首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract:  This paper describes the diversity, taphonomy and palaeoecology of angiosperm leaves that dominate a palaeoflora of Cretaceous (Cenomanian–Coniacian) age from the Mata Amarilla Formation in the Austral Basin, south-west Patagonia, Argentina. Twelve morphotypes of angiosperm leaves are recognized based on foliar morphotype analysis of more than 500 specimens. These were divided into six morphological groups based on major architectural patterns. The relative dominance of these morphotypes, mode of preservation and relationship with sedimentary facies were evaluated from two levels within the formation. This analysis identified two different plant palaeocommunities. The lower, María Elena, level (MEL) was deposited in a marine coastal area on a subaerial delta plain; the dominant angiosperm morphotypes preserved in it are group 1 (MA100) and group 2 (MA101, 102); morphotypes MA109 and 110 are scarce but exclusive to this level. The upper, Mata Amarilla, level (MAL), accumulated inland in flood-plain environments; the most abundant angiosperm morphotypes are groups 3 (MA103–105), 4 (MA106) and 1 (MA100); morphotypes MA103–105 and 108 are exclusive to this level. Comparisons with other floras of similar age from Antarctica, Australia and New Zealand indicate that the Mata Amarilla flora has a slightly higher morphological diversity of angiosperm leaves, providing the first evidence for an angiosperm-dominated early Late Cretaceous macroflora in south-west Gondwana.  相似文献   

2.
Aim To use surface pollen and vegetation relationships to aid the interpretation of a Holocene pollen record. Location South‐west Tasmania, Australia. Methods A survey was undertaken of surface‐pollen samples from the major regional vegetation types: alpine, rain forest and moorland. Relationships between vegetation type and surface‐pollen representation were analysed using twinspan classification and ordination. A core was retrieved from moorland vegetation, and interpretation of the fossil pollen sequence was aided using relationships detected in our surface‐pollen analysis. Results Regional vegetation types are reflected in the pollen rain of south‐west Tasmania, despite the over‐representation of important rain forest tree species in samples from non‐forest sites. twinspan classification of the surface‐pollen samples identified the following indicator pollen taxa for each vegetation type: Astelia alpina (alpine); Lagarostrobos franklinii (rain forest); Leptospermum and Melaleuca (moorland). Detrended correspondence analysis of the surface‐pollen samples clearly separates samples from each vegetation type. Correlation of the ordination axes with environmental data identified a dominant temperature/altitudinal gradient in the surface‐pollen data (R = 0.852/0.844). Application of the results of the surface‐pollen analysis to the fossil sequence revealed that fire‐promoted moorland has dominated the local environment around the core site for the entire Holocene. Changes in fossil pollen composition also suggest that temperatures increased through the Late Glacial to peak in the mid‐Holocene and declined thereafter, a trend consistent with other sites in the region. Main conclusions Pollen spectra can successfully be used to predict local vegetation in south‐west Tasmania. At least this part of inland south‐west Tasmania has remained forest‐free throughout the Holocene, conflicting with the dominant palaeoecological paradigm of a mid‐Holocene dominated by rain forest. A comparison with pollen records from moorland vegetation across the region suggests that fire‐promoted moorland has dominated the landscape since the Late Glacial. We suggest that burning by people through the Late Glacial (if not earlier) facilitated the spread of moorland throughout the region, greatly restricting the expansion of rain forest. The continued influence of fire throughout the Holocene in this perennially wet landscape argues for a revision of the dominant human‐occupation model that depicts an abandonment of the interior of south‐west Tasmania in the Late Glacial in response to the expansion of rain forest.  相似文献   

