首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1. Knowledge of the influence of predatory fish in detritus‐based stream food webs is poor. We tested whether larval abundance of the New Zealand leaf‐shredding caddisfly, Zelandopsyche ingens (family Oeconesidae), was affected by the presence of predatory brown trout, Salmo trutta and the abundance of their primary detrital resource (Nothofagus leaves). 2. The density of Z. ingens and the biomass of leaves were determined in seven fishless streams and four trout streams in the Cass region, central South Island, on four occasions spanning 5 years. 3. Physicochemical conditions were similar in trout and fishless streams, but ancova indicated that Z. ingens numbers were positively related to leaf biomass and that caddisfly numbers were significantly greater in fishless streams than trout streams for any given biomass of leaf. The cases of trout stream larvae were also heavier per unit length than those in fishless streams. 4. Our results provide evidence for both top‐down and bottom‐up influences on a detritus‐based stream food web. Although stream detritivores may benefit from a habitat that provides both food and a degree of protection from predators, top‐down effects of predators on detritivore population abundance were still important. Thus, detrital resource availability may determine maximum attainable population size, whereas predation is likely to reduce the population to a level below that.  相似文献   

2.
The introduction of nonnative salmonids in the Southern Hemisphere generally leads to a reduction in invertebrate abundance and changes in assemblage composition. In the Cape Floristic Region of South Africa, introduced rainbow trout Oncorhynchus mykiss is the dominant predator in many headwater streams, where they have replaced small‐bodied native fishes such as Breede River redfin Pseudobarbus burchelli. To examine the consequences of this species replacement on food web structure, we used a month‐long field experiment to compare the top‐down effects of Breede River redfin and rainbow trout on benthic invertebrate assemblages (abundance and composition) and basal resources (periphyton and particulate organic matter) in 1 × 1.5 m of plastic cages. Benthic invertebrate abundance was more strongly depleted in the cages with redfin than in the cages with trout, and redfin and trout had distinct effects on invertebrate assemblage composition. On the other hand, neither redfin nor trout had a significant influence over standing stocks of periphyton or organic matter, implying that their differential effects on benthic invertebrates did not cascade down to the base of the stream food web in our experiment. Gut content analysis showed that aquatic invertebrates contributed more to the diet of redfin, while terrestrial invertebrates contributed more to the diet of trout, which may be responsible for the relatively weak effect of trout on aquatic invertebrates. This pattern contrasts with nonnative salmonid impacts elsewhere in the Southern Hemisphere. That trout can strongly alter the structure of benthic invertebrate assemblages, in addition to severely depleting native fish abundance, in Cape Floristic Region headwater streams should be weighed into management decisions, and our findings highlight the need for a detailed understanding of species‐specific top‐down effects where native predators are replaced by invasive predators.  相似文献   

3.
Predicting climate change impacts on animal communities requires knowledge of how physiological effects are mediated by ecological interactions. Food‐dependent growth and within‐species size variation depend on temperature and affect community dynamics through feedbacks between individual performance and population size structure. Still, we know little about how warming affects these feedbacks. Using a dynamic stage‐structured biomass model with food‐, size‐ and temperature‐dependent life history processes, we analyse how temperature affects coexistence, stability and size structure in a tri‐trophic food chain, and find that warming effects on community stability depend on ecological interactions. Predator biomass densities generally decline with warming – gradually or through collapses – depending on which consumer life stage predators feed on. Collapses occur when warming induces alternative stable states via Allee effects. This suggests that predator persistence in warmer climates may be lower than previously acknowledged and that effects of warming on food web stability largely depend on species interactions.  相似文献   

4.
5.
Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller‐bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top‐down and bottom‐up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal‐transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non‐local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top‐down and bottom‐up control.  相似文献   

6.
Classical food web theory holds that energy channels are regulated by top‐down control with increasing productivity, arising from within‐channel processes. However, these hypotheses do not consider the existence of parallel energy channels linked by shared resource pools and which can fuel generalist predators, imposing trophic control arising from multi‐channel processes. Using 23 large marine food webs, we show that food web responses to increasing productivity are consistent with the apparent trophic cascade hypothesis (ATCH) – with rising productivity predators derive an increasing fraction of their diet from increasingly productive bottom‐up controlled detritus channels, thereby subsidising predator biomass, and in turn strengthening top‐down control in parallel grazing channels. These results testify to a fundamental role of detritus channels specifically and multi‐channel processes in general in mediating food web response to productivity and demonstrate that the ATCH provides an alternative explanation for classical predictions of top‐down control.  相似文献   

