首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila embryonic peripheral nervous system (PNS) contains segment-specific spatial patterns of sensory organs which derive from the ectoderm. Many studies have established that the homeotic genes of Drosophila control segment specific characteristics of the epidermis, and more recently these genes have also been shown to control gut morphogenesis through their expression in the visceral mesoderm (Tremml, G. and Bienz, M. (1989), EMBO J. 8, 2677-2685). We report here the roles of homeotic genes in establishing the spatial patterns of sensory organs in the embryonic PNS. The PNS was examined in embryos homozygous for mutations in the homeotic genes Sex combs reduced (Scr), Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A) and Abdominal-B (Abd-B) with antibodies that label specific subsets of sensory organs. Our results suggest that the homeotic genes have specific roles in establishing the correct spatial patterns of sensory organs in their normal domains of expression. In addition, we also report the effects of ectopic expression of the homeotic genes labial (lab), Deformed (Dfd), Scr, Antp or Ubx on the normal development of sensory organs in the embryonic PNS. Interestingly, while previous studies have concluded that ectopic expression of the homeotic genes Dfd, Scr and Antp has no effect on the segmental identity of the abdominal segments, our results demonstrate that this is not true. We show that ectopic expression of these genes does result in the disruption of the developing PNS in the abdomen. Our results are suggestive of a role for the homeotic gene products in regulating genes which are necessary for generating sensory progenitor cells in the developing PNS.  相似文献   

2.
Embryonic expression of nm23 during mouse organogenesis.   总被引:8,自引:0,他引:8  
  相似文献   

3.
We previously performed cDNA subtraction between the mouse mandibles at embryonic day 10.5 (E10.5) and E12.0 to make a profile of the regulator genes for odontogenesis. Fifteen kDa interferon alpha responsive gene (Ifrg15) is one of several highly-expressed genes in the E12.0 mandible. The current study examined the precise expression patterns of Ifrg15 mRNA in the mouse mandibular first molar by in situ hybridization to evaluate the possible functional roles of this gene in odontogenesis. Ifrg15 mRNA was expressed in the epithelial and mesenchymal tissues of the mandible at E10.5 and E12.0. The Ifrg15 in situ signal was detected in the epithelial bud and the surrounding mesenchyme at E14.0, and was present in the enamel organ including the primary enamel knot, and in the underlying mesenchyme at E15.0. The in situ signal was restricted in the inner and outer enamel epithelia and the stratum intermedium at E16.0. The signal of Ifrg15 mRNA was further restricted to the inner enamel epithelium and the adjacent stratum intermedium at E17.0 and E18.0. Consequently, the expression of Ifrg15 mRNA was localized in the ameloblasts and odontoblasts at postnatal days 1.0 to 3.0. However, the in situ signal was markedly weaker than at the embryonic period. The expression of Ifrg15 mRNA was coincidently observed in various craniofacial organs as well as in the tooth germ. These results suggest that Ifrg15 is closely related to odontogenesis, especially the differentiation of the ameloblasts and odontoblasts, and to the morphogenesis of the craniofacial organs.  相似文献   

4.
5.
Plasma glutathione peroxidase (pGPx) is an extracellular antioxidative selenoenzyme which has been detected in various adult tissues, but little is known about the expression and distribution of pGPx during embryogenesis. To investigate the expression patterns of pGPx during embryogenesis, we performed quantitative real-time PCR, in situ hybridization, Western blot, and immunohistochemistry analyses in whole embryos or each developing organ of mice on embryonic days (E)7.5–18.5. In whole embryos of E7.5–8.5, pGPx mRNA was more typically expressed in extra-embryonic tissues including ectoplacental cone, trophectoderm, and decidual cells than in embryos. However, after E9.5, pGPx mRNA and protein levels were increased in the embryos with differentiation and growth, but trended to gradually decrease in the extra-embryonic tissues until E18.5. In sectioned embryonic tissues on E13.5–18.5, pGPx mRNA and protein were mainly expressed in the developing nervous tissues, the sensory organs, and the epithelia of lung, skin, and intestine, the heart and artery, and the kidney. In particular, pGPx immunoreactivity was very strong in the developing liver. These results indicate that pGPx is spatio-temporally expressed in various embryonic organs as well as extra-embryonic tissues, suggesting that pGPx may function to protect the embryos against endogenous and exogenous reactive oxygen species during organogenesis.  相似文献   

