heart, kidney, and spleen and showed generally mild or focal inflammation. The development of syncytial multinucleated endothelial cells is characteristic of both HeV and NiV (27, 28). At present, the details of the pathogenesis and histopathological changes mediated by either HeV or NiV infection in humans are naturally derived from only the late phases of the disease course, and therefore a relevant animal model is needed that mimics the disease progression seen in humans.Pteropid fruit bats, commonly known as flying foxes in the family Pteropodidae, are the principle natural reservoirs for both NiV and HeV (reviewed in reference 3). However, these henipaviruses display a broad species tropism, and in addition to bats, horses and humans, natural and/or experimental infection of HeV has been demonstrated in guinea pigs, hamsters, pigs, cats, and ferrets (25). Experimental infections of Syrian hamsters with HeV is lethal, and animals show disease similar to that of human cases, including respiratory and neurological symptoms, depending on the dose (11; unpublished data). In this model, viral RNA can be detected in various organs of infected hamsters, including brain, lung, kidney, heart, liver, and spleen. The main histopathological findings included parenchymal infection in various organs, including the brain, with vasculitis and syncytial multinucleated endothelial cells in many blood vessels (11). While this model is useful in studying pathogenesis, it is limited in the availability of reagents to do so.There are currently no vaccines or treatments licensed for human use. Several in vitro studies have shown that ribavirin is effective against both HeV and NiV infection (1, 2, 29). An open-label ribavirin treatment trial was run during an outbreak of NiV in Malaysia in 1998 and reported to reduce mortality by 36% (6). Of the seven recorded human HeV cases, three patients were treated with ribavirin, one of whom survived (22). In the most recent outbreak of HeV in Australia, three additional people received ribavirin treatment in combination with chloroquine after suspected exposure to HeV-contaminated secretions from infected horses. While all three individuals survived, infection was not confirmed, and therefore it remains unknown whether the treatment had any beneficiary effect (ProMed-mail no. 20090826.2998). In addition, two animal studies in hamsters showed that ribavirin treatment delays but does not prevent death from NiV or HeV infection (8, 10). Therefore, an animal model with greater relevance to humans and that recapitulates the disease processes seen in human cases of HeV is needed to get a better answer to whether ribavirin might be effective against henipavirus infections. In addition, the U.S. FDA implemented the “Animal Efficacy Rule,” which specifically applies to the development of therapeutic products when human efficacy studies are not possible or ethical, such as is often the case with highly virulent pathogens like HeV (24). Essentially, this rule allows for the evaluation of vaccines or therapeutics using data derived from studies carried out in at least two animal models. The licensure of any therapeutic modalities for HeV will require a thorough evaluation of HeV pathogenesis in nonhuman primates (NHPs).In the present study, we report the development and characterization of a new nonhuman primate (NHP) model of lethal HeV infection in the African green monkey (AGM). The pathogenesis and disease progression in the AGM upon HeV infection essentially mirrored the lethal disease episodes seen among human cases of HeV. Using this new model, the efficacy of ribavirin treatment against lethal challenge with HeV was examined. Here we have shown that ribavirin treatment can significantly delay but not prevent death of AGMs from lethal HeV infection. In addition to severe respiratory symptoms in all animals, prolonged disease progression in ribavirin-treated animals was also marked by the appearance of neurological symptoms.  相似文献   

18.

Objective

In March 2007, we investigated a cluster of Nipah encephalitis to identify risk factors for Nipah infection in Bangladesh.

Methods

We defined confirmed Nipah cases by the presence of IgM and IgG antibodies against Nipah virus in serum. Case-patients, who resided in the same village during the outbreak period but died before serum could be collected, were classified as probable cases.

Results

We identified three confirmed and five probable Nipah cases. There was a single index case. Five of the secondary cases came in close physical contact to the index case when she was ill. Case-patients were more likely to have physical contact with the index case (71% cases versus 0% controls, p = <0.001). The index case, on her third day of illness, and all the subsequent cases attended the same religious gathering. For three probable cases including the index case, we could not identify any known risk factors for Nipah infection such as physical contact with Nipah case-patients, consumption of raw date palm juice, or contact with sick animals or fruit bats.

Conclusion

Though person-to-person transmission remains an important mode of transmission for Nipah infection, we could not confirm the source of infection for three of the probable Nipah case-patients. Continued surveillance and outbreak investigations will help better understand the transmission of Nipah virus and develop preventive strategies.  相似文献   

19.
Rift Valley fever (RVF) virus is a mosquito-borne human and veterinary pathogen associated with large outbreaks of severe disease throughout Africa and more recently the Arabian peninsula. Infection of livestock can result in sweeping “abortion storms” and high mortality among young animals. Human infection results in self-limiting febrile disease that in ~1 to 2% of patients progresses to more serious complications including hepatitis, encephalitis, and retinitis or a hemorrhagic syndrome with high fatality. The virus S segment-encoded NSs and the M segment-encoded NSm proteins are important virulence factors. The development of safe, effective vaccines and tools to screen and evaluate antiviral compounds is critical for future control strategies. Here, we report the successful reverse genetics generation of multiple recombinant enhanced green fluorescent protein-tagged RVF viruses containing either the full-length, complete virus genome or precise deletions of the NSs gene alone or the NSs/NSm genes in combination, thus creating attenuating deletions on multiple virus genome segments. These viruses were highly attenuated, with no detectable viremia or clinical illness observed with high challenge dosages (1.0 × 104 PFU) in the rat lethal disease model. A single-dose immunization regimen induced robust anti-RVF virus immunoglobulin G antibodies (titer, ~1:6,400) by day 26 postvaccination. All vaccinated animals that were subsequently challenged with a high dose of virulent RVF virus survived infection and could be serologically differentiated from naïve, experimentally infected animals by the lack of NSs antibodies. These rationally designed marker RVF vaccine viruses will be useful tools for in vitro screening of therapeutic compounds and will provide a basis for further development of RVF virus marker vaccines for use in endemic regions or following the natural or intentional introduction of the virus into previously unaffected areas.  相似文献   

20.
Porotto M  Yi F  Moscona A  LaVan DA 《PloS one》2011,6(3):e16874
We present a new antiviral strategy and research tool that could be applied to a wide range of enveloped viruses that infect human beings via membrane fusion. We test this strategy on two emerging zoonotic henipaviruses that cause fatal encephalitis in humans, Nipah (NiV) and Hendra (HeV) viruses. In the new approach, artificial cell-like particles (protocells) presenting membrane receptors in a biomimetic manner were developed and found to attract and inactivate henipavirus envelope glycoprotein pseudovirus particles, preventing infection. The protocells do not accumulate virus during the inactivation process. The use of protocells that interact with, but do not accumulate, viruses may provide significant advantages over current antiviral drugs, and this general approach may have wide potential for antiviral development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号