首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maintaining homeostatic Ca2+ signaling is a fundamental physiological process in living cells. Ca2+ sparks are the elementary units of Ca2+ signaling in the striated muscle fibers that appear as highly localized Ca2+ release events mediated by ryanodine receptor (RyR) Ca2+ release channels on the sarcoplasmic reticulum (SR) membrane. Proper assessment of muscle Ca2+ sparks could provide information on the intracellular Ca2+ handling properties of healthy and diseased striated muscles. Although Ca2+ sparks events are commonly seen in resting cardiomyocytes, they are rarely observed in resting skeletal muscle fibers; thus there is a need for methods to generate and analyze sparks in skeletal muscle fibers.Detailed here is an experimental protocol for measuring Ca2+ sparks in isolated flexor digitorm brevis (FDB) muscle fibers using fluorescent Ca2+ indictors and laser scanning confocal microscopy. In this approach, isolated FDB fibers are exposed to transient hypoosmotic stress followed by a return to isotonic physiological solution. Under these conditions, a robust Ca2+ sparks response is detected adjacent to the sarcolemmal membrane in young healthy FDB muscle fibers. Altered Ca2+ sparks response is detected in dystrophic or aged skeletal muscle fibers. This approach has recently demonstrated that membrane-delimited signaling involving cross-talk between inositol (1,4,5)-triphosphate receptor (IP3R) and RyR contributes to Ca2+ spark activation in skeletal muscle. In summary, our studies using osmotic stress induced Ca2+ sparks showed that this intracellular response reflects a muscle signaling mechanism in physiology and aging/disease states, including mouse models of muscle dystrophy (mdx mice) or amyotrophic lateral sclerosis (ALS model).  相似文献   

2.
The large and rapidly increasing number of potentially pathological mutants in the type 1 ryanodine receptor (RyR1) prompts the need to characterize their effects on voltage-activated sarcoplasmic reticulum (SR) Ca2+ release in skeletal muscle. Here we evaluated the function of the R4892W and G4896V RyR1 mutants, both associated with central core disease (CCD) in humans, in myotubes and in adult muscle fibers. For both mutants expressed in RyR1-null (dyspedic) myotubes, voltage-gated Ca2+ release was absent following homotypic expression and only partially restored following heterotypic expression with wild-type (WT) RyR1. In muscle fibers from adult WT mice, both mutants were expressed in restricted regions of the fibers with a pattern consistent with triadic localization. Voltage-clamp-activated confocal Ca2+ signals showed that fiber regions endowed with G4896V-RyR1s exhibited an ∼30% reduction in the peak rate of SR Ca2+ release, with no significant change in SR Ca2+ content. Immunostaining revealed no associated change in the expression of either α1S subunit (Cav1.1) of the dihydropyridine receptor (DHPR) or type 1 sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1), indicating that the reduced Ca2+ release resulted from defective RyR1 function. Interestingly, in spite of robust localized junctional expression, the R4892W mutant did not affect SR Ca2+ release in adult muscle fibers, consistent with a low functional penetrance of this particular CCD-associated mutant.  相似文献   

3.
Release of Ca2+ from the sarcoplasmic reticulum (SR) drives contractile function of cardiac myocytes. Luminal Ca2+ regulation of SR Ca2+ release is fundamental not only in physiology but also in physiopathology because abnormal luminal Ca2+ regulation is known to lead to arrhythmias, catecholaminergic polymorphic ventricular tachycardia (CPVT), and/or sudden cardiac arrest, as inferred from animal model studies. Luminal Ca2+ regulates ryanodine receptor (RyR)2-mediated SR Ca2+ release through mechanisms localized inside the SR; one of these involves luminal Ca2+ interacting with calsequestrin (CASQ), triadin, and/or junctin to regulate RyR2 function.CASQ2-RyR2 regulation was examined at the single RyR2 channel level. Single RyR2s were incorporated into planar lipid bilayers by the fusion of native SR vesicles isolated from either wild-type (WT), CASQ2 knockout (KO), or R33Q-CASQ2 knock-in (KI) mice. KO and KI mice have CPVT-like phenotypes. We show that CASQ2(WT) action on RyR2 function (either activation or inhibition) was strongly influenced by the presence of cytosolic MgATP. Function of the reconstituted CASQ2(WT)–RyR2 complex was unaffected by changes in luminal free [Ca2+] (from 0.1 to 1 mM). The inhibition exerted by CASQ2(WT) association with the RyR2 determined a reduction in cytosolic Ca2+ activation sensitivity. RyR2s from KO mice were significantly more sensitive to cytosolic Ca2+ activation and had significantly longer mean open times than RyR2s from WT mice. Sensitivity of RyR2s from KI mice was in between that of RyR2 channels from KO and WT mice. Enhanced cytosolic RyR2 Ca2+ sensitivity and longer RyR2 open times likely explain the CPVT-like phenotype of both KO and KI mice.  相似文献   

