首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major question in the biology of stress and environmental adaptation concerns the neurobiological basis of how neuroendocrine systems governing physiological regulatory mechanisms essential for life (metabolism, immune response, organ function) become harmful. The current view is that a switch from protection to damage occurs when vulnerable phenotypes are exposed to adverse environmental conditions. In accordance with this theory, sequelae of early life social and environmental stressors, such as childhood abuse, neglect, poverty, and poor nutrition, have been associated with the emergence of mental and physical illness (i.e., anxiety, mood disorders, poor impulse control, psychosis, and drug abuse) and an increased risk of common metabolic and cardiovascular diseases later in life. Evidence from animal and human studies investigating the associations between early life experiences (including parent‐infant bonding), hypothalamus‐pituitary‐adrenal axis activity, brain development, and health outcome provide important clues into the neurobiological mechanisms that mediate the contribution of stressful experiences to personality development and the manifestation of illness. This review summarizes our current molecular understanding of how early environment influences brain development in a manner that persists through life and highlights recent evidence from rodent studies suggesting that maternal care in the first week of postnatal life establishes diverse and stable phenotypes in the offspring through epigenetic modification of genes expressed in the brain that shape neuroendocrine and behavioral stress responsivity throughout life. Birth Defects Research (Part C) 87:314–326, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Post‐meiotic sperm ageing, both before ejaculation and after ejaculation, has been shown to negatively affect offspring fitness by lowering the rate of embryonic development, reducing embryonic viability and decreasing offspring condition. These negative effects are thought to be caused by intrinsic factors such as oxidative stress and ATP depletion or extrinsic factors such as temperature and osmosis. Effects of post‐ejaculation sperm ageing on offspring fitness have so far almost exclusively been tested in internal fertilizers. Here, we tested whether intrinsic post‐ejaculation sperm ageing affects offspring performance in an external fertilizer, the Atlantic salmon Salmo salar. We performed in vitro fertilizations with a split‐clutch design where sperm were subjected to four post‐ejaculation ageing treatments. We varied the duration between sperm activation and fertilization while minimizing extrinsic stress factors and tested how this affected offspring fitness. We found no evidence for an effect of our treatments on embryo survival, hatching time, larval standard length, early larval survival or larval growth rate, indicating that intrinsic post‐ejaculation sperm ageing may not occur in Atlantic salmon. One reason may be the short life span of salmon sperm after ejaculation. Whether our findings are true in other external fertilizers with extended sperm activity remains to be tested.  相似文献   

3.
Evolutionary theory suggests that natural selection should synchronize senescence of reproductive and somatic systems. In some species, females show dramatic discordance in senescence rates in these systems, leading to a clear menopause coupled with prolonged postreproductive life span. The Mother Hypothesis proposes that menopause evolved to avoid higher reproductive‐mediated mortality risk in late‐life and ensure the survival of existing offspring. Despite substantial theoretical interest, the critical predictions of this hypothesis have never been fully tested in populations with natural fertility and mortality. Here, we provide an extensive test, investigating both short‐ and long‐term consequences of mother loss for offspring, using multigenerational demographic datasets of premodern Finns and Canadians. We found no support for the Mother Hypothesis. First, although the risk of maternal death from childbirth increased from middle age, the risk only reached 1–2% at age 50 and was predicted to range between 2% and 8% by 70. Second, offspring were adversely affected by maternal loss only in their first two years (i.e., preweaning), having reduced survival probability in early childhood as well as ultimate life span and fitness. Dependent offspring were not affected by maternal death following weaning, either in the short‐ or long‐term. We suggest that although mothers are required to ensure offspring survival preweaning in humans, maternal loss thereafter can be compensated by other family members. Our results indicate that maternal effects on dependent offspring are unlikely to explain the maintenance of menopause or prolonged postreproductive life span in women.  相似文献   

