首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning.  相似文献   

2.
Plant phenology will likely shift with climate change, but how temperature and/or moisture regimes will control phenological responses is not well understood. This is particularly true in Mediterranean climate ecosystems where the warmest temperatures and greatest moisture availability are seasonally asynchronous. We examined plant phenological responses at both the population and community levels to four climate treatments (control, warming, drought, and warming plus additional precipitation) embedded within three prairies across a 520 km latitudinal Mediterranean climate gradient within the Pacific Northwest, USA. At the population level, we monitored flowering and abundances in spring 2017 of eight range‐restricted focal species planted both within and north of their current ranges. At the community level, we used normalized difference vegetation index (NDVI) measured from fall 2016 to summer 2018 to estimate peak live biomass, senescence, seasonal patterns, and growing season length. We found that warming exerted a stronger control than our moisture manipulations on phenology at both the population and community levels. Warming advanced flowering regardless of whether a species was within or beyond its current range. Importantly, many of our focal species had low abundances, particularly in the south, suggesting that establishment, in addition to phenological shifts, may be a strong constraint on their future viability. At the community level, warming advanced the date of peak biomass regardless of site or year. The date of senescence advanced regardless of year for the southern and central sites but only in 2018 for the northern site. Growing season length contracted due to warming at the southern and central sites (~3 weeks) but was unaffected at the northern site. Our results emphasize that future temperature changes may exert strong influence on the timing of a variety of plant phenological events, especially those events that occur when temperature is most limiting, even in seasonally water‐limited Mediterranean ecosystems.  相似文献   

3.
Around the world, many species are confined to “Sky Islands,” with different populations in isolated patches of montane habitat. How does this pattern arise? One scenario is that montane species were widespread in lowlands when climates were cooler, and were isolated by local extinction caused by warming conditions. This scenario implies that many montane species may be highly susceptible to anthropogenic warming. Here, we test this scenario in a montane lizard (Sceloporus jarrovii) from the Madrean Sky Islands of southeastern Arizona. We combined data from field surveys, climate, population genomics, and physiology. Overall, our results support the hypothesis that this species' current distribution is explained by local extinction caused by past climate change. However, our results for this species differ from simple expectations in several ways: (a) their absence at lower elevations is related to warm winter temperatures, not hot summer temperatures; (b) they appear to exclude a low‐elevation congener from higher elevations, not the converse; (c) they are apparently absent from many climatically suitable but low mountain ranges, seemingly “pushed off the top” by climates even warmer than those today; (d) despite the potential for dispersal among ranges during recent glacial periods (~18,000 years ago), populations in different ranges diverged ~4.5–0.5 million years ago and remained largely distinct; and (e) body temperatures are inversely related to climatic temperatures among sites. These results may have implications for many other Sky Island systems. More broadly, we suggest that Sky Island species may be relevant for predicting responses to future warming.  相似文献   

4.
5.
Atmospheric and climatic change can alter plant biomass production and plant community composition. However, we know little about how climate change‐induced alterations in biomass production affect plant species composition. To better understand how climate change will alter both individual plant species and community biomass, we manipulated atmospheric [CO2], air temperature, and precipitation in a constructed old‐field ecosystem. Specifically, we compared the responses of dominant and subdominant species to our climatic treatments, and explored how changes in plant dominance patterns alter community evenness over 2 years. Our study resulted in four major findings: (1) all treatments, elevated [CO2], warming, and increased precipitation increased plant community biomass and the effects were additive rather than interactive, (2) plant species differed in their response to the treatments, resulting in shifts in the proportional biomass of individual species, which altered the plant community composition; however, the plant community response was largely driven by the positive precipitation response of Lespedeza, the most dominant species in the community, (3) precipitation explained most of the variation in plant community composition among treatments, and (4) changes in precipitation caused a shift in the dominant species proportional biomass that resulted in lower community evenness in the wet relative to dry treatments. Interestingly, compositional and evenness responses of the subdominant community to the treatments did not always follow the responses of the whole plant community. Our data suggest that changes in plant dominance patterns and community evenness are an important part of community responses to climatic change, and generally, that such compositional shifts can alter ecosystem biomass production and nutrient inputs.  相似文献   