4.
Abnormalities in cardiomyocyte Ca2+ handling contribute to impaired contractile function in heart failure (HF). Experiments on single ryanodine receptors (RyRs) incorporated into lipid bilayers have indicated that RyRs from failing hearts are more active than those from healthy hearts. Here, we analyzed spontaneous Ca2+ sparks (brief, localized increased in [Ca2+]i) to evaluate RyR cluster activity in situ in a mouse post-myocardial infarction (PMI) model of HF. The cardiac ejection fraction of PMI mice was reduced to ∼30% of that of sham-operated (sham) mice, and their cardiomyocytes were hypertrophied. The [Ca2+]i transient amplitude and sarcoplasmic reticulum (SR) Ca2+ load were decreased in intact PMI cardiomyocytes compared with those from sham mice, and spontaneous Ca2+ sparks were less frequent, whereas the fractional release and the frequency of Ca2+ waves were both increased, suggesting higher RyR activity. In permeabilized cardiomyocytes, in which the internal solution can be controlled, Ca2+ sparks were more frequent in PMI cells (under conditions of similar SR Ca2+ load), confirming the enhanced RyR activity. However, in intact cells from PMI mice, the Ca2+ sparks frequency normalized by the SR Ca2+ load in that cell were reduced compared with those in sham mice, indicating that the cytosolic environment in intact cells contributes to the decrease in Ca2+ spark frequency. Indeed, using an internal “failing solution” with less ATP (as found in HF), we observed a dramatic decrease in Ca2+ spark frequency in permeabilized PMI and sham myocytes. In conclusion, our data show that, even if isolated RyR channels show more activity in HF, concomitant alterations in intracellular media composition and SR Ca2+ load may mask these effects at the Ca2+ spark level in intact cells. Nonetheless, in this scenario, the probability of arrhythmogenic Ca2+ waves is enhanced, and they play a potential role in the increase in arrhythmia events in HF patients.  相似文献   

5.
Cellular oxidative stress, associated with a variety of common cardiac diseases, is well recognized to affect the function of several key proteins involved in Ca2+ signaling and excitation-contraction coupling, which are known to be exquisitely sensitive to reactive oxygen species. These include the Ca2+ release channels of the sarcoplasmic reticulum (ryanodine receptors or RyR2s) and the Ca2+/calmodulin-dependent protein kinase II (CaMKII). Oxidation of RyR2s was found to increase the open probability of the channel, whereas CaMKII can be activated independent of Ca2+ through oxidation. Here, we investigated how oxidative stress affects RyR2 function and SR Ca2+ signaling in situ, by analyzing Ca2+ sparks in permeabilized mouse cardiomyocytes under a broad range of oxidative conditions. The results show that with increasing oxidative stress Ca2+ spark duration is prolonged. In addition, long and very long-lasting (up to hundreds of milliseconds) localized Ca2+ release events started to appear, eventually leading to sarcoplasmic reticulum (SR) Ca2+ depletion. These changes of release duration could be prevented by the CaMKII inhibitor KN93 and did not occur in mice lacking the CaMKII-specific S2814 phosphorylation site on RyR2. The appearance of long-lasting Ca2+ release events was paralleled by an increase of RyR2 oxidation, but also by RyR-S2814 phosphorylation, and by CaMKII oxidation. Our results suggest that in a strongly oxidative environment oxidation-dependent activation of CaMKII leads to RyR2 phosphorylation and thereby contributes to the massive prolongation of SR Ca2+ release events.  相似文献   