6.
Arylamine N-acetyltransferase (NAT) genes in humans and in rodents encode polymorphic drug metabolizing enzymes. Human NAT1 (and the murine equivalent mouse Nat2) is found early in embryonic development and is likely to have an endogenous role. We report the detailed expression of the murine gene (Nat2) and encoded protein in mouse embryos, using a transgenic mouse model bearing a lacZ transgene inserted into the coding region of mouse Nat2. In mouse embryos, the transgene was expressed in sensory epithelia, epithelial placodes giving rise to visceral sensory neurons, the developing pituitary gland, sympathetic chain and urogenital ridge. In Nat2 +/+ mice, the presence and activity of Nat2 protein was detected in these tissues and their adult counterparts. Altered expression of the human orthologue in breast tumours, in which there is endocrine signalling, suggests that human NAT1 should be considered as a potential biomarker for neuroendocrine tissues and tumours.  相似文献   

7.
Arylamine N-acetyltransferase (NAT) genes in humans and in rodents encode polymorphic drug metabolizing enzymes. Human NAT1 (and the murine equivalent mouse Nat2) is found early in embryonic development and is likely to have an endogenous role. We report the detailed expression of the murine gene (Nat2) and encoded protein in mouse embryos, using a transgenic mouse model bearing a lacZ transgene inserted into the coding region of mouse Nat2. In mouse embryos, the transgene was expressed in sensory epithelia, epithelial placodes giving rise to visceral sensory neurons, the developing pituitary gland, sympathetic chain and urogenital ridge. In Nat2+/+ mice, the presence and activity of Nat2 protein was detected in these tissues and their adult counterparts. Altered expression of the human orthologue in breast tumours, in which there is endocrine signalling, suggests that human NAT1 should be considered as a potential biomarker for neuroendocrine tissues and tumours.  相似文献   

8.
9.
为了解鸡miR-148a组织表达谱和潜在发育调控功能,采用茎-环定量RT-PCR检测了固始鸡5个发育阶段、15种组织中miR-148a的表达,利用Pictar和TargetScan算法预测了miR-148a的靶基因,并对预测靶基因分别进行了Gene Ontology分析和通路分析. 结果显示,miR-148a的表达具有明显的时序特征,胚胎期各组织中的表达水平明显低于出壳后;miR-148a在出壳后的大脑、小脑、延脑、腺胃、小肠、肝、胰和胸肌等器官组织中的表达水平随着发育进程被显著上调;miR-148a预测靶基因在胚胎器官形态发生、血细胞生成、消化道形态发生、心血管发育、感觉器官发育、肠发育、骨骼系统发育、后脑发育、呼吸系统发育、免疫系统发育、淋巴器官等发育过程显著富集. 总之,鸡miR-148a为广泛性表达miRNA,可能参与鸡诸多器官组织发育过程的调控.  相似文献   

10.
The Hox genes, which are organized into clusters on different chromosomes, are key regulators of embryonic anterior-posterior (A-P) body pattern formation and are expressed at specific times and in specific positions in developing vertebrate embryos. Previously, we have shown that histone methylation patterns are closely correlated with collinear Hox gene expression patterns along the A-P axis of E14.5 mouse embryos. Since histone modification is thought to play a crucial mechanistic role in the highly coordinated pattern of collinear Hox gene expression, we examined the maintenance of the spatial collinear expression pattern of Hoxc genes and the corresponding histone modifications during embryogenesis and in early postnatal mice. Hox expression patterns and histone modifications were analyzed by semi-quantitative RT-PCR and chromatin immunoprecipitation (ChIP)-PCR analyses, respectively. The spatiotemporal expression patterns of Hoxc genes in a cluster were maintained until the early postnatal stage (from E8.5 through P5). Examination of histone modifications in E14.5 and P5 tissues revealed that level of H3K27me3 is only a weak correlation with collinear Hoxc gene expression in the trunk regions although diminished in general, however the enrichment of H3K4me3 is strongly correlated with the gene expression in both stages. In summary, the initial spatiotemporal collinear expression pattern of Hoxc genes and epigenetic modifications are maintained after birth, likely contributing to the establishment of the gene expression code for position in the anatomic body axis throughout the entire life of the organism.  相似文献   