6.
We present evidence of a recent drying in the eastern Mediterranean, based on weather and tree‐ring data for Samos, an island of the eastern Aegean Sea. Rainfall declined rapidly after the late 1970s following trends for the entire Mediterranean and was associated with reduced tree‐ring width in Pinus brutia. The most recent decline led to the lowest annual radial stem increment after the last 100 years (as far as records reach). As moisture availability decreased best correlations of tree growth with rainfall were obtained for progressively longer integration periods (1–2 years in moister periods, 5–6 years during the severe dryness of 20th century's last decades), suggesting increasing dependency in deep soil water. Such long‐term integration periods of tree‐growth responses to precipitation have not been reported before. They may reflect a tree‐rooting pattern adapted to cope with even several successive dry years. In late summer 2000, moisture reserves became exhausted, however, and a substantial fraction of low altitude pines died, including some 80‐year‐old trees, which underlines the exceptional extent this trend had reached. Our findings provide empirical support for Intergovernmental Panel on Climate Change projections derived from global circulation models that the Mediterranean, its eastern basin in particular, should become drier as temperature rises, as was the case in the recent past.  相似文献   

7.
The increase in spring temperatures in temperate regions over the last two decades has led to an advancing spring phenology, and most resident birds have responded to it by advancing their onset of breeding. The pied flycatcher (Ficedula hypoleuca) is a long‐distance migrant bird with a relatively late onset of breeding with respect to both resident birds and spring phenology in Europe. In the present correlational study, we show that some fitness components of pied flycatchers are suffering from climate change in two of the southernmost European breeding populations. In both montane study areas, temperature during May increased between 1980 and 2000 and an advancement of oak leafing was detected by using the normalized difference vegetation index (NDVI) to assess tree phenology. This might result in an advancement of the peak in availability of caterpillars, the main prey during the nestling stage. Over the past 18 yr, the time of egg laying and clutch size of pied flycatchers were not affected by the increase in spring temperatures in these Mediterranean populations. However, this increase seems to have an adverse effect on the reproductive output of pied flycatchers over the same period. Our data suggest that the mismatch between the timing of peak food supply and nestling demand caused by recent climate change might result in a reduction of parental energy expenditure that is reflected in a reduction of nestling growth and survival of fledged young in our study populations. The data seem to indicate that the breeding season has not shifted and it is the environment that has shifted away from the timing of the pied flycatcher breeding season. Mediterranean pied flycatchers were not able to advance their onset of breeding, probably, because they are constrained by their late arrival date and their restricted high altitude breeding habitat selection near the southern border of their range.  相似文献   

8.
  1. The effects of timber harvest in the moist coniferous forests of western North America are not well documented for ecologically important arthropods such as moths.
  2. We assessed the response of macromoth community structure (abundance, sample size-corrected estimates of species richness and diversity, and overall community composition) to time since deforestation at 20 previously logged sites (1–95 years post-harvest), and compared the macromoth communities at these stands to four old growth stands.
  3. As stand age increased following timber harvest, the number of macromoths captured in ultraviolet light traps increased and the relative abundance of dietary generalists declined, but sample size-corrected estimates of species richness and diversity did not vary. Macromoth community composition of the youngest stands (<10 years post-harvest) differed markedly from each other but converged soon thereafter.
  4. Macromoth communities at old growth sites featured higher capture rates, lower dominance by dietary generalists, and higher sample size-corrected estimates of species richness and diversity than at previously logged sites. Community composition profiles for old growth sites differed from all previously logged sites, but the differences were subtle except in comparison to the youngest logged sites. None of the 188 species we sampled were old growth specialists.
  5. Our results reveal dramatic initial impacts of deforestation on macromoth communities in moist coniferous forests of western North America. Such effects are largely reversed within two decades post-harvest but some effects persist for at least 95-years following logging.
  相似文献   

9.
Climate change and biological invasions are rapidly reshuffling species distribution, restructuring the biological communities of many ecosystems worldwide. Tracking these transformations in the marine environment is crucial, but our understanding of climate change effects and invasive species dynamics is often hampered by the practical challenge of surveying large geographical areas. Here, we focus on the Mediterranean Sea, a hot spot for climate change and biological invasions to investigate recent spatiotemporal changes in fish abundances and distribution. To this end, we accessed the local ecological knowledge (LEK) of small‐scale and recreational fishers, reconstructing the dynamics of fish perceived as “new” or increasing in different fishing areas. Over 500 fishers across 95 locations and nine different countries were interviewed, and semiquantitative information on yearly changes in species abundance was collected. Overall, 75 species were mentioned by the respondents, mostly warm‐adapted species of both native and exotic origin. Respondents belonging to the same biogeographic sectors described coherent spatial and temporal patterns, and gradients along latitudinal and longitudinal axes were revealed. This information provides a more complete understanding of the shifting distribution of Mediterranean fishes and it also demonstrates that adequately structured LEK methodology might be applied successfully beyond the local scale, across national borders and jurisdictions. Acknowledging this potential through macroregional coordination could pave the way for future large‐scale aggregations of individual observations, increasing our potential for integrated monitoring and conservation planning at the regional or even global level. This might help local communities to better understand, manage, and adapt to the ongoing biotic transformations driven by climate change and biological invaders.  相似文献   