6.
Stable calcium-induced calcium release (CICR) is critical for maintaining normal cellular contraction during cardiac excitation-contraction coupling. The fundamental element of CICR in the heart is the calcium (Ca2+) spark, which arises from a cluster of ryanodine receptors (RyR). Opening of these RyR clusters is triggered to produce a local, regenerative release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ leak out of the SR is an important process for cellular Ca2+ management, and it is critically influenced by spark fidelity, i.e., the probability that a spontaneous RyR opening triggers a Ca2+ spark. Here, we present a detailed, three-dimensional model of a cardiac Ca2+ release unit that incorporates diffusion, intracellular buffering systems, and stochastically gated ion channels. The model exhibits realistic Ca2+ sparks and robust Ca2+ spark termination across a wide range of geometries and conditions. Furthermore, the model captures the details of Ca2+ spark and nonspark-based SR Ca2+ leak, and it produces normal excitation-contraction coupling gain. We show that SR luminal Ca2+-dependent regulation of the RyR is not critical for spark termination, but it can explain the exponential rise in the SR Ca2+ leak-load relationship demonstrated in previous experimental work. Perturbations to subspace dimensions, which have been observed in experimental models of disease, strongly alter Ca2+ spark dynamics. In addition, we find that the structure of RyR clusters also influences Ca2+ release properties due to variations in inter-RyR coupling via local subspace Ca2+ concentration ([Ca2+]ss). These results are illustrated for RyR clusters based on super-resolution stimulated emission depletion microscopy. Finally, we present a believed-novel approach by which the spark fidelity of a RyR cluster can be predicted from structural information of the cluster using the maximum eigenvalue of its adjacency matrix. These results provide critical insights into CICR dynamics in heart, under normal and pathological conditions.  相似文献   

7.
Caveolae position CaV3.2 (T‐type Ca2+ channel encoded by the α‐3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large‐conductance Ca2+‐activated K+ channel feedback in vascular smooth muscle. We hypothesize that this mechanism of Ca2+ spark generation is affected by age. Using smooth muscle cells (VSMCs) from mouse mesenteric arteries, we found that both Cav3.2 channel inhibition by Ni2+ (50 µM) and caveolae disruption by methyl‐ß‐cyclodextrin or genetic abolition of Eps15 homology domain‐containing protein (EHD2) inhibited Ca2+ sparks in cells from young (4 months) but not old (12 months) mice. In accordance, expression of Cav3.2 channel was higher in mesenteric arteries from young than old mice. Similar effects were observed for caveolae density. Using SMAKO Cav1.2?/? mice, caffeine (RyR activator) and thapsigargin (Ca2+ transport ATPase inhibitor), we found that sufficient SR Ca2+ load is a prerequisite for the CaV3.2‐RyR axis to generate Ca2+ sparks. We identified a fraction of Ca2+ sparks in aged VSMCs, which is sensitive to the TRP channel blocker Gd3+ (100 µM), but insensitive to CaV1.2 and CaV3.2 channel blockade. Our data demonstrate that the VSMC CaV3.2‐RyR axis is down‐regulated by aging. This defective CaV3.2‐RyR coupling is counterbalanced by a Gd3+ sensitive Ca2+ pathway providing compensatory Ca2+ influx for triggering Ca2+ sparks in aged VSMCs.  相似文献   

8.
In cardiac myocytes, excitation-contraction coupling depends upon sarcoplasmic reticular Ca2+ release triggered by Ca2+ influx through L-type Ca2+ channels. Although Na+-Ca2+ exchange (NCX) is essential for Ca2+ extrusion, its participation in the trigger process of excitation-contraction coupling is controversial. To investigate the role of NCX in triggering, we examined Ca2+ sparks in ventricular cardiomyocytes isolated from wild-type (WT) and cardiac-specific NCX knockout (KO) mice. Myocytes from young NCX KO mice are known to exhibit normal resting cytosolic Ca2+ and normal Ca2+ transients despite reduced L-type Ca2+ current. We loaded myocytes with fluo-3 to image Ca2+ sparks using confocal microscopy in line-scan mode. The frequency of spontaneous Ca2+ sparks was reduced in KO myocytes compared with WT. However, spark amplitude and width were increased in KO mice. Permeabilizing the myocytes with saponin eliminated differences between spontaneous sparks in WT and KO mice. These results suggest that sarcolemmal processes are responsible for the reduced spark frequency and increased spark width and amplitude in KO mice. When myocytes were loaded with 1 mM fluo-3 and 3 mM EGTA via the patch pipette to buffer diadic cleft Ca2+, the number of sparks triggered by action potentials was reduced by 60% in KO cells compared to WT cells, despite similar SR Ca2+ content in both cell types. When EGTA was omitted from the pipette solution, the number of sparks triggered in KO and WT myocytes was similar. Although the number of sparks was restored in KO cells, Ca2+ release was asynchronous. These results suggest that high subsarcolemmal Ca2+ is required to ensure synchronous triggering with short spark latency in the absence of NCX. In WT mice, high subsarcolemmal Ca2+ is not required for synchronous triggering, because NCX is capable of priming the diadic cleft with sufficient Ca2+ for normal triggering, even when subsarcolemmal Ca2+ is lowered by EGTA. Thus, reducing subsarcolemmal Ca2+ with EGTA in NCX KO mice reveals the dependence of Ca2+ release on NCX.  相似文献   

