首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Hatchery‐reared fish are commonly stocked into freshwaters to enhance recreational angling. As these fishes are often of high trophic position and attain relatively large sizes, they potentially interact with functionally similar resident fishes and modify food‐web structure. Hatchery‐reared barbel Barbus barbus are frequently stocked to enhance riverine cyprinid fish communities in Europe; these fish can survive for over 20 years and exceed 8 kg. Here, their trophic consequences for resident fish communities were tested using cohabitation studies, mainly involving chub Squalius cephalus, a similarly large‐bodied, omnivorous and long‐lived species. These studies were completed over three spatial scales: pond mesocosms, two streams and three lowland rivers, and used stable isotope analysis. Experiments in mesocosms over 100 days revealed rapid formation of dietary specializations and discrete trophic niches in juvenile B. barbus and S. cephalus. This niche partitioning between the species was also apparent in the streams over 2 years. In the lowland rivers, where fish were mature individuals within established populations, this pattern was also generally apparent in fishes of much larger body sizes. Thus, the stocking of these hatchery‐reared fish only incurred minor consequences for the trophic ecology of resident fish, with strong patterns of trophic niche partitioning and diet specialization. Application of these results to decision‐making frameworks should enable managers to make objective decisions on whether cyprinid fish should be stocked into lowland rivers according to ecological risk.  相似文献   

2.
Decreasing body size has been proposed as a universal response to increasing temperatures. The physiology behind the response is well established for ectotherms inhabiting aquatic environments: as higher temperatures decrease the aerobic capacity, individuals with smaller body sizes have a reduced risk of oxygen deprivation. However, empirical evidence of this response at the scale of communities and ecosystems is lacking for marine fish species. Here, we show that over a 40‐year period six of eight commercial fish species in the North Sea examined underwent concomitant reductions in asymptotic body size with the synchronous component of the total variability coinciding with a 1–2 °C increase in water temperature. Smaller body sizes decreased the yield‐per‐recruit of these stocks by an average of 23%. Although it is not possible to ascribe these phenotypic changes unequivocally to temperature, four aspects support this interpretation: (i) the synchronous trend was detected across species varying in their life history and life style; (ii) the decrease coincided with the period of increasing temperature; (iii) the direction of the phenotypic change is consistent with physiological knowledge; and (iv) no cross‐species synchrony was detected in other species‐specific factors potentially impacting growth. Our findings support a recent model‐derived prediction that fish size will shrink in response to climate‐induced changes in temperature and oxygen. The smaller body sizes being projected for the future are already detectable in the North Sea.  相似文献   

3.
We combine large observed data sets and dynamically downscaled climate data to explore historic and future (2050–2069) stream temperature changes over the topographically diverse Greater Yellowstone Ecosystem (elevation range = 824–4017 m). We link future stream temperatures with fish growth models to investigate how changing thermal regimes could influence the future distribution and persistence of native Yellowstone cutthroat trout (YCT) and competing invasive species. We find that stream temperatures during the recent decade (2000–2009) surpass the anomalously warm period of the 1930s. Climate simulations indicate air temperatures will warm by 1 °C to >3 °C over the Greater Yellowstone by mid‐21st century, resulting in concomitant increases in 2050–2069 peak stream temperatures and protracted periods of warming from May to September (MJJAS). Projected changes in thermal regimes during the MJJAS growing season modify the trajectories of daily growth rates at all elevations with pronounced growth during early and late summer. For high‐elevation populations, we find considerable increases in fish body mass attributable both to warming of cold‐water temperatures and to extended growing seasons. During peak July to August warming, mid‐21st century temperatures will cause periods of increased thermal stress, rendering some low‐elevation streams less suitable for YCT. The majority (80%) of sites currently inhabited by YCT, however, display minimal loss (<10%) or positive changes in total body mass by midcentury; we attribute this response to the fact that many low‐elevation populations of YCT have already been extirpated by historical changes in land use and invasions of non‐native species. Our results further suggest that benefits to YCT populations due to warmer stream temperatures at currently cold sites could be offset by the interspecific effects of corresponding growth of sympatric, non‐native species, underscoring the importance of developing climate adaptation strategies that reduce limiting factors such as non‐native species and habitat degradation.  相似文献   