10.
Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species‐specific responses are resulting in community‐wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm‐adapted species. To do this, we quantified changes in community composition using a functional index – the Community Temperature Index (CTI) – which measures the balance between low‐ and high‐temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (= 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22‐year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm‐adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America.  相似文献   

11.
This study analyses the temporal and spatial changes in abundance and distribution of the warm water species round sardinella (Sardinella aurita) in the western Mediterranean over the last decades in relation to sea water temperature. In the western Mediterranean basin (1950–2003), a significant positive relationship was found between round sardinella landings and temperature anomalies. Along a latitudinal gradient off the Mediterranean Iberian coast (1989–2004), a gradual increase in species abundance was observed from south to north, with a certain time lag going northwards, associated with the increase in sea water temperature. The abundance of round sardinella in the two warmest and southernmost areas was positively and significantly correlated with sea surface temperature registered during the start of gonad maturation the previous year. In addition, the positive relationship established between water temperature and abundance of round sardinella in the coldest and northernmost study area demonstrates that there is a temperature limit for the distribution of this species in the western Mediterranean. In addition, this study analyses round sardinella larvae distribution and abundance in the summers of 2003 and 2004, and conducts a comparison with the situation 20 years ago (summer 1983). Results show a marked increase in larval abundance during the last decades and the present appearance of larvae in the northernmost study areas, where they did not occur 20 years ago. This indicates the successful reproduction of round sardinella in the northern part of the Mediterranean, where the species has expanded, confirming its establishment in the area.  相似文献   

12.
The Siskiyou Mountains of northwestern California and southwestern Oregon are a floristic hotspot, and the high diversity of conifers there likely results from a combination of geological, ecological, climatological and historical factors. To evaluate how past climate variability has influenced the composition, structure and fire regime of the Siskiyou forests, pollen, charcoal, and lithological evidence was examined from two lakes along a moisture gradient to reconstruct the vegetation, fire and climate history. The late-glacial period was characterized by subalpine parkland and infrequent fire at both sites. During the late-glacial/Early Holocene transition period, subalpine parkland was replaced by a closed forest of Pinus, Cupressaceae, Abies and Pseudotsuga and more frequent fires a 1000 years earlier at the wetter site, and it is likely that reduced Pacific Ocean upwelling created warmer drier conditions at the coast. In the Early Holocene, Pinus, Cupressaceae were less abundant and fire less frequent at the coastal site during a period of increased coastal upwelling and fog production. In the Late Holocene, Abies, Pseudotsuga, Pinus, and Quercus vaccinifolia increased in the forest at both sites suggesting a widespread response to cooling. Fewer fires at the wetter site may account for the abundance of Picea breweriana within the last 1000 years. The comparison of the two records implies that large-scale controls in climate during the last 14,000 cal yr BP have resulted in major changes in vegetation and fire regime. Asynchrony in the ecosystem response of wetter and drier sites arises from small-scale spatial variations in effective moisture and temperature resulting from topographically-influenced microclimates and coastal-to-inland climate gradients.  相似文献   

13.
Seasonal variability of phytoplankton species composition, abundance and physical and chemical factors influencing phytoplankton dynamics were investigated in the Aby lagoon system, south-eastern Ivory Coast, covering the main climatic seasons in 2006–2007. Seasonal and spatial variability of nutrient concentrations in the system were influenced by freshwater inflow from the Bia and Tanoé rivers. The decrease in the salinity gradient in Aby Lagoon, which is permanently stratified during the long dry season, increased the bottom inputs of soluble reactive phosphate and soluble reactive silicate which, in combination with good light penetration during the long dry season, enhanced phytoplankton production in the system. During the rainy seasons, water discharges into the system washed phytoplankton biomass out, preventing the development of blooms. Overall, 192 taxa from eight phyla were recorded: Bacillariophyta (32%), Chlorophyta (31%), Cyanobacteria (23%), Euglenophyta (12%), Dinophyta (0.5%), Xanthophyta (0.5%), Chrysophyta (0.5%) and Rhodophyta (0.5%). During the long dry season, Cyanobacteria cells comprised >50% of the phytoplankton abundance. The main phytoplankton taxa responsible for this high abundance were Microcystis aeruginosa, Oscillatoria princeps, Pseudanabaena limnetica, Aphanizomenon sp. 2 and Anabaena planctonica.  相似文献   