9.
Flecainide blocks ryanodine receptor type 2 (RyR2) channels in the open state, suppresses arrhythmogenic Ca2+ waves and prevents catecholaminergic polymorphic ventricular tachycardia (CPVT) in mice and humans. We hypothesized that differences in RyR2 activity induced by CPVT mutations determines the potency of open-state RyR2 blockers like flecainide (FLEC) and R-propafenone (RPROP) against Ca2+ waves in cardiomyocytes. Using confocal microscopy, we studied Ca2+ sparks and waves in isolated saponin-permeabilized ventricular myocytes from two CPVT mouse models (Casq2-/-, RyR2-R4496C+/-), wild-type (c57bl/6, WT) mice, and WT rabbits (New Zealand white rabbits). Consistent with increased RyR2 activity, Ca2+ spark and wave frequencies were significantly higher in CPVT compared to WT mouse myocytes. We next obtained concentration-response curves of Ca2+ wave inhibition for FLEC, RPROP (another open-state RyR2 blocker), and tetracaine (TET) (a state-independent RyR2 blocker). Both FLEC and RPROP inhibited Ca2+ waves with significantly higher potency (lower IC50) and efficacy in CPVT compared to WT. In contrast, TET had similar potency in all groups studied. Increasing RyR2 activity of permeabilized WT myocytes by exposure to caffeine (150 µM) increased the potency of FLEC and RPROP but not of TET. RPROP and FLEC were also significantly more potent in rabbit ventricular myocytes that intrinsically exhibit higher Ca2+ spark rates than WT mouse ventricular myocytes. In conclusion, RyR2 activity determines the potency of open-state blockers FLEC and RPROP for suppressing arrhythmogenic Ca2+ waves in cardiomyocytes, a mechanism likely relevant to antiarrhythmic drug efficacy in CPVT.  相似文献   

10.
Type-2 ryanodine receptors (RyR2s) play a pivotal role in cardiac excitation-contraction coupling by releasing Ca2+ from sarcoplasmic reticulum (SR) via a Ca2+ -induced Ca2+ release (CICR) mechanism. Two strategies have been used to study the structure-function characteristics of RyR2 and its disease associated mutations: (1) heterologous cell expression of the recombinant mutant RyR2s, and (2) knock-in mouse models harboring RyR2 point mutations. Here, we establish an alternative approach where Ca2+ signaling aberrancy caused by the RyR2 mutation is studied in human cardiomyocytes with robust CICR mechanism. Specifically, we introduce point mutations in wild-type RYR2 of human induced pluripotent stem cells (hiPSCs) by CRISPR/Cas9 gene editing, and then differentiate them into cardiomyocytes. To verify the reliability of this approach, we introduced the same disease-associated RyR2 mutation, F2483I, which was studied by us in hiPSC-derived cardiomyocytes (hiPSC-CMs) from a patient biopsy. The gene-edited F2483I hiPSC-CMs exhibited longer and wandering Ca2+ sparks, elevated diastolic Ca2+ leaks, and smaller SR Ca2+ stores, like those of patient-derived cells. Our CRISPR/Cas9 gene editing approach validated the feasibility of creating myocytes expressing the various RyR2 mutants, making comparative mechanistic analysis and pharmacotherapeutic approaches for RyR2 pathologies possible.  相似文献   