4.
Livestock production is an important contributor to sustainable food security for many nations, particularly in low‐income areas and marginal habitats that are unsuitable for crop production. Animal products account for approximately one‐third of global human protein consumption. Here, a range of indicators, derived from FAOSTAT and World Bank statistics, are used to model the relative vulnerability of nations at the global scale to predicted climate and population changes, which are likely to impact on their use of grazing livestock for food. Vulnerability analysis has been widely used in global change science to predict impacts on food security and famine. It is a tool that is useful to inform policy decision making and direct the targeting of interventions. The model developed shows that nations within sub‐Saharan Africa, particularly in the Sahel region, and some Asian nations are likely to be the most vulnerable. Livestock‐based food security is already compromised in many areas on these continents and suffers constraints from current climate in addition to the lack of economic and technical support allowing mitigation of predicted climate change impacts. Governance is shown to be a highly influential factor and, paradoxically, it is suggested that current self‐sufficiency may increase future potential vulnerability because trade networks are poorly developed. This may be relieved through freer trade of food products, which is also associated with improved governance. Policy decisions, support and interventions will need to be targeted at the most vulnerable nations, but given the strong influence of governance, to be effective, any implementation will require considerable care in the management of underlying structural reform.  相似文献   

5.
The hydrology of riparian areas changes rapidly these years because of climate change‐mediated alterations in precipitation patterns. In this study, we used a large‐scale in situ experimental approach to explore effects of drought and flooding on plant taxonomic diversity and functional trait composition in riparian areas in temperate Europe. We found significant effects of flooding and drought in all study areas, the effects being most pronounced under flooded conditions. In near‐stream areas, taxonomic diversity initially declined in response to both drought and flooding (although not significantly so in all years) and remained stable under drought conditions, whereas the decline continued under flooded conditions. For most traits, we found clear indications that the functional diversity also declined under flooded conditions, particularly in near‐stream areas, indicating that fewer strategies succeeded under flooded conditions. Consistent changes in community mean trait values were also identified, but fewer than expected. This can have several, not mutually exclusive, explanations. First, different adaptive strategies may coexist in a community. Second, intraspecific variability was not considered for any of the traits. For example, many species can elongate shoots and petioles that enable them to survive shallow, prolonged flooding but such abilities will not be captured when applying mean trait values. Third, we only followed the communities for 3 years. Flooding excludes species intolerant of the altered hydrology, whereas the establishment of new species relies on time‐dependent processes, for instance the dispersal and establishment of species within the areas. We expect that altered precipitation patterns will have profound consequences for riparian vegetation in temperate Europe. Riparian areas will experience loss of taxonomic and functional diversity and, over time, possibly also alterations in community trait responses that may have cascading effects on ecosystem functioning.  相似文献   

6.
Explanations for the evolution of body size in mammals have remained surprisingly elusive despite the central importance of body size in evolutionary biology. Here, we present a model which argues that the body sizes of Nearctic mammals were moulded by Cenozoic climate and vegetation changes. Following the early Eocene Climate Optimum, forests retreated and gave way to open woodland and savannah landscapes, followed later by grasslands. Many herbivores that radiated in these new landscapes underwent a switch from browsing to grazing associated with increased unguligrade cursoriality and body size, the latter driven by the energetics and constraints of cellulose digestion (fermentation). Carnivores also increased in size and digitigrade, cursorial capacity to occupy a size distribution allowing the capture of prey of the widest range of body sizes. With the emergence of larger, faster carnivores, plantigrade mammals were constrained from evolving to large body sizes and most remained smaller than 1 kg throughout the middle Cenozoic. We find no consistent support for either Cope's Rule or Bergmann's Rule in plantigrade mammals, the largest locomotor guild (n = 1186, 59% of species in the database). Some cold‐specialist plantigrade mammals, such as beavers and marmots, showed dramatic increases in body mass following the Miocene Climate Optimum which may, however, be partially explained by Bergmann's rule. This study reemphasizes the necessity of considering the evolutionary history and resultant form and function of mammalian morphotypes when attempting to understand contemporary mammalian body size distributions.  相似文献   