11.
The zebrafish genome contains at least five msx homeobox genes, msxA, msxB, msxC, msxD, and the newly isolated msxE. Although these genes share structural features common to all Msx genes, phylogenetic analyses of protein sequences indicate that the msx genes from zebrafish are not orthologous to the Msx1 and Msx2 genes of mammals, birds, and amphibians. The zebrafish msxB and msxC are more closely related to each other and to the mouse Msx3. Similarly, although the combinatorial expression of the zebrafish msx genes in the embryonic dorsal neuroectoderm, visceral arches, fins, and sensory organs suggests functional similarities with the Msx genes of other vertebrates, differences in the expression patterns preclude precise assignment of orthological relationships. Distinct duplication events may have given rise to the msx genes of modern fish and other vertebrate lineages whereas many aspects of msx gene functions during embryonic development have been preserved.   相似文献   

12.
The efficiency of two direct gene transfer methods, gene gun (or particle bombardment) and intramuscular injection, in transforming adult zebrafish tissues in vivo was examined by a noninvasive approach using green fluorescent protein (GFP) reporter gene driven by the ubiquitously expressed human cytomegalovirus promoter. Particle bombardment of adult zebrafish caused internalization and expression of the plasmid only in the superficial layer such as epithelial cells, pigment cells, endothelial cells, and neurons, whereas direct injection primarily transformed muscle fibers of several bundles near or around the injection site. Expression was also evident in several nonmuscle tissues, such as skin epithelia, pigment cells, blood vessel cells, and neuron-like cells. GFP expression persisted for more than 50 days with both methods. These observations indicate the potential of these methods for functional analysis of tissue-specific promoters, delivery of DNA vaccine, and muscular expression of other useful genes. Received June 12, 2000; accepted September 12, 2000  相似文献   

13.
14.
Fibroblast growth factor 2 (FGF2) plays an important role in cortical development. However, the genes downstream of FGF2 that mediate its effect are largely unknown. We have performed a microarray screening of genes regulated by FGF2 using primary cortical neuron culture derived from embryonic day 14.5 (E14.5) mouse forebrains. In this study, we have analysed a previously uncharacterised gene encoding a 180-amino acid protein, hereby named 'coiled-coil protein 1 (ccp1)', that showed a modest up-regulation upon FGF2 stimulation. Northern blots and RT-PCR showed specific expression of ccp1 in multiple tissues including adult and embryonic brains. In situ hybridizations revealed that ccp1 was expressed in the cortical plate between Reelin and Tbr1-positive layers in the dorsal cortex at E15.5. Furthermore, the expression pattern of ccp1 at E13.5-E14.5 reflected some of the aspects of tangential migration of cortical progenitors during the early phase. We observed that the expressed ccp1 protein was localised to endo/lysosomal compartment in the cell body as well as to vesicles present in the processes of primary cortical neurons and oligodendrocyte cell line.  相似文献   

15.
This study examined detailed in situ expression patterns and possible functional roles of phosphoglycerate kinase 1 (Pgk1) gene in the developing tooth germ of the mouse lower first molar. The strong expression of Pgk1 mRNA was seen in the odontogenic epithelial cells and surrounding mesenchymal cells of the tooth germ from embryonic day 10.5 (E10.5) to E18.0. Western blotting analysis demonstrated that Pgk1 protein formed 84-kDa protein complex in these embryonic organs. The results of immunoprecipitation-western blotting also suggested this complex to be formed with glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Moreover, the immunofluorescence expression of those proteins was shown to overlap each other in the tooth germ at E15.0. A strong immunofluorescence expression of both Pgk1 and GAPDH also corresponded to the in situ expression of those mRNAs. These results suggested that Pgk1 plays some functional roles in the development of tooth germ and other embryonic organs by forming protein complex with GAPDH.  相似文献   

16.
17.