14.
15.
Climate warming is predicted to considerably affect variations in soil organic carbon (SOC), especially in alpine ecosystems. Microbial necromass carbon (MNC) is an important contributor to stable soil organic carbon pools. However, accumulation and persistence of soil MNC across a gradient of warming are still poorly understood. An 8-year field experiment with four levels of warming was conducted in a Tibetan meadow. We found that low-level (+0–1.5°C) warming mostly enhanced bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and total MNC compared with control treatment across soil layers, while no significant effect was caused between high-level (+1.5–2.5°C) treatments and control treatments. The contributions of both MNC and BNC to soil organic carbon were not significantly affected by warming treatments across depths. Structural equation modeling analysis demonstrated that the effect of plant root traits on MNC persistence strengthened with warming intensity, while the influence of microbial community characteristics waned along strengthened warming. Overall, our study provides novel evidence that the major determinants of MNC production and stabilization may vary with warming magnitude in alpine meadows. This finding is critical for updating our knowledge on soil carbon storage in response to climate warming.  相似文献   

16.
Globally, biological invasions can have strong impacts on biodiversity as well as ecosystem functioning. While less conspicuous than introduced aboveground organisms, introduced belowground organisms may have similarly strong effects. Here, we synthesize for the first time the impacts of introduced earthworms on plant diversity and community composition in North American forests. We conducted a meta‐analysis using a total of 645 observations to quantify mean effect sizes of associations between introduced earthworm communities and plant diversity, cover of plant functional groups, and cover of native and non‐native plants. We found that plant diversity significantly declined with increasing richness of introduced earthworm ecological groups. While plant species richness or evenness did not change with earthworm invasion, our results indicate clear changes in plant community composition: cover of graminoids and non‐native plant species significantly increased, and cover of native plant species (of all functional groups) tended to decrease, with increasing earthworm biomass. Overall, these findings support the hypothesis that introduced earthworms facilitate particular plant species adapted to the abiotic conditions of earthworm‐invaded forests. Further, our study provides evidence that introduced earthworms are associated with declines in plant diversity in North American forests. Changing plant functional composition in these forests may have long‐lasting effects on ecosystem functioning.  相似文献   

17.
Ecological theory suggests that communities are not random combinations of species but rather the results of community assembly processes filtering and sorting species that are able to coexist together. To date, such processes (i.e., assembly rules) have been inferred from observed spatial patterns of biodiversity combined with null model approaches, but relatively few attempts have been made to assess how these processes may be changing through time. Specifically, in the context of the ongoing biodiversity crisis and global change, understanding how processes shaping communities may be changing and identifying the potential drivers underlying these changes become increasingly critical. Here, we used time series of 460 French freshwater fish communities and assessed both functional and phylogenetic diversity patterns to determine the relative importance of two key assembly rules (i.e., habitat filtering and limiting similarity) in shaping these communities over the last two decades. We aimed to (a) describe the temporal changes in both functional and phylogenetic diversity patterns, (b) determine to what extent temporal changes in processes inferred through the use of standardized diversity indices were congruent, and (c) test the relationships between the dynamics of assembly rules and both climatic and biotic drivers. Our results revealed that habitat filtering, although already largely predominant over limiting similarity, became more widespread over time. We also highlighted that phylogenetic and trait‐based approaches offered complementary information about temporal changes in assembly rules. Finally, we found that increased environmental harshness over the study period (especially higher seasonality of temperature) led to an increase in habitat filtering and that biological invasions increased functional redundancy within communities. Overall, these findings underlie the need to develop temporal perspectives in community assembly studies, as understanding ongoing temporal changes could provide a better vision about the way communities could respond to future global changes.  相似文献   