7.
Modelling strategies for predicting the potential impacts of climate change on the natural distribution of species have often focused on the characterization of a species’ bioclimate envelope. A number of recent critiques have questioned the validity of this approach by pointing to the many factors other than climate that play an important part in determining species distributions and the dynamics of distribution changes. Such factors include biotic interactions, evolutionary change and dispersal ability. This paper reviews and evaluates criticisms of bioclimate envelope models and discusses the implications of these criticisms for the different modelling strategies employed. It is proposed that, although the complexity of the natural system presents fundamental limits to predictive modelling, the bioclimate envelope approach can provide a useful first approximation as to the potentially dramatic impact of climate change on biodiversity. However, it is stressed that the spatial scale at which these models are applied is of fundamental importance, and that model results should not be interpreted without due consideration of the limitations involved. A hierarchical modelling framework is proposed through which some of these limitations can be addressed within a broader, scale‐dependent context.  相似文献   

8.
Climate envelope models (CEMs) have been used to predict the distribution of species under current, past, and future climatic conditions by inferring a species' environmental requirements from localities where it is currently known to occur. CEMs can be evaluated for their ability to predict current species distributions but it is unclear whether models that are successful in predicting current distributions are equally successful in predicting distributions under different climates (i.e. different regions or time periods). We evaluated the ability of CEMs to predict species distributions under different climates by comparing their predictions with those obtained with a mechanistic model (MM). In an MM the distribution of a species is modeled based on knowledge of a species' physiology. The potential distributions of 100 plant species were modeled with an MM for current conditions, a past climate reconstruction (21 000 years before present) and a future climate projection (double preindustrial CO2 conditions). Point localities extracted from the currently suitable area according to the MM were used to predict current, future, and past distributions with four CEMs covering a broad range of statistical approaches: Bioclim (percentile distributions), Domain (distance metric), GAM (general additive modeling), and Maxent (maximum entropy). Domain performed very poorly, strongly underestimating range sizes for past or future conditions. Maxent and GAM performed as well under current climates as under past and future climates. Bioclim slightly underestimated range sizes but the predicted ranges overlapped more with the ranges predicted with the MM than those predicted with GAM did. Ranges predicted with Maxent overlapped most with those produced with the MMs, but compared with the ranges predicted with GAM they were more variable and sometimes much too large. Our results suggest that some CEMs can indeed be used to predict species distributions under climate change, but individual modeling approaches should be validated for this purpose, and model choice could be made dependent on the purpose of a particular study.  相似文献   

9.
Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse‐scar bogs, low shrub/scrub, and forests growing on elevated ice‐rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half‐century, and much of these carbon‐rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape‐level losses of forest area due to thermokarst from 1949 to 2009. Over the 60‐year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape‐level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of lowland ice‐rich permafrost ecosystems to climate changes depend on forest type.  相似文献   

10.
Declining body size is believed to be a universal response to climate warming and has been documented in numerous studies of marine and anadromous fishes. The Salmonidae are a family of coldwater fishes considered to be among the most sensitive species to climate warming; however, whether the shrinking body size response holds true for freshwater salmonids has yet to be examined at a broad spatial scale. We compiled observations of individual fish lengths from long-term surveys across the Northern Hemisphere for 12 species of freshwater salmonids and used linear mixed models to test for spatial and temporal trends in body size (fish length) spanning recent decades