7.
Cascading effects of predators can affect ecosystem properties by changing plant biomass, distribution and assemblage composition. Using data from field surveys and whole‐stream experiments we tested the hypothesis that predatory trout change assemblage composition of benthic algae in high‐elevation streams mediated by grazer behavior. Field surveys revealed that the taxonomic composition of algal assemblages differed significantly between streams that contained trout and those that were fishless; but comparisons of palatable versus unpalatable algal taxa between fish and fishless streams were equivocal because of high natural variability. Therefore, we tested for a behavioral (non‐consumptive) trophic cascade experimentally by adding brook trout chemical cues to six naturally fishless streams for 25 days and compared responses of grazers and algae to six reference streams without fish cues added. Algal response variables included rates of change in the abundance of three physiognomic categories, from most palatable (attached erect and prostrate diatoms) to least palatable (non‐diatoms), as determined from food selectivity analyses of the most common grazers (mayflies and caddisflies). Fish cues did not affect the mean densities or changes in densities of total grazers or any individual grazer species. However, in streams where fish cues were added, rates of accrual of attached erect diatoms, which was the preferred algal type for the grazer most vulnerable to trout predation (Baetis), were higher and their densities increased significantly faster with increasing densities of this grazer species than in reference streams. Results of his experiment support the hypothesis that predator induced suppression of grazer foraging behavior, rather than cascading effects of top predators on grazer density, may contribute to variation in the composition of algal assemblages among streams by allowing proliferation of most palatable algal species.  相似文献   

8.
1. We studied the effect of substratum movement on the communities of adjacent mountain and spring tributaries of the Ivishak River in arctic Alaska (69°1′N, 147°43′W). We expected the mountain stream to have significant bed movement during summer because of storm flows and the spring stream to have negligible bed movement because of constant discharge. 2. We predicted that the mountain stream would be inhabited only by taxa able to cope with frequent bed movement. Therefore, we anticipated that the mountain stream would have lower macroinvertebrate species richness and biomass and a food web with fewer trophic levels and lower connectance than the spring stream. 3. Substrata marked in situ indicated that 57–66% of the bed moved during summer in the mountain stream and 4–20% moved in the spring stream. 4. Macroinvertebrate taxon richness was greater in the spring (25 taxa) than in the mountain stream (20 taxa). Mean macroinvertebrate biomass was also greater in the spring (4617 mg dry mass m?2) than in the mountain stream (635 mg dry mass m?2). Predators contributed 25% to this biomass in the spring stream, but only 7% in the mountain stream. 5. Bryophyte biomass was >1000 times greater in the spring stream (88.4 g ash‐free dry mass m?2) than the mountain stream (0.08 g ash‐free dry mass m?2). We attributed this to differences in substratum stability between streams. The difference in extent of bryophyte cover between streams probably explains the high macroinvertebrate biomass in the spring stream. 6. Mean food‐web connectance was similar between streams, ranging from 0.18 in the spring stream to 0.20 in the mountain stream. Mean food chain length was 3.04 in the spring stream and 1.83 in the mountain stream. Dolly Varden char (Salvelinus malma) was the top predator in the mountain stream and the American dipper (Cinclus mexicanus) was the top predator in the spring stream. The difference in mean food chain length between streams was due largely to the presence of C. mexicanus at the spring stream. 7. Structural differences between the food webs of the spring and mountain streams were relatively minor. The difference in the proportion of macroinvertebrate biomass contributing to different trophic levels was major, however, indicating significant differences in the volume of material and energy flow between food‐web nodes (i.e. food web function).  相似文献   

9.
1. Empirical and theoretical research over the past decade has demonstrated the widespread importance of aquatic subsidies to terrestrial food webs. In particular, adult aquatic insects that emerge from streams and lakes are prey for terrestrial predators. While variation in the magnitude of this subsidy is clearly important, the potential top‐down effects of the predatory adults of some aquatic insects in terrestrial food webs are largely unknown. 2. I used published data on benthic insect density (as a proxy for emergence) in North and South America to explore how the proportion of benthic insects that are predatory as adults varies across a gradient of mean annual stream temperature. 3. The proportion of benthic insects that are predatory as adults varied widely across sites (0–12% by abundance; 0–86% by biomass). There was a positive relationship between mean annual stream temperature and the proportion of predatory adults across all sites, driven largely by the greater abundance/biomass of predatory taxa (e.g. odonates), relative to non‐predators (e.g. midges, mayflies, caddisflies), in tropical than in temperate streams. 4. The ‘trophic structure’ (i.e. the proportion of predators) of emerging adult aquatic insects is an understudied source of variation in aquatic–terrestrial interactions. Incorporation of trophic structure in future studies is needed to understand how future modification of fresh waters may affect adjacent terrestrial food webs through both bottom‐up and top‐down effects.  相似文献   