3.
Wan, X., Scott, R., Chen, W., Gao, L. & Zhang, Y. 2011: Early Cretaceous stratigraphy and SHRIMP U‐Pb age constrain the Valanginian–Hauterivian boundary in southern Tibet. Lethaia, Vol. 44, pp. 231–244. The Late Jurassic to the Early Cretaceous marine strata are extensively distributed in southern Tibet. In Gyangze, the strata are divided into the Weimei and Jiabula formations. In Nagarze, they are divided into the Weimei and Sangxiu formations. Previous work has reported diverse ammonite species of Haplophylloceras and Himalayites in the Weimei Formation, and a few species of Spiticeras in the lower Jiabula and Sangxiu formations. The present study has found the bivalve Inoceramus and nannofossil assemblages in the lower Jiabula and Sangxiu formations. The nannofossil assemblage of Nannoconus steimannii steinmannii, N. steinmannii minor and Watznaueria barnesae indicates Berriasian age, and the Calcicalathina oblongata–Speetonia colligata assemblage is Valanginian in age. Numerical ages for the Jiabula and Jiabula‐goukou sections in Gyangze have been interpolated by comparing the fossil ranges with ages calibrated in other sections. The correlation experiment plots fossil ranges in the two sections to the CRET1 Database. The estimated rate of sediment accumulation of the lower Sangxiu Formation is 22.6 m/myr. The Jurassic–Cretaceous (J/K) boundary is at the bottom of the Jiabula Formation in Gyangze, and the base of the Sangxiu Formation in Nagarze. The boundary is marked by the appearance of the ammonite Spiticeras and the nannofossil assemblage of Nannoconus st. steinmannii–N. st. minor–Watznaueria barnesae. The radiometric age in Tibet is the first to be integrated with upper Valanginian fossils. The volcanic rocks of the upper Sangxiu Formation are dated at 136 ± 3.0 Ma deduced from zircon SHRIMP age of rhyolite. By consideration of the rate of sediment accumulation of the underlying sedimentary deposits, the J/K boundary in the Gyangze–Nagarze area is approximately 145 Ma as suggested by the newly issued International Stratigraphic Chart, and the Valanginian/Hauterivian boundary lies between 134 Ma and 136 Ma. □ Biostratigraphy, graphic plot, Jurassic/Cretaceous boundary, nannofossil, SHRIMP U‐Pb age, Southern Tibet, Valanginian/Hauterivian boundary.  相似文献   

4.
该文记述了国际前寒武系-寒武系界线层型候选剖面所在地,湖北宜昌震旦系-寒武系界线地层中发现的小刺球藻类化石Micrhystridium regulare,regulare,讨论了它们的产出层位及其归属,并对小刺球藻类化石在时间上、空间上的分布作了简要的归纳,最后提出了小刺球藻类化石在震旦系-寒武系界线地层的划分和大区域地层对比中重要的潜在作用。  相似文献   

5.
Fossil abundance and diversity in geological successions are subject to bias arising from shifting depositional and diagenetic environments, resulting in variable rates of fossil accumulation and preservation. In simulations, this bias can be constrained based on sequence‐stratigraphic architecture. Nonetheless, a practical quantitative method of incorporating the contribution of sequence‐stratigraphic architecture in community palaeoecology and diversity analyses derived from individual successions is missing. As a model of faunal turnover affected by the stratigraphic bias, we use the ‘Mulde event’, a postulated mid‐Silurian interval of elevated conodont turnover, which coincides with global eustatic sea‐level changes and which has been based on regionally constrained observations. We test whether conodont turnover is highest at the boundary corresponding to the ‘event’ and post‐‘event’ interval against the alternative that conodont turnover reflects habitat tracking and peaks at facies shifts. Based on the previously documented, parasequence‐level stratigraphic framework of sections in the northern and central part of the Midland Platform, the relative controls of sequence‐stratigraphic architecture, time and depositional environment over conodont distribution are evaluated using permutational multivariate analysis of variance. The depositional environment controls the largest part of variability in conodont assemblage composition, whereas the postulated ‘Mulde event’, or genuine temporal change in conodont diversity, cannot be detected. Depending on the binning of the stratigraphic succession, contrasting diversity and turnover patterns can be produced. The simple approach proposed here, emulating partitioning of β diversity into spatial and temporal components, may help to constrain the stratigraphic bias, even at the scale of an individual section.  相似文献   