18.
Climate change and increased anthropogenic activities are expected to elevate the potential of introducing nonindigenous species (NIS) into the Arctic. Yet, the knowledge base needed to identify gaps and priorities for NIS research and management is limited. Here, we reviewed primary introduction events to each ecoregion of the marine Arctic realm to identify temporal and spatial patterns, likely source regions of NIS, and the putative introduction pathways. We included 54 introduction events representing 34 unique NIS. The rate of NIS discovery ranged from zero to four species per year between 1960 and 2015. The Iceland Shelf had the greatest number of introduction events (n = 14), followed by the Barents Sea (n = 11), and the Norwegian Sea (n = 11). Sixteen of the 54 introduction records had no known origins. The majority of those with known source regions were attributed to the Northeast Atlantic and the Northwest Pacific, 19 and 14 records, respectively. Some introduction events were attributed to multiple possible pathways. For these introductions, vessels transferred the greatest number of aquatic NIS (39%) to the Arctic, followed by natural spread (30%) and aquaculture activities (25%). Similar trends were found for introductions attributed to a single pathway. The phyla Arthropoda and Ochrophyta had the highest number of recorded introduction events, with 19 and 12 records, respectively. Recommendations including vector management, horizon scanning, early detection, rapid response, and a pan‐Arctic biodiversity inventory are considered in this paper. Our study provides a comprehensive record of primary introductions of NIS for marine environments in the circumpolar Arctic and identifies knowledge gaps and opportunities for NIS research and management. Ecosystems worldwide will face dramatic changes in the coming decades due to global change. Our findings contribute to the knowledge base needed to address two aspects of global change—invasive species and climate change.  相似文献   

19.

Questions

Which major syntaxa of dry grasslands supported by carbonate bedrock occur in the central and southern Balkans? What is their position along major ecological gradients and in the context of phytogeographic patterns of the region?

Location

Central and southern Balkans, including western Bulgaria, northern Greece, Kosovo, Macedonia (FYROM) and Serbia.

Methods

We compiled a matrix of 660 relevés of dry grasslands over lime‐rich bedrock, previously classified in the Festuco‐Brometea. We applied clustering techniques to classify separately synoptic and relevé data, and applied NMDS with passive projection of indicator values, climatic data and biogeographic geo‐elements onto ordination diagrams to assist interpretation of the syntaxonomic patterns. We constructed elevation distribution profiles for alliances and classes of grasslands of several grassland classes from a broader study area to elucidate the relationship of the elevational sorting of the syntaxa in relation to latitude.

Results

The analysis revealed six major vegetation types, classified into four orders: (1) Stipo pulcherrimae‐Festucetalia pallentis, incl. (sub)montane rocky steppic grasslands of the Saturejion montanae of central Balkans, and the Koelerio‐Festucion dalmaticae – submontane rocky grasslands of southern Serbia and Kosovo; (2) Astragalo onobrychidis‐Potentilletalia represented by the Saturejo‐Thymion (low‐elevation steppic grasslands of southern Balkans); (3) Festucetalia valesiacae represented by grasslands on deep soil and low elevation of northern Greece, and finally (4) high‐elevation rocky grasslands of southern Balkans, classified as a new alliance – Diantho haematocalycis‐Festucion hirtovaginatae, that might belong to a new, yet undescribed, syntaxonomic order. Ordination suggests that the major differentiation of the high‐rank syntaxa follows north–south geographic and low–high elevation gradients.

Conclusions

Because of the transitional biogeographic position of the studied region, as well as considerable large elevation span across latitudes, the diversity of vegetation types is high. The indication a putative new dry grassland order, the mid‐high altitudes of the southern Balkans points to a need to re‐assess the Balkan vegetation occupying the community niche between the low‐elevation dry grasslands (Festuco‐Brometea) and those typical of high elevations (Elyno‐Seslerietea and Daphno‐Festucetea), seeking parallels to patterns described from the western Alps, Pyrenees, and Apennines. This syntaxonomic unit is poised to expand the concept of the Festuco hystricis‐Ononidetea striatae to the Balkans.
  相似文献   

20.
Fish is a vital, healthy source of animal protein and vitamins. This study was oriented to estimate fluoride, some selected elements, lipids, and protein concentrations in fish. Five fish species were collected from the Egyptian Mediterranean Sea coast during April 2007. Variable content of fluoride, calcium, magnesium, sulphate, phosphorus, lipids, and protein were determined in muscle and liver of fish samples and yielded average values in fish muscle of 11.0 ± 2.0 μg/g, 6.5 ± 3.8 mg/g, 100.2 ± 39.3 mg/g, 4.4 ± 6.3 mg/g, 2.4 ± 0.5 mg/g, 6.0 ± 2.2 mg/l, and 2.6 ± 1.0 g% wet wt, respectively. Special attention was given to fluoride because of its hazardous classification. Interestingly, the hazard index values of fluoride were less than 1 for all collected fish species. Additionally, the daily fluoride exposure was generally below the nutrient reference values for Australian and New Zealand populations. Accordingly, there is little human health risk from the selected fish species due to consumption of fluoride-contaminated fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号