4.
The conditions under which individuals are reared vary and sensitivity of offspring to such variation is often sex‐dependent. Parental age is one important natal condition with consequences for aspects of offspring fitness, but reports are mostly limited to short‐term fitness consequences and do not take into account offspring sex. Here we used individual‐based data from a large colony of a long‐lived seabird, the common tern Sterna hirundo, to investigate longitudinal long‐term fitness consequences of parental age in relation to both offspring and parental sex. We found that recruited daughters from older mothers suffered from reduced annual reproductive success. Recruited sons from older fathers were found to suffer from reduced life span. Both effects translated to reductions in offspring lifetime reproductive success. Besides revealing novel sex‐specific pathways of transgenerational parental age effects on offspring fitness, which inspire studies of potential underlying mechanisms, our analyses show that reproductive senescence is only observed in the common tern when including transgenerational age effects. In general, our study shows that estimates of selective pressures underlying the evolution of senescence, as well as processes such as age‐dependent mate choice and sex allocation, will depend on whether causal transgenerational effects exist and are taken into account.  相似文献   

5.
An adverse intrauterine environment increases the risk of developing various adult-onset diseases, whose nature varies with the timing of exposure. Maternal undernutrition in humans can increase adiposity, and the risk of coronary heart disease and impaired glucose tolerance in adult life, which may be partly mediated by maternal or fetal endocrine stress responses. In sheep, dexamethasone in early pregnancy impairs cardiovascular function, but not glucose homeostasis in adult female offspring. However, male offspring are often more susceptible to early life "programming". Pregnant sheep were infused intravenously with saline (0.19 ml/h), dexamethasone (0.48 mg/h), or cortisol (5 mg/h), for 2 days from 26 to 28 days of gestation. In male offspring, size at birth and postnatal growth were measured, and glucose tolerance [intravenous glucose tolerance test (IVGTT)], insulin secretion, and insulin sensitivity of glucose, alpha-amino nitrogen, and free fatty acid metabolism were assessed at 4 yr of age. We show that cortisol, but not dexamethasone, treatment of mothers causes fasting hyperglycemia in adult male offspring. Maternal cortisol induced a second-phase hyperinsulinemia during IVGTT, whereas maternal dexamethasone induced a first-phase hyperinsulinemia. Dexamethasone improved glucose tolerance, while cortisol had no impact, and neither affected insulin sensitivity. This suggests that maternal glucocorticoid exposure in early pregnancy alters glucose homeostasis and induces hyperinsulinemia in adult male offspring, but in a glucocorticoid-specific manner. These consequences of glucocorticoid exposure in early pregnancy may lead to pancreatic exhaustion and diabetes longer term and are consistent with stress during early pregnancy contributing to such outcomes in humans.  相似文献   

6.
Adverse ecological and social conditions during early life are known to influence development, with rippling effects that may explain variation in adult health and fitness. The adaptive function of such developmental plasticity, however, remains relatively untested in long‐lived animals, resulting in much debate over which evolutionary models are most applicable. Furthermore, despite the promise of clinical interventions that might alleviate the health consequences of early‐life adversity, research on the proximate mechanisms governing phenotypic responses to adversity have been largely limited to studies on glucocorticoids. Here, we synthesize the current state of research on developmental plasticity, discussing both ultimate and proximate mechanisms. First, we evaluate the utility of adaptive models proposed to explain developmental responses to early‐life adversity, particularly for long‐lived mammals such as humans. In doing so, we highlight how parent‐offspring conflict complicates our understanding of whether mothers or offspring benefit from these responses. Second, we discuss the role of glucocorticoids and a second physiological system—the gut microbiome—that has emerged as an additional, clinically relevant mechanism by which early‐life adversity can influence development. Finally, we suggest ways in which nonhuman primates can serve as models to study the effects of early‐life adversity, both from evolutionary and clinical perspectives.  相似文献   