11.
Hearts from subjects with different ages have different Ca2+ signaling. Release of Ca2+ from intracellular stores in response to an action potential initiates cardiac contraction. Both depolarization-stimulated and spontaneous Ca2+ releases, Ca2+ transients and Ca2+ sparks, demonstrate the main events of excitation–contraction coupling (ECC). Global increase in free Ca2+ concentration ([Ca2+] i ) consists of summation of Ca2+ release events in cardiomyocytes. Since the Ca2+ flux induced by Ca2+ sparks reports a summation of ryanodine-sensitive Ca2+ release channels (RyR2s)’s behavior in a spark cluster, evaluation of the properties of Ca2+ sparks and Ca2+ transients may provide insight into the role of RyR2s on altered heart function between 3-month-old (young adult) and 6-month-old (mature adult) rats. Basal [Ca2+] i and Ca2+ sparks frequency were significantly higher in mature adult rats compared to those of young adults. Moreover, amplitudes of Ca2+ sparks and Ca2+ transients were significantly smaller in mature adults than those of young adults with longer time courses. A smaller L-type Ca2+ current density and decreased SR Ca2+ load was observed in mature adult rats. In addition, RyR2s were markedly hyperphosphorylated, and phosphorylation levels of PKA and CaMKII were higher in heart from mature adults compared to those of young adults, whereas their SERCA protein levels were similar. Our data demonstrate that hearts from rats with different ages have different Ca2+ signaling including hyperphosphorylation of RyR2s and higher basal [Ca2+] i together with increased oxidized protein-thiols in mature adult rats compared to those of young adults, which play important roles in ECC. Finally, we report that ECC efficiency changes with age during maturation, partially related with an increased cellular oxidation level leading to reduced free protein-thiols in cardiomyocytes.  相似文献   

12.
Sepsis is associated with cardiac dysfunction, which is at least in part due to cardiomyocyte apoptosis. However, the underlying mechanisms are far from being understood. Using the colon ascendens stent peritonitis mouse model of sepsis (CASP), we examined the subcellular mechanisms that mediate sepsis‐induced apoptosis. Wild‐type (WT) CASP mice hearts showed an increase in apoptosis respect to WT‐Sham. CASP transgenic mice expressing a CaMKII inhibitory peptide (AC3‐I) were protected against sepsis‐induced apoptosis. Dantrolene, used to reduce ryanodine receptor (RyR) diastolic sarcoplasmic reticulum (SR) Ca2+ release, prevented apoptosis in WT‐CASP. To examine whether CaMKII‐dependent RyR2 phosphorylation mediates diastolic Ca2+ release and apoptosis in sepsis, we evaluated apoptosis in mutant mice hearts that have the CaMKII phosphorylation site of RyR2 (Serine 2814) mutated to Alanine (S2814A). S2814A CASP mice did not show increased apoptosis. Consistent with RyR2 phosphorylation‐dependent enhancement in diastolic SR Ca2+ release leading to mitochondrial Ca2+ overload, mitochondrial Ca2+ retention capacity was reduced in mitochondria isolated from WT‐CASP compared to Sham and this reduction was absent in mitochondria from CASP S2814A or dantrolene‐treated mice. We conclude that in sepsis, CaMKII‐dependent RyR2 phosphorylation results in diastolic Ca2+ release from SR which leads to mitochondrial Ca2+ overload and apoptosis.  相似文献   

13.
The factors responsible for the regulation of regenerative calcium-induced calcium release (CICR) during Ca2+ spark evolution remain unclear. Cardiac ryanodine receptor (RyR) gating in rats and sheep was recorded at physiological Ca2+, Mg2+, and ATP levels and incorporated into a 3D model of the cardiac dyad, which reproduced the time course of Ca2+ sparks, Ca2+ blinks, and Ca2+ spark restitution. The termination of CICR by induction decay in the model principally arose from the steep Ca2+ dependence of RyR closed time, with the measured sarcoplasmic reticulum (SR) lumen Ca2+ dependence of RyR gating making almost no contribution. The start of CICR termination was strongly dependent on the extent of local depletion of junctional SR Ca2+, as well as the time course of local Ca2+ gradients within the junctional space. Reducing the dimensions of the dyad junction reduced Ca2+ spark amplitude by reducing the strength of regenerative feedback within CICR. A refractory period for Ca2+ spark initiation and subsequent Ca2+ spark amplitude restitution arose from 1), the extent to which the regenerative phase of CICR can be supported by the partially depleted junctional SR, and 2), the availability of releasable Ca2+ in the junctional SR. The physical organization of RyRs within the junctional space had minimal effects on Ca2+ spark amplitude when more than nine RyRs were present. Spark amplitude had a nonlinear dependence on RyR single-channel Ca2+ flux, and was approximately halved by reducing the flux from 0.6 to 0.2 pA. Although rat and sheep RyRs had quite different Ca2+ sensitivities, Ca2+ spark amplitude was hardly affected. This suggests that moderate changes in RyR gating by second-messenger systems will principally alter the spatiotemporal properties of SR release, with smaller effects on the amount released.  相似文献   