Background  

During mouse development, the precursor cells that give rise to the auditory sensory organ, the organ of Corti, are specified prior to embryonic day 14.5 (E14.5). Subsequently, the sensory domain is patterned precisely into one row of inner and three rows of outer sensory hair cells interdigitated with supporting cells. Both the restriction of the sensory domain and the patterning of the sensory mosaic of the organ of Corti involve Notch-mediated lateral inhibition and cellular rearrangement characteristic of convergent extension. This study explores the expression and function of a putative Notch target gene.  相似文献   

18.
Wnt signaling plays an important role in cell growth, differentiation, polarity formation, and neural development. We have recently identified the Coiled-coil-DIX1 (Ccd1) gene encoding a third type of a DIX domain-containing protein. Ccd1 forms homomeric and heteromeric complexes with Dishevelled and Axin, and positively regulates the Wnt/beta-catenin pathway. Here, we examined the spatiotemporal expression pattern of Ccd1 mRNA in mouse embryos from embryonic day 6.5 (E6.5) to E17.5 by in situ hybridization. Ccd1 expression was detected in the node region in gastrula embryos, in the cephalic mesenchyme and tail bud at E8.5, and in the branchial arch and forelimb bud at E9.5. In the central nervous system, Ccd1 expression began and persisted in the regions where the neurons differentiated, so that it was observed throughout the brain and spinal cord at E17.5. Ccd1 expression was also strong in the peripheral nervous system, including sensory cranial ganglia (trigeminal, facial, and vestibulocochlear ganglia), dorsal root ganglia, and autonomic ganglia (sympathetic ganglia, celiac ganglion, and hypogastric plexus). Ccd1 was detected in the sensory organs, such as the inner nuclear layer of the neural retina, saccule and cochlea of the inner ear, and nasal epithelium. Outside the nervous system, Ccd1 mRNA was observed in the cartilage, tongue, lung bud, stomach, and gonad at E12.5-E14.5, and in the tooth bud, bronchial epithelium, and kidney at E17.5. Taken together, these findings demonstrate that Ccd1 expression is observed in all the neurons in the nervous system, closely associated with neural crest-derived tissues, and largely overlapping with the regions where several Wnt genes are reported to play a role.  相似文献   

19.
Calcium-activated chloride channels are expressed in chemosensory neurons of the nose and contribute to secretory processes and sensory signal transduction. These channels are thought to be members of the family of anoctamins (alternative name: TMEM16 proteins), which are opened by micromolar concentrations of intracellular Ca2+. Two family members, ANO 1 (TMEM16A) and ANO 2 (TMEM16B), are expressed in the various sensory and respiratory tissues of the nose. We have examined the tissue specificity and sub-cellular localization of these channels in the nasal respiratory epithelium and in the five chemosensory organs of the nose: the main olfactory epithelium, the septal organ of Masera, the vomeronasal organ, the Grueneberg ganglion and the trigeminal system. We have found that the two channels show mutually exclusive expression patterns. ANO 1 is present in the apical membranes of various secretory epithelia in which it is co-localized with the water channel aquaporin 5. It has also been detected in acinar cells and duct cells of subepithelial glands and in the supporting cells of sensory epithelia. In contrast, ANO 2 expression is restricted to chemosensory neurons in which it has been detected in microvillar and ciliary surface structures. The different expression patterns of ANO 1 and ANO 2 have been observed in the olfactory, vomeronasal and respiratory epithelia. No expression has been detected in the Grueneberg ganglion or trigeminal sensory fibers. On the basis of this differential expression, we derive the main functional features of ANO 1 and ANO 2 chloride channels in the nose and suggest their significance for nasal physiology.  相似文献   

20.
The inner ear is one of the most morphologically elaborate tissues in vertebrates, containing a group of mechanosensitive sensory organs that mediate hearing and balance. These organs are arranged precisely in space and contain intricately patterned sensory epithelia. Here, we review recent studies of inner ear development and patterning which reveal that multiple stages of ear development - ranging from its early induction from the embryonic ectoderm to the establishment of the three cardinal axes and the fine-grained arrangement of sensory cells - are orchestrated by gradients of signaling molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号