7.
Polyandry, by elevating sexual conflict and selecting for reduced male care relative to monandry, may exacerbate the cost of sex and thereby seriously impact population fitness. On the other hand, polyandry has a number of possible population-level benefits over monandry, such as increased sexual selection leading to faster adaptation and a reduced mutation load. Here, we review existing information on how female fitness evolves under polyandry and how this influences population dynamics. In balance, it is far from clear whether polyandry has a net positive or negative effect on female fitness, but we also stress that its effects on individuals may not have visible demographic consequences. In populations that produce many more offspring than can possibly survive and breed, offspring gained or lost as a result of polyandry may not affect population size. Such ecological ‘masking’ of changes in population fitness could hide a response that only manifests under adverse environmental conditions (e.g. anthropogenic change). Surprisingly few studies have attempted to link mating system variation to population dynamics, and in general we urge researchers to consider the ecological consequences of evolutionary processes.  相似文献   

8.
Accumulating evidence suggests that within‐individual plasticity of behavioural and physiological traits is limited, resulting in stable among‐individual differences in these aspects of the phenotype. Furthermore, these traits often covary within individuals, resulting in a continuum of correlated phenotypic variation among individuals within populations and species. This heterogeneity, in turn, affects individual fitness and can have cross‐generational effects. Patterns of trait covariation, among‐individual differences, and subsequent fitness consequences have long been recognized in reptiles. Here, we provide a test of patterns of among‐individual heterogeneity in behaviour and physiology and subsequent effects on reproduction and offspring fitness in the garter snake Thamnophis elegans. We find that measures of activity levels vary among individuals and are consistent within individuals in reproductive female snakes, indicating stable behavioural phenotypes. Blood hormone and glucose concentrations are not as stable within individuals, indicating that these traits do not describe consistent physiological phenotypes. Nonetheless, the major axes of variation in maternal traits describe behavioural and physiological phenotypes that interact to predict offspring body condition and mass at birth. This differential allocation of energy to offspring, in turn, strongly influences subsequent offspring growth and survival. This pattern suggests the potential for strong selection on phenotypes defined by behaviour–physiology interactions.  相似文献   

9.
10.
The importance of parental contributions to offspring development and subsequent performance is self‐evident at a genomic level; however, parents can also affect offspring fitness by indirect genetic and environmental routes. The life history strategy that an individual adopts will be influenced by both genes and environment; and this may have important consequences for offspring. Recent research has linked telomere dynamics (i.e., telomere length and loss) in early life to future viability and longevity. Moreover, a number of studies have reported a heritable component to telomere length across a range of vertebrates, although the effects of other parental contribution pathways have been far less studied. Using wild Atlantic salmon with different parental life histories in an experimental split‐brood in vitro fertilization mating design and rearing the resulting families under standardized conditions, we show that there can be significant links between parental life history and offspring telomere length (studied at the embryo and fry stage). Maternal life history traits, in particular egg size, were most strongly related to offspring telomere length at the embryonic stage, but then became weaker through development. In contrast, paternal life history traits, such as the father's growth rate in early life, had a greater association in the later stages of offspring development. However, offspring telomere length was not significantly related to either maternal or paternal age at reproduction, nor to paternal sperm telomere length. This study demonstrates both the complexity and the importance of parental factors that can influence telomere length in early life.  相似文献   