14.
Mitochondrial calcium handling and its relation with calcium released from sarcoplasmic reticulum (SR) in muscle tissue are subject of lively debate. In this study we aimed to clarify how the SR determines mitochondrial calcium handling using dCASQ-null mice which lack both isoforms of the major Ca2+-binding protein inside SR, calsequestrin. Mitochondrial free Ca2+-concentration ([Ca2+]mito) was determined by means of a genetically targeted ratiometric FRET-based probe. Electron microscopy revealed a highly significant increase in intermyofibrillar mitochondria (+55%) and augmented coupling (+12%) between Ca2+ release units of the SR and mitochondria in dCASQ-null vs. WT fibers. Significant differences in the baseline [Ca2+]mito were observed between quiescent WT and dCASQ-null fibers, but not in the resting cytosolic Ca2+ concentration. The rise in [Ca2+]mito during electrical stimulation occurred in 20−30 ms, while the decline during and after stimulation was governed by 4 rate constants of approximately 40, 1.6, 0.2 and 0.03 s−1. Accordingly, frequency-dependent increase in [Ca2+]mito occurred during sustained contractions. In dCASQ-null fibers the increases in [Ca2+]mito were less pronounced than in WT fibers and even lower when extracellular calcium was removed. The amplitude and duration of [Ca2+]mito transients were increased by inhibition of mitochondrial Na+/Ca2+ exchanger (mNCX). These results provide direct evidence for fast Ca2+ accumulation inside the mitochondria, involvement of the mNCX in mitochondrial Ca2+-handling and a dependence of mitochondrial Ca2+-handling on intracellular (SR) and external Ca2+ stores in fast skeletal muscle fibers. dCASQ-null mice represent a model for malignant hyperthermia. The differences in structure and in mitochondrial function observed relative to WT may represent compensatory mechanisms for the disease-related reduction of calcium storage capacity of the SR and/or SR Ca2+-leakage.  相似文献   

15.
The cardiac Ca2+ release channel (ryanodine receptor, RyR2) plays an essential role in excitation-contraction coupling in cardiac muscle cells. Effective and stable excitation-contraction coupling critically depends not only on the expression of RyR2, but also on its distribution. Despite its importance, little is known about the distribution and organization of RyR2 in living cells. To study the distribution of RyR2 in living cardiomyocytes, we generated a knock-in mouse model expressing a GFP-tagged RyR2 (GFP-RyR2). Confocal imaging of live ventricular myocytes isolated from the GFP-RyR2 mouse heart revealed clusters of GFP-RyR2 organized in rows with a striated pattern. Similar organization of GFP-RyR2 clusters was observed in fixed ventricular myocytes. Immunofluorescence staining with the anti-α-actinin antibody (a z-line marker) showed that nearly all GFP-RyR2 clusters were localized in the z-line zone. There were small regions with dislocated GFP-RyR2 clusters. Interestingly, these same regions also displayed dislocated z-lines. Staining with di-8-ANEPPS revealed that nearly all GFP-RyR2 clusters were co-localized with transverse but not longitudinal tubules, whereas staining with MitoTracker Red showed that GFP-RyR2 clusters were not co-localized with mitochondria in live ventricular myocytes. We also found GFP-RyR2 clusters interspersed between z-lines only at the periphery of live ventricular myocytes. Simultaneous detection of GFP-RyR2 clusters and Ca2+ sparks showed that Ca2+ sparks originated exclusively from RyR2 clusters. Ca2+ sparks from RyR2 clusters induced no detectable changes in mitochondrial Ca2+ level. These results reveal, for the first time, the distribution of RyR2 clusters and its functional correlation in living ventricular myocytes.  相似文献   