6.
Aim The research aim is to reconstruct last glacial maximum (LGM) and Holocene vegetation history and ecology from fossil beetle assemblages. Location The LGM and Holocene sites are located in the Awatere Valley, which lies in the tectonically active Marlborough Region in the north east of the South Island of New Zealand. Methods Beetle fossils were extracted from silty organic sediment using the standard kerosene flotation method. Fossils were identified by comparisons made to modern species based on morphology and surface features. The ecology and distribution of modern analogues are extrapolated to reconstruct the fossil environment. Results One hundred and forty‐five beetle species belonging to 33 families were identified. The LGM fossil fauna showed the local vegetation was characterized by a forest patch surrounded by an open tussock/grassland landscape. This Nothofagus (southern beech) forest persisted at the site until mid‐Holocene when it was replaced by a podocarp forest that contained high beetle diversity. Herbivores dominate in the early stage of this zone, indicating a relatively new forest environment. Later in the Holocene, the fauna is dominated by detritivores indicating an older more established forest. The late Holocene is characterized by low diversity and the absence of forest species. This fauna indicates that by 500 years ago, the forest was absent and is associated with an almost compete loss of beetle biodiversity. Main conclusions The fossil beetles provide a unique perspective into the past environment in the Awatere Valley on a local scale. The reconstruction supports regional pollen interpretations of Holocene vegetation by identifying a specific forest patch. Fossil beetles are thus a valuable local proxy for vegetation reconstructions.  相似文献   

7.
Understanding the changes in root exploitation strategies during post‐logging recovery is important for predicting forest productivity and carbon dynamics in tropical forests. We sampled fine (diameter < 2 mm) roots using the soil core method to quantify fine‐root biomass and architectural and morphological traits to determine root exploitation strategies in an old growth forest and in a 54‐yr‐old logged‐over forest influenced by similar parent material and climate. Seven root traits were considered: four associated with resource exploitation potential or an ‘extensive’ strategy (fine‐root biomass, length, surface area, and volume), and three traits which reflect exploitation efficiency or an ‘intensive’ strategy (specific root area, specific root length, and root tissue density). We found that total fine‐root biomass, length, surface area, volume, and fine‐root tissue density were higher in the logged‐over forest, whereas the old growth forest had higher total specific root length and specific root surface area than the logged‐over forest. The results suggest different root exploitation strategies between the forests. Plants in the old growth forest invest root biomass more efficiently to maximize soil volume explored, whereas plants in the logged‐over forest increase the spatial distribution of roots resulting in the expansion of the rhizosphere.  相似文献   

8.
The different agents influencing the preservation of fossil insects are revised. The mode of preservation of one species of Heteroptera, of Saltatoria, Hymenoptera, Trichoptera and Lepidoptera from the Fur Formation is described and interpreted. All groups have specific modes of preservation depending particularly on the flying behaviour of the living insects, their morphology, floating time, and the activity of algal, fungi or bacterial mats growing on the surface of the bodies. As the example of a bug shows, it is possible to determine, if extensive material is available for comparison, the systematic position of fragments of insects that are difficult to interpret otherwise.  相似文献   

9.
Lower Kimmeridgian to Lower Tithonian (Upper Jurassic) sections studied at Sierra de Palotes (Durango) and Sierra de Catorce (San Luis Potosí), Mexico, show low-energy deposits in which the composition of fossil macroinvertebrate assemblages, including megabenthos, reflects biostratinomic control. Monotonous siltstones provide continuous records of ammonite assemblages and reflect dominant deposition of shells in living areas; meanwhile, discontinues records were forced by episodic post-mortem transportation of shells, which was especially accentuated under storm influence. Rhythmic marly-silty limestones and marls illustrate a fossil record probably determined by minor transgressive-regressive pulses. The major changes in lithofacies are reflected by condensed silty and phosphatic mudstones deposited during significant floodings affecting areas under dominant terrigenous sedimentation. These changes determined more or less significant variations in the composition of fossil assemblages according to their relation to changing ecological conditions. However, shifting ecospaces exhibit no direct relationship to changes in lithofacies. Post-mortem transportation, operating in relation to both marine floodings and changes in the pattern of upper-water currents, was the main biostratinomic factor affecting the areal distribution of ammonite populations. Shell transportation and sedimentation rate controlled preservation and ultimately influenced diversity in recorded ammonite assemblages. The post-mortem behaviour (interpreted from shell structure and preservation), and therefore distribution, of ammonite shells points to shallow-water environments during the Kimmeridgian - Early Tithonian in areas (such as SE Durango and San Luís Potosí) close to the changing boundary between dominant carbonate and terrigenous sedimentation. No reworking affecting ammonite biostratigraphy has been identified in the sections studied.  相似文献   