11.
In the absence of long‐term field studies, demographic and reproductive records from animals housed in zoos and research laboratories are a valuable tool for the study of life history variables relating to reproduction. In this study, we analyzed studbook records of more than 2,000 individuals born over a 40‐year period (1965–2004) to describe life history patterns of captive Goeldi's monkeys (Callimico goeldii) housed in North America and Europe. Using Kaplan–Meier survival analysis methods, we found the mean life span to be 5.5 years. The rate of infant mortality, defined as death before 30 days, was approximately 30%, with European animals being more likely to survive infancy than North American animals. When individuals surviving at least 1.5 years are considered, lifetime reproductive output averaged 3.5 offspring, yet more than one‐third of individuals did not produce any offspring. Using a smaller dataset of individuals with known pairing histories, we developed a measure of opportunity for reproduction (OFR), which represented the total time an individual was known to be housed with a potential mate. For both sexes, we found that the correlation between OFR and number of offspring produced was much higher than the correlation between life span and number of offspring produced. This result highlights the importance of taking into account an individual's OFR. As a whole, our findings help characterize the life histories of captive Goeldi's monkeys and emphasize the impact management practices may have on reproductive success. Zoo Biol 29:1–15, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Individual variation in resource acquisition should have consequences for life‐history traits and trade‐offs between them because such variation determines how many resources can be allocated to different life‐history functions, such as growth, survival and reproduction. Since resource acquisition can vary across an individual's life cycle, the consequences for life‐history traits and trade‐offs may depend on when during the life cycle resources are limited. We tested for differential and/or interactive effects of variation in resource acquisition in the burying beetle Nicrophorus vespilloides. We designed an experiment in which individuals acquired high or low amounts of resources across three stages of the life cycle: larval development, prior to breeding and the onset of breeding in a fully crossed design. Resource acquisition during larval development and prior to breeding affected egg size and offspring survival, respectively. Meanwhile, resource acquisition at the onset of breeding affected size and number of both eggs and offspring. In addition, there were interactive effects between resource acquisition at different stages on egg size and offspring survival. However, only when females acquired few resources at the onset of breeding was there evidence for a trade‐off between offspring size and number. Our results demonstrate that individual variation in resource acquisition during different stages of the life cycle has important consequences for life‐history traits but limited effects on trade‐offs. This suggests that in species that acquire a fixed‐sized resource at the onset of breeding, the size of this resource has larger effects on life‐history trade‐offs than resources acquired at earlier stages.  相似文献   

13.
Population viscosity can have major consequences for adaptive evolution, in particular for phenotypes involved in social interactions. For example, population viscosity increases the probability of mating with close kin, resulting in selection for mechanisms that circumvent the potential negative consequences of inbreeding. Female promiscuity is often suggested to be one such mechanism. However, whether avoidance of genetically similar partners is a major selective force shaping patterns of promiscuity remains poorly supported by empirical data. Here, we show (i) that fine‐scale genetic structure constrains social mate choice in a pair‐bonding lizard, resulting in individuals pairing with genetically similar individuals, (ii) that these constraints are circumvented by multiple mating with less related individuals and (iii) that this results in increased heterozygosity of offspring. Despite this, we did not detect any significant effects of heterozygosity on offspring or adult fitness or a strong relationship between pair relatedness and female multiple mating. We discuss these results within the context of incorporating the genetic context dependence of mating strategies into a holistic understanding of mating system evolution.  相似文献   

14.
Oscar Vedder  Sandra Bouwhuis 《Oikos》2018,127(5):719-727
While life‐history theory predicts a tradeoff between reproduction and survival, positive covariance, indicative of heterogeneity in individual quality, is often reported among individuals from natural populations. We review longitudinal studies of wild bird populations that test the relationship between annual reproductive success and lifespan and find the majority to report a positive correlation, while none reports a negative correlation. Heterogeneity in individual quality in resource acquisition, masking resource‐based tradeoffs, therefore appears to be common in birds. Considering that there is little evidence for heritable variation in fitness, heterogeneity in individual quality among adults may be due to life‐long effects of developmental conditions. In a 20‐year case study on common terns Sterna hirundo, we test for life‐long effects of cohort quality and within‐cohort nest quality, but find no significant effects on long‐term proxies of quality. Since other studies do find strong life‐long effects of developmental conditions, we suggest that the brood reduction strategy adopted by common terns, causing the majority of offspring to die rapidly after hatching, efficiently reduces variation in offspring quality at independence. As such, a brood reduction strategy may contribute to reduced heterogeneity in adult survival in stochastic environments, both suggested to be more common and adaptive in long‐lived species. Further study is required to assess heterogeneity in individual reproduction, especially in relation to environmental stochasticity and species’ life‐history strategies, in order to assess whether the relative strength of selection in early and late life may indeed affect the magnitude of heterogeneity in individual quality over life, and how this is mediated by parent–offspring conflict.  相似文献   