16.
In the heart, electrical stimulation of cardiac myocytes increases the open probability of sarcolemmal voltage-sensitive Ca2+ channels and flux of Ca2+ into the cells. This increases Ca2+ binding to ligand-gated channels known as ryanodine receptors (RyR2). Their openings cause cell-wide release of Ca2+, which in turn causes muscle contraction and the generation of the mechanical force required to pump blood. In resting myocytes, RyR2s can also open spontaneously giving rise to spatially-confined Ca2+ release events known as “sparks.” RyR2s are organized in a lattice to form clusters in the junctional sarcoplasmic reticulum membrane. Our recent work has shown that the spatial arrangement of RyR2s within clusters strongly influences the frequency of Ca2+ sparks. We showed that the probability of a Ca2+ spark occurring when a single RyR2 in the cluster opens spontaneously can be predicted from the precise spatial arrangements of the RyR2s. Thus, “function” follows from “structure.” This probability is related to the maximum eigenvalue (λ 1) of the adjacency matrix of the RyR2 cluster lattice. In this work, we develop a theoretical framework for understanding this relationship. We present a stochastic contact network model of the Ca2+ spark initiation process. We show that λ 1 determines a stability threshold for the formation of Ca2+ sparks in terms of the RyR2 gating transition rates. We recapitulate these results by applying the model to realistic RyR2 cluster structures informed by super-resolution stimulated emission depletion (STED) microscopy. Eigendecomposition of the linearized mean-field contact network model reveals functional subdomains within RyR2 clusters with distinct sensitivities to Ca2+. This work provides novel perspectives on the cardiac Ca2+ release process and a general method for inferring the functional properties of transmembrane receptor clusters from their structure.  相似文献   

17.
Imaizumi  Yuji  Ohi  Yoshiaki  Yamamura  Hisao  Morimura  Kozo  Muraki  Katsuhiko 《Neurophysiology》2003,35(3-4):169-174
The contribution of the Ca2+-induced Ca2+ release (CICR) mechanism in excitation-contraction (E-C) coupling and the tightness of the coupling between Ca2+ influx and Ca2+ release are still controversial in smooth muscle cells (SMC). In SMC isolated from the guinea-pig vas deferens or urinary bladder, a depolarizing stimulus initially induced spot-like increases in the intracellular Ca2+ concentration ([Ca2+] i ), called “Ca2+ hot spots,” at several superficial areas in the cell. When a weak stimulus (a small or a short depolarizing step) was applied, only a few Ca2+ hot spots appeared transiently in the superficial area but did not spread into other regions, to trigger global [Ca2+] i rise. Such depolarization-evoked local Ca2+ transients were distinctive from spontaneous Ca2+ sparks, since the former were susceptible to Ca2+ blockers, ryanodine, and inhibitors of the Ca2+ pump in the sarcoplasmic reticulum (SR), suggesting pivotal roles of Ca2+ influx through voltage-dependent Ca2+ channels (VDCC) and Ca2+ release from the SR through ryanodine receptors (RyR) for the activation of Ca2+ spots. Frequently discharging Ca2+ spark sites (FDS) under resting conditions were located exactly in the same areas as Ca2+ hot spots evoked by depolarization, indicating the existence of distinct local junction sites for tight coupling between VDCC in the plasmalemma and RyR in the SR. Co-localization of clusters of RyR and large-conductance Ca2+-activated K+ (BK) channels was also suggested. The fast and tight coupling for CICR in these junctional sites was triggered also by an action potential, whereas a slower spread of Ca2+ wave to the whole-cell areas suggests the loose coupling in propagating CICR to other cell areas. It can therefore be postulated that CICR may occur in two steps upon depolarization; the initial CICR in distinct junctional sites shows tight coupling between Ca2+ influx and release, and the following CICR may propagate slow Ca2+ waves to other areas. Ryanodine receptors form a multiprotein complex with molecules such as calsequestrin, junctin, triadin, junctophilins, and FK506-binding proteins, which directly or indirectly regulate the RyR activity and the tight coupling. Moreover, an evoked Ca2+ spot may enhance Ca2+ uptake by neighboring mitochondria and their ATP production to increase energy supply to the Ca2+ pump of the SR in the microdomain.  相似文献   