10.
Global warming may affect most organisms and their interactions. Theory and simple mesocosm experiments suggest that consumer top–down control over primary producer biomass should strengthen with warming, since consumer respiration increases faster with warming than plant photosynthesis. However, these predictions have so far not been tested on natural communities that have experienced warming over many generations. Natural systems display a higher diversity, heterogeneity and complexity than mesocosms, which could alter predicted effects of warming. Here we used an artificially heated part of the northern Baltic Sea (the Forsmark Biotest basin) to test how warming influences trophic interactions in a shallow coastal food web with four trophic levels: omnivorous fish, invertivorous fish, herbivorous invertebrates, and filamentous macroalgae. Monitoring of fish assemblages over six years showed that small invertivorous fish (gobiids, sticklebacks and minnows) were much less abundant in the heated basin than in unheated references areas. Stomach content analyses of the dominating omnivorous fish – Eurasian perch Perca fluviatilis – revealed a strikingly different diet within and outside the Biotest basin; gammarid crustaceans were the dominating prey at heated sites, whereas invertivorous fish (e.g. gobiids) dominated at unheated sites. A 45‐day cage experiment showed that fish exclusion did not affect the biomass of algal herbivores (gastropods and gammarids), but reduced algal biomass in heated sites (but not unheated). This suggests that warming induced a trophic cascade from fish to algae, and that this effect was mediated by predator‐induced changes in herbivore behavior, rather than number. Overall, our study suggests that warming has effectively compressed the food chain from four to three trophic levels (algae, gammarids and perch), which have benefitted the primary producers by reducing grazing pressure. Consequently, warming appears to have restructured this coastal food web through a combination of direct (physiological) and indirect (species interactions) effects.  相似文献   

11.
Food webs are strongly size‐structured so will be vulnerable to changes in environmental factors that affect large predators. However, mechanistic understanding of environmental controls of top predator size is poorly developed. We used streams to investigate how predator body size is altered by three fundamental climate change stressors: reductions in habitat size, increases in disturbance and warmer temperatures. Using new survey data from 74 streams, we showed that habitat size and disturbance were the most important stressors influencing predator body size. A synergistic interaction between that habitat size and disturbance due to flooding meant the sizes of predatory fishes peaked in large, benign habitats and their body size decreased as habitats became either smaller or harsher. These patterns were supported by experiments indicating that habitat‐size reductions and increased flood disturbance decreased both the abundance and biomass of large predators. This research indicates that interacting climate change stressors can influence predator body size, resulting in smaller predators than would be predicted from examining an environmental factor in isolation. Thus, climate‐induced changes to key interacting environmental factors are likely to have synergistic impacts on predator body size which, because of their influence on the strength of biological interactions, will have far‐reaching effects on food‐web responses to global environmental change.  相似文献   

12.
The loss of riparian forests can disrupt the structure and function of lotic ecosystems through increased habitat homogenization and decreased resource diversity. We conducted a field experiment and manipulated structural complexity and basal resource diversity to determine their effect on multiple aspects of community and food‐web structure of degraded tropical streams. In‐stream manipulations included the addition of woody debris (WD) and the addition of wood and leaf packs (WLP). The addition of structural complexity to degraded streams promoted detritus retention and had a positive effect on stream taxonomic richness, abundance and biomass. At the conclusion of the experiment, abundance and richness in the WD‐treated reaches increased by over 110% and 80%, respectively, while abundance and richness in the WLP‐treated reaches increased by over 280% and 170% respectively. Wood debris and leaves were consumed only by few taxa. Detritivorous taxa were the most abundant trophic guild at the beginning and at the end of the experiment. Food webs in treated reaches were relatively more complex in terms of links and species at the conclusion of the experiment, with highest maximum food chain length in the WD treatments and highest number of trophic species, links, link density, predators and prey at the WLP treatment. Despite differences observed in diet‐based food webs, there was little variation in isotopic niche space, likely due to the high degree of omnivory and trophic redundancy, which was attributed to the importance of fine detritus that supported a broad range of consumers. Even in these degraded streams, aquatic taxa responded to the addition of increased complexity suggesting that these efforts may be an effective first step to restoring the structure and function of these food webs.  相似文献   

13.
Future climate is forecast to drive bottom‐up (resource driven) and top‐down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over‐reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO2 and elevated temperature boosted primary production. Under elevated CO2, the enhanced bottom‐up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production.  相似文献   

14.
15.
16.
Predators are a major source of stress in natural systems because their prey must balance the benefits of feeding with the risk of being eaten. Although this ‘fear’ of being eaten often drives the organization and dynamics of many natural systems, we know little about how such risk effects will be altered by climate change. Here, we examined the interactive consequences of predator avoidance and projected climate warming in a three‐level rocky intertidal food chain. We found that both predation risk and increased air and sea temperatures suppressed the foraging of prey in the middle trophic level, suggesting that warming may further enhance the top‐down control of predators on communities. Prey growth efficiency, which measures the efficiency of energy transfer between trophic levels, became negative when prey were subjected to predation risk and warming. Thus, the combined effects of these stressors may represent an important tipping point for individual fitness and the efficiency of energy transfer in natural food chains. In contrast, we detected no adverse effects of warming on the top predator and the basal resources. Hence, the consequences of projected warming may be particularly challenging for intermediate consumers residing in food chains where risk dominates predator‐prey interactions.  相似文献   