10.
Morphologically complex trace fossils, recording the infaunal activities of bilaterian animals, are common in Phanerozoic successions but rare in the Ediacaran fossil record. Here, we describe a trace fossil assemblage from the lower Dunfee Member of the Deep Spring Formation at Mount Dunfee (Nevada, USA), over 500 m below the Ediacaran–Cambrian boundary. Although millimetric in scale and largely not fabric‐disruptive, the Dunfee assemblage includes complex and sediment‐penetrative trace fossil morphologies that are characteristic of Cambrian deposits. The Dunfee assemblage records one of the oldest documented instances of sediment‐penetrative infaunalization, corroborating previous molecular, ichnologic, and paleoecological data suggesting that crown‐group bilaterians and bilaterian‐style ecologies were present in late Ediacaran shallow marine ecosystems. Moreover, Dunfee trace fossils co‐occur with classic upper Ediacaran tubular body fossils in multiple horizons, indicating that Ediacaran infauna and epifauna coexisted and likely formed stable ecosystems.  相似文献   

11.
Climate influences forests directly and indirectly through disturbance. The interaction of climate change and increasing area burned has the potential to alter forest composition and community assembly. However, the overall forest response is likely to be influenced by species‐specific responses to environmental change and the scale of change in overstory species cover. In this study, we sought to quantify how projected changes in climate and large wildfire size would alter forest communities and carbon (C) dynamics, irrespective of competition from nontree species and potential changes in other fire regimes, across the Sierra Nevada, USA. We used a species‐specific, spatially explicit forest landscape model (LANDIS‐II) to evaluate forest response to climate–wildfire interactions under historical (baseline) climate and climate projections from three climate models (GFDL, CCSM3, and CNRM) forced by a medium–high emission scenario (A2) in combination with corresponding climate‐specific large wildfire projections. By late century, we found modest changes in the spatial distribution of dominant species by biomass relative to baseline, but extensive changes in recruitment distribution. Although forest recruitment declined across much of the Sierra, we found that projected climate and wildfire favored the recruitment of more drought‐tolerant species over less drought‐tolerant species relative to baseline, and this change was greatest at mid‐elevations. We also found that projected climate and wildfire decreased tree species richness across a large proportion of the study area and transitioned more area to a C source, which reduced landscape‐level C sequestration potential. Our study, although a conservative estimate, suggests that by late century, forest community distributions may not change as intact units as predicted by biome‐based modeling, but are likely to trend toward simplified community composition as communities gradually disaggregate and the least tolerant species are no longer able to establish. The potential exists for substantial community composition change and forest simplification beyond this century.  相似文献   

12.
Aim This paper documents reconstructions of the vegetation patterns in Australia, Southeast Asia and the Pacific (SEAPAC region) in the mid‐Holocene and at the last glacial maximum (LGM). Methods Vegetation patterns were reconstructed from pollen data using an objective biomization scheme based on plant functional types. The biomization scheme was first tested using 535 modern pollen samples from 377 sites, and then applied unchanged to fossil pollen samples dating to 6000 ± 500 or 18,000 ± 1000 14C yr bp . Results 1. Tests using surface pollen sample sites showed that the biomization scheme is capable of reproducing the modern broad‐scale patterns of vegetation distribution. The north–south gradient in temperature, reflected in transitions from cool evergreen needleleaf forest in the extreme south through temperate rain forest or wet sclerophyll forest (WSFW) and into tropical forests, is well reconstructed. The transitions from xerophytic through sclerophyll woodlands and open forests to closed‐canopy forests, which reflect the gradient in plant available moisture from the continental interior towards the coast, are reconstructed with less geographical precision but nevertheless the broad‐scale pattern emerges. 2. Differences between the modern and mid‐Holocene vegetation patterns in mainland Australia are comparatively small and reflect changes in moisture availability rather than temperature. In south‐eastern Australia some sites show a shift towards more moisture‐stressed vegetation in the mid‐Holocene with xerophytic woods/scrub and temperate sclerophyll woodland and shrubland at sites characterized today by WSFW or warm‐temperate rain forest (WTRF). However, sites in the Snowy Mountains, on the Southern Tablelands and east of the Great Dividing Range have more moisture‐demanding vegetation in the mid‐Holocene than today. South‐western Australia was slightly drier than today. The single site in north‐western Australia also shows conditions drier than today in the mid‐Holocene. Changes in the tropics are also comparatively small, but the presence of WTRF and tropical deciduous broadleaf forest and woodland in the mid‐Holocene, in sites occupied today by cool‐temperate rain forest, indicate warmer conditions. 3. Expansion of xerophytic vegetation in the south and tropical deciduous broadleaf forest and woodland in the north indicate drier conditions across mainland Australia at the LGM. None of these changes are informative about the degree of cooling. However the evidence from the tropics, showing lowering of the treeline and forest belts, indicates that conditions were between 1 and 9 °C (depending on elevation) colder. The encroachment of tropical deciduous broadleaf forest and woodland into lowland evergreen broadleaf forest implies greater aridity. Main conclusions This study provides the first continental‐scale reconstruction of mid‐Holocene and LGM vegetation patterns from Australia, Southeast Asia and the Pacific (SEAPAC region) using an objective biomization scheme. These data will provide a benchmark for evaluation of palaeoclimate simulations within the framework of the Palaeoclimate Modelling Intercomparison Project.  相似文献   

13.
Upper Maastrichtian to lower Paleocene, coarse‐grained deposits of the Lefipán Formation in Chubut Province, (Patagonia, Argentina) provide an opportunity to study environmental changes across the Cretaceous–Palaeogene (K–Pg) boundary in a shallow marine depositional environment. Marine palynological and organic geochemical analyses were performed on the K–Pg boundary interval of the Lefipán Formation at the San Ramón section. The palynological and organic geochemical records from the San Ramón K–Pg boundary section are characteristic of a highly dynamic, nearshore setting. High abundances of terrestrial palynomorphs, high BIT‐index values and the occasional presence of plant fossils are indicative of a large input of terrestrial organic material. The organic‐walled dinoflagellate cyst (dinocyst) assemblage is generally dominated by Senegalinium and other peridinioid dinocyst taxa, indicative of high‐nutrient conditions and decreased salinities, probably associated with a large fluvial input. The reconstructed sea surface temperatures range from 25°C to 27°C, in accordance with the tropical climate inferred by palynological and megafloral studies. As in the Bajada del Jagüel section, ~500 km north‐north‐east of San Ramón, peaks of Senegalinium spp. were recorded below and above the K–Pg boundary, possibly related to enhanced runoff resulting from more humid climatic conditions. The lithological, palynological and organic geochemical records suggest the occurrence of a sea‐level regression across the K–Pg boundary, resulting in a hiatus directly at the boundary in both sections, followed by a transgression in the Danian.  相似文献   

14.
This work aimed at describing and analyzing structural and temporal parameters of communities of Euglossina in remnants of lowland forest on tertiary tabuleiro in the north Rio de Janeiro state in areas with different conservation status and anthropic influences. Chemical bait traps were installed from November/04 to November/05, from 8 am to 3 pm, in two sub-areas (burned and preserved) of Mata do Carv?o (1053 ha) and Mata do Funil (135 ha). We collected 2,060 individuals of 11 species distributed in three genera in the burned sub-area, 894 individuals of nine species and three genera in the preserved sub-area and 1,115 individuals of 10 species distributed in four genera in Mata do Funil. The composition of species did not differ among the areas (MRPP, A = -0.015; P = 0.71). The diversity (H) obtained in the sub-area burned (H = 1.14) and preserved (H = 1.12) was significantly higher than that described for Mata do Funil (H = 0.98). Two peaks of abundance were observed, the larger one in the dry season. Great dominance of Euglosssa cordata (L.) (d = 0, 54) was observed in the sub-area burned and of Eulaema nigrita Lepeletier (d = 0, 55) in Mata do Funil; both species were favored for open or disturbed environments. The smaller fragment presented the lowest value of diversity, suggesting the effect of the lost of area on the community of Euglossina. Moreover, disturbed areas (burned) can be benefited if in connection with areas in better preservation condition.  相似文献   

15.
Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Here, we used 76 years of water yield, climate, and field plot vegetation measurements in six unmanaged, reference watersheds in the southern Appalachian Mountains of North Carolina, USA to determine whether water yield has changed over time, and to examine and attribute the causal mechanisms of change. We found that annual water yield increased in some watersheds from 1938 to the mid‐1970s by as much as 55%, but this was followed by decreases up to 22% by 2013. Changes in forest evapotranspiration were consistent with, but opposite in direction to the changes in water yield, with decreases in evapotranspiration up to 31% by the mid‐1970s followed by increases up to 29% until 2013. Vegetation survey data showed commensurate reductions in forest basal area until the mid‐1970s and increases since that time accompanied by a shift in dominance from xerophytic oak and hickory species to several mesophytic species (i.e., mesophication) that use relatively more water. These changes in forest structure and species composition may have decreased water yield by as much as 18% in a given year since the mid‐1970s after accounting for climate. Our results suggest that changes in climate and forest structure and species composition in unmanaged forests brought about by disturbance and natural community dynamics over time can result in large changes in water supply.  相似文献   

16.
Abstract: Two species of decapod crustacean are recorded from the Agua de la Mula Member of the Agrio Formation (Upper Hauterivian – Lower Barremian) of the Neuquén Basin of west‐central Argentina, namely Astacodes falcifer Bell and a new species of Palaeohomarus, P. pacificus. The preservation of the specimens is exceptional, some showing delicate compound eyes and a stridulatory apparatus, features rarely found in fossil forms. Many specimens are preserved articulated inside calcareous nodules, within dark‐grey shales. The lobster‐bearing sediments accumulated in a low‐energy marine environment and diagenetic mineralization occurred very rapidly, prior to significant decay, thus allowing exceptional preservation of specimens. Palaeohomarus was a rare genus in the Cretaceous with a palaeogeographic distribution restricted to the Mediterranean Tethys, the eastern USA and Madagascar, while Astacodes falcifer has been recorded only from Speeton (eastern England) and Neuquén.  相似文献   

17.
Both diverse assemblages of small skeletal fossils and a representative chemostratigraphical record make the Siberian Platform widely regarded as one of the key regions for the reconstruction of global biotic and abiotic events in the late Ediacaran and early Cambrian. However, the wide distribution of intertidal–subtidal facies in the Ediacaran–Cambrian transitional strata of the central and southwestern Siberian Platform (Turukhansk–Irkutsk–Olekma facies region) produces a dramatic depletion of the palaeontological record and considerably limits their age‐calibration and long‐distance correlation. We report new lithological, palaeontological and carbonate carbon‐isotope data for the Ediacaran–Cambrian sections of the Turukhansk Uplift (northwestern Siberian Platform, western facies region). These data provide a robust framework for the chemostratigraphical correlation of the western facies region with sections of the transitional and eastern regions of the Siberian Platform and further confirms a depositional hiatus at the base of the Tommotian Stage in the stratotype section (Aldan River, SE Siberia). The carbon‐isotope curve from the Turukhansk Uplift sections correlates positively with the most chemostratigraphically representative Ediacaran–Cambrian sections (Siberia, Morocco, South China). It records major carbon‐isotope oscillations globally recognized in the lower Cambrian, enabling localization of the Fortunian and Cambrian Stage 2 boundaries in the Platonovskaya Formation. Although there is extreme paucity and poor preservation of the small skeletal fossils in the western facies region, we report individual Barskovia, Blastulospongia and chancelloriid sclerites from the Platonovskaya Formation. A combination of palaeontological and chemostratigraphical data suggests the base of P. antiqua Assemblage Zone is located in the middle Platonovskaya Formation. The earliest spiral gastropods probably occurred at ~541 Ma, as demonstrated by the discovery of a specimen of Barskovia near the base of the large negative excursion in the lower Platonovskaya Formation, correlated with the BACE negative carbon‐isotope peak in the sections of the Yangtze Platform.  相似文献   

18.
Well‐preserved cold‐water corals are comparatively rare in the fossil record. This is partly due to the very low fossilization potential of the predominantly aragonitic corals but also due to the fact that coral ecosystems of deep water are a geologically young development. A Middle Danian cold‐water coral mound complex is well exposed in Faxe Quarry, Denmark. The coral mounds are intercalated with bryozoan mounds of various sizes and form the Faxe Formation. The coral limestone displays large variations in diagenesis, and this complicates the palaeoecological reconstructions. However, the Baunekule facies from the Faxe Formation contain a well‐preserved originally aragonitic and calcitic fauna. The aragonitic skeletons have been recrystallized to calcite during early diagenesis and the excellent preservation makes taxonomic identifications straightforward. A diverse fauna of ten scleractinian coral species, nine stylasterine coral species and seven octocoral species has been described from the Baunekule facies. The fossil fauna represents an ecological niche between the dead coral framework and coral rubble on a flank of a growing Dendrophyllia coral mound with multiple colonization events. The diversity and relative abundance of the fossil scleractinian corals are comparable to the modern settings in the NE Atlantic and Mediterranean. The distribution and diversity of the octocorals and the stylasterine corals are suggested to represent coral gardens as described from modern setting in the NE Pacific. The presence of a diverse and abundant stylasterine fauna suggests a stable palaeoenvironment, probably in a bathymetric depth range of 200–400 metre.  相似文献   

19.
Aim Atmospheric CO2 concentrations depend, in part, on the amount of biomass locked up in terrestrial vegetation. Information on the causes of a broad‐scale vegetation transition and associated loss of biomass is thus of critical interest for understanding global palaeoclimatic changes. Pollen records from the north‐eastern Tibet‐Qinghai Plateau reveal a dramatic and extensive forest decline beginning c. 6000 cal. yr bp . The aim of this study is to elucidate the causes of this regional‐scale change from high‐biomass forest to low‐biomass steppe on the Tibet‐Qinghai Plateau during the second half of the Holocene. Location Our study focuses on the north‐eastern Tibet‐Qinghai Plateau. Stratigraphical data used are from Qinghai Lake (3200 m a.s.l., 36°32′–37°15′ N, 99°36′–100°47′ E). Methods We apply a modern pollen‐precipitation transfer function from the eastern and north‐eastern Tibet‐Qinghai Plateau to fossil pollen spectra from Qinghai Lake to reconstruct annual precipitation changes during the Holocene. The reconstructions are compared to a stable oxygen‐isotope record from the same sediment core and to results from two transient climate model simulations. Results The pollen‐based precipitation reconstruction covering the Holocene parallels moisture changes inferred from the stable oxygen‐isotope record. Furthermore, these results are in close agreement with simulated model‐based past annual precipitation changes. Main conclusions In the light of these data and the model results, we conclude that it is not necessary to attribute the broad‐scale forest decline to human activity. Climate change as a result of changes in the intensity of the East Asian Summer Monsoon in the mid‐Holocene is the most parsimonious explanation for the widespread forest decline on the Tibet‐Qinghai Plateau. Moreover, climate feedback from a reduced forest cover accentuates increasingly drier conditions in the area, indicating complex vegetation–climate interactions during this major ecological change.  相似文献   

20.
The Middle–Upper Jurassic transition is a geodynamic benchmark in the evolutionary history of several peri-Atlantic basins. Contrary to the vast Tethyan and peri-Tethyan areas, in the Lusitanian Basin (Portugal), this interval corresponds to a major basin-wide disconformity preceded by a complex forced regression that induced sharp facies variations across the depositional systems. The Middle Jurassic units below are fully marine, whereas the Upper Jurassic sediments (Lower?-Middle Oxfordian), correspond to freshwater/brackish lacustrine, grading into punctuated brackish-restricted lagoonal and shallow-marine paleoenvironments. This study presents total organic carbon and palynofacies data of 34 samples (total analyzed thickness about 85 m) collected from three key sections encompassing the Middle–Upper Jurassic transition in the central-northern sector of the Lusitanian Basin. The palynofacies of the analyzed part of Middle Jurassic units (Cabo Mondego Formation) are characteristic of marine environments at their base, evidencing upwards a regressive trend of the depositional systems. Total organic carbon content is generally low, reaching up to 1.94 wt%. The Upper Jurassic Cabaços Formation presents kerogen assemblages mostly of continental origin, although punctuated by minor intervals of marine influence. Total organic carbon content is more variable, reaching up to 30.56 wt%. Intraclasts of re-deposited fragments of microbial mats were found incorporated in the kerogen assemblages, which point to highly dynamic erosional and depositional processes. Diversity of Botryococcus sp. occurrences was confirmed as an indicator of the degree of paleoenvironmental stability. The vertical distribution and comparison of the kerogen assemblages of the different sections indicate major changes of these parameters among relatively close settings and along narrow vertical intervals, attesting to the high sedimentary dynamics observed in the Lusitanian Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号