18.
Skeletal muscle fibres support store-operated Ca2+-entry (SOCE) across the t-tubular membrane upon exhaustive depletion of Ca2+ from the sarcoplasmic reticulum (SR). Recently we demonstrated the presence of a novel mode of SOCE activated under conditions of maintained [Ca2+]SR. This phasic SOCE manifested in a fast and transient manner in synchrony with excitation contraction (EC)-coupling mediated SR Ca2+-release (Communications Biology 1:31, doi: https://doi.org/10.1038/s42003-018-0033-7). Stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel 1 (ORAI1), positioned at the SR and t-system membranes, respectively, are the considered molecular correlate of SOCE. The evidence suggests that at the triads, where the terminal cisternae of the SR sandwich a t-tubule, STIM1 and ORAI1 proteins pre-position to allow for enhanced SOCE transduction.Here we show that phasic SOCE is not only shaped by global [Ca2+]SR but provide evidence for a local activation within nanodomains at the terminal cisternae of the SR. This feature may allow SOCE to modulate [Ca2+]SR during EC coupling. We define SOCE to occur on the same timescale as EC coupling and determine the temporal coherence of SOCE activation to SR Ca2+ release. We derive a delay of 0.3 ms reflecting diffusive Ca2+-equilibration at the luminal ryanodine receptor 1 (RyR1) channel mouth upon SR Ca2+-release. Numerical simulations of Ca2+-calsequestrin binding estimates a characteristic diffusion length and confines an upper limit for the spatial distance between STIM1 and RyR1. Experimental evidence for a 4- fold change in t-system Ca2+-permeability upon prolonged electrical stimulation in conjunction with numerical simulations of Ca2+-STIM1 binding suggests a Ca2+ dissociation constant of STIM1 below 0.35 mM. Our results show that phasic SOCE is intimately linked with RyR opening and closing, with only μs delays, because [Ca2+] in the terminal cisternae is just above the threshold for Ca2+ dissociation from STIM1 under physiological resting conditions.This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.  相似文献   

19.
In atrial myocytes lacking t-tubules, action potential triggers junctional Ca2+ releases in the cell periphery, which propagates into the cell interior. The present article describes growing evidence on atrial local Ca2+ signaling and on the functions of inositol 1,4,5-trisphosphate receptors (IP3Rs) in atrial myocytes, and show our new findings on the role of IP3R subtype in the regulation of spontaneous focal Ca2+ releases in the compartmentalized areas of atrial myocytes. The Ca2+ sparks, representing focal Ca2+ releases from the sarcoplasmic reticulum (SR) through the ryanodine receptor (RyR) clusters, occur most frequently at the peripheral junctions in isolated resting atrial cells. The Ca2+ sparks that were darker and longer lasting than peripheral and non-junctional (central) sparks, were found at peri-nuclear sites in rat atrial myocytes. Peri-nuclear sparks occurred more frequently than central sparks. Atrial cells express larger amounts of IP3Rs compared with ventricular cells and possess significant levels of type 1 IP3R (IP3R1) and type 2 IP3R (IP3R2). Over the last decade the roles of atrial IP3R on the enhancement of Ca2+-induced Ca2+ release and arrhythmic Ca2+ releases under hormonal stimulations have been well documented. Using protein knock-down method and confocal Ca2+ imaging in conjunction with immunocytochemistry in the adult atrial cell line HL-1, we could demonstrate a role of IP3R1 in the maintenance of peri-nuclear and non-junctional Ca2+ sparks via stimulating a posttranslational organization of RyR clusters.  相似文献   

20.
Caffeine (1, 3, 7-trimethylxanthine) is a widely used pharmacological agonist of the cardiac ryanodine receptor (RyR2) Ca2+ release channel. It is also a well-known stimulant that can produce adverse side effects, including arrhythmias. Here, the action of caffeine on single RyR2 channels in bilayers and Ca2+ sparks in permeabilized ventricular cardiomyocytes is defined. Single RyR2 caffeine activation depended on the free Ca2+ level on both sides of the channel. Cytosolic Ca2+ enhanced RyR2 caffeine affinity, whereas luminal Ca2+ essentially scaled maximal caffeine activation. Caffeine activated single RyR2 channels in diastolic quasi-cell-like solutions (cytosolic MgATP, pCa 7) with an EC50 of 9.0 ± 0.4 mM. Low-dose caffeine (0.15 mM) increased Ca2+ spark frequency ∼75% and single RyR2 opening frequency ∼150%. This implies that not all spontaneous RyR2 openings during diastole are associated with Ca2+ sparks. Assuming that only the longest openings evoke sparks, our data suggest that a spark may result only when a spontaneous single RyR2 opening lasts >6 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号