15.
Groups of animals possess phenotypes such as collective behaviour, which may determine the fitness of group members. However, the stability and robustness to perturbations of collective phenotypes in natural conditions is not established. Furthermore, whether group phenotypes are transmitted from parent to offspring groups with fidelity is required for understanding how selection on group phenotypes contributes to evolution, but parent–offspring resemblance at the group level is rarely estimated. We evaluated the repeatability, robustness to perturbation and parent–offspring resemblance of collective foraging aggressiveness in colonies of the social spider Anelosimus eximius. Among‐colony differences in foraging aggressiveness were consistent over time but changed if the colony was perturbed through the removal of individuals or via individuals’ removal and subsequent return. Offspring and parent colony behaviour were correlated at the phenotypic level, but only once the offspring colony had settled after being translocated, and the correlation overlapped with zero at the among‐colony level. The parent–offspring resemblance was not driven by a shared elevation but could be due to other environmental factors. The behaviour of offspring colonies in a common garden laboratory setting was not correlated with the behaviour of the parent colony nor with the same colony's behaviour once it was returned to the field. The phenotypes of groups represent a potentially important tier of biological organization, and assessing the stability and heritability of such phenotypes helps us better understand their role in evolution.  相似文献   

16.
Exposure to chronic stress early on during development has important deleterious consequences later in life, reducing important components of individual fitness such as survival and future reproduction. In this study, we evaluate the factors associated with physiological response to stress in fledgling Lesser Kestrels Falco naumanni , paying particular attention to the potential role of individual genetic diversity. For this purpose, we used heterophil/lymphocyte ratios (H/L ratio) as a haematological stress indicator and typed the analysed individuals at 11 highly polymorphic microsatellite loci, which allowed us to estimate their genetic diversity. We found that the H/L ratio decreases with fledgling physical condition, suggesting that this parameter is a good indicator of nutritionally based physiological stress. Physiological response to stress was higher in males than in females and this effect was independent of physical condition, suggesting that the observed pattern is due to inherent sexual differences in the factors influencing H/L ratios. Finally, the H/L ratio was positively associated with the genetic diversity of offspring. Previous experimental studies have found that individuals with higher genetic diversity show increased levels of circulating glucocorticoids, which in turn are directly responsible for increasing H/L ratios. On this basis, we suggest that a positive effect of genetic diversity on corticosterone levels may explain the observed association between H/L ratios and individual heterozygosity. Overall, this study highlights the utility of leucocyte profiles to study stress in wild bird populations and poses an interesting question about the effects of individual genetic diversity on haematological response to stress.  相似文献   

17.
Climate change is leading to altered temperature regimes which are impacting aquatic life, particularly for ectothermic fish. The impacts of environmental stress can be translated across generations through maternally derived glucocorticoids, leading to altered offspring phenotypes. Although these maternal stress effects are often considered negative, recent studies suggest this maternal stress signal may prepare offspring for a similarly stressful environment (environmental match). We applied the environmental match hypothesis to examine whether a prenatal stress signal can dampen the effects of elevated water temperatures on body size, condition, and survival during early development in Chinook salmon Oncorhynchus tshawytscha from Lake Ontario, Canada. We exposed fertilized eggs to prenatal exogenous egg cortisol (1,000 ng/ml cortisol or 0 ng/ml control) and then reared these dosed groups at temperatures indicative of current (+0°C) and future (+3°C) temperature conditions. Offspring reared in elevated temperatures were smaller and had a lower survival at the hatchling developmental stage. Overall, we found that our exogenous cortisol dose did not dampen effects of elevated rearing temperatures (environmental match) on body size or early survival. Instead, our eyed stage survival indicates that our prenatal cortisol dose may be detrimental, as cortisol‐dosed offspring raised in elevated temperatures had lower survival than cortisol‐dosed and control reared in current temperatures. Our results suggest that a maternal stress signal may not be able to ameliorate the effects of thermal stress during early development. However, we highlight the importance of interpreting the fitness impacts of maternal stress within an environmentally relevant context.  相似文献   

18.
Stressful conditions experienced by individuals during their early development have long-term consequences on various life-history traits such as survival until first reproduction. Oxidative stress has been shown to affect various fitness-related traits and to influence key evolutionary trade-offs but whether an individual''s ability to resist oxidative stress in early life affects its survival has rarely been tested. In the present study, we used four years of data obtained from a free-living great tit population (Parus major; n = 1658 offspring) to test whether pre-fledging resistance to oxidative stress, measured as erythrocyte resistance to oxidative stress and oxidative damage to lipids, predicted fledging success and local recruitment. Fledging success and local recruitment, both major correlates of survival, were primarily influenced by offspring body mass prior to fledging. We found that pre-fledging erythrocyte resistance to oxidative stress predicted fledging success, suggesting that individual resistance to oxidative stress is related to short-term survival. However, local recruitment was not influenced by pre-fledging erythrocyte resistance to oxidative stress or oxidative damage. Our results suggest that an individual ability to resist oxidative stress at the offspring stage predicts short-term survival but does not influence survival later in life.  相似文献   

19.
Epidemiological research since the 1980s has highlighted the consequences of early life adversity, particularly during gestation and early infancy, for adult health (the “Barker hypothesis”). The fast‐evolving field of molecular epigenetics is providing explanatory mechanisms concerning phenotypic plasticity in response to developmental stressors and the accumulation of disease risk throughout life. In addition, there is now evidence for the heritability of poor health across generations via epigenetic modifications. This research has the potential to invoke a paradigmatic shift in how we interpret factors such as growth insults and immune response in past skeletal remains. It demonstrates that health cannot be understood in terms of immediate environmental circumstances alone. Furthermore, it requires both a theoretical and practical re‐evaluation of disease biographies and the life course more generally. Individual life courses can no longer be regarded as discrete, bounded, life histories, with clearly defined beginning and end points. If socioeconomic circumstances can have intergenerational effects, including disease susceptibility and growth stunting, then individual biographies should be viewed as nested or “embedded” within the lives of others. This commingling of life courses may prove problematic to unravel; nevertheless, this review aims to consider the potential consequences for bioarchaeological interpretations. These include a greater consideration of: the temporal power of human skeletons and a life course approach to past health; infant health and the implications for maternal well‐being; and the impact of non‐proximate stressors (e.g., early life and ancestral environments) on the presence of health indicators. Am J Phys Anthropol 158:530–540, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Avian seasonal timing is a life‐history trait with important fitness consequences and which is currently under directional selection due to climate change. To predict micro‐evolution in this trait, it is crucial to properly estimate its heritability. Heritabilities are often estimated from pedigreed wild populations. As these are observational data, it leaves the possibility that the resemblance between related individuals is not due to shared genes but to ontogenetic effects; when the environment for the offspring provided by early laying pairs differs from that by late pairs and the laying dates of these offspring when they reproduce themselves is affected by this environment, this may lead to inflated heritability estimates. Using simulation studies, we first tested whether and how much such an early environmental effect can inflate heritability estimates from animal models, and we showed that pedigree structure determines by how much early environmental effects inflate heritability estimates. We then used data from a wild population of great tits (Parus major) to compare laying dates of females born early in the season in first broods and from sisters born much later, in second broods. These birds are raised under very different environmental conditions but have the same genetic background. The laying dates of first and second brood offspring do not differ when they reproduce themselves, clearly showing that ontogenetic effects are very small and hence, family resemblance in timing is due to genes. This finding is essential for the interpretation of the heritabilities reported from wild populations and for predicting micro‐evolution in response to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号