17.
1. Non‐native trout have been stocked in streams and lakes worldwide largely without knowledge of the consequences for native ecosystems. Although trout have been introduced widely throughout the Sierra Nevada of California, U.S.A., fishless streams and their communities of native invertebrates persist in some high elevation areas, providing an opportunity to study the effects of trout introductions on natural fishless stream communities. 2. We compared algal biomass and cover, organic matter levels and invertebrate assemblages in 21 natural fishless headwater streams with 21 paired nearby streams containing stocked trout in Yosemite National Park. 3. Although environmental conditions and particulate organic matter levels did not differ between the fishless and trout streams, algal biomass (as chlorophyll a concentration) and macroalgal cover were, on average, approximately two times and five times higher, respectively, in streams containing trout. 4. There were no differences in the overall densities of invertebrates in fishless versus paired trout streams; however, invertebrate richness (after rarefaction), evenness, and Simpson and Shannon diversities were 10–20% higher in fishless than in trout streams. 5. The densities of invertebrates belonging to the scraper‐algivore and predator functional feeding guilds were higher, and those for the collector‐gatherer guild lower, in fishless than trout streams, but there was considerable variation in the effects of trout on specific taxa within functional feeding groups. 6. We found that the densities of 10 of 50 common native invertebrate taxa (found in more than half of the stream pairs) were reduced in trout compared to fishless streams. A similar number of rarer taxa also were absent or less abundant in the presence of trout. Many of the taxa that declined with trout were conspicuous forms (by size and behaviour) whose native habitats are primarily high elevation montane streams above the original range of trout. 7. Only a few taxa increased in the presence of trout, possibly benefiting from reductions in their competitors and predators by trout predation. 8. These field studies provide catchment‐scale evidence showing the selective influence of introduced trout on stream invertebrate and algal communities. Removal of trout from targeted headwater streams may promote the recovery of native taxa, community structure and trophic organisation.  相似文献   

18.
19.
1. We tested the hypothesis that indirect food web interactions between some common, invertivorous fishes and their prey would positively affect growth of an algivorous fish species. Specifically, we predicted that orangethroat darter (Etheostoma spectabile) would increase periphyton biomass via a top‐down pathway, indirectly enhancing growth of the algivorous central stoneroller minnow (Campostoma anomalum). Moreover, we predicted that sand shiner (Notropis stramineus) would increase periphyton biomass via a bottom‐up pathway and indirectly enhance growth of the stoneroller minnow. 2. In an 83‐day experiment in large, outdoor, stream mesocosms, we stocked two fish species per mesocosm (stoneroller and either darter or shiner), estimated the effects of the invertivorous and grazing fishes on periphyton biomass and estimated growth of the algivorous fish. 3. The darter consumed grazing invertebrates, indirectly increasing periphyton biomass. The shiner consumed terrestrial insects as predicted, but it did not affect periphyton biomass. 4. In support of our hypothesis, the darter indirectly enhanced stoneroller growth. As predicted, stonerollers consumed the increased periphyton in streams with darters, resulting in greater growth, condition and gut fullness compared to streams without darters. No indirect interaction was observed between stonerollers and shiners. 5. Our study suggests that some invertivorous fish species can positively affect growth of algivorous fishes through indirect food web interactions. Thus, in stream communities, it is possible that the loss of a single, invertivorous fish taxon could have negative consequences on algivorous fish populations via the removal of positive indirect food web interactions.  相似文献   

20.
Trophic cascades in which predators regulate densities of organisms at lower trophic levels are important drivers of population dynamics, but effects of trophic cascades on ecosystem‐level fluxes and processes, and the conditions under which top‐down control is important, remain unresolved. We manipulated the structure of a food web in boreal feather mosses and found that moss‐inhabiting microfauna exerted top‐down control of N2‐fixation by moss‐associated cyanobacteria. However, the presence of higher trophic levels alleviated this top‐down control, likely through feeding on bacterivorous microfauna. These effects of food‐web structure on cyanobacterial N2‐fixation were dependent on global change factors and strongly suppressed under N fertilisation. Our findings illustrate how food web interactions and trophic cascades can regulate N cycling in boreal ecosystems, where carbon uptake is generally strongly N‐limited, and shifting trophic control of N cycling under global change is therefore likely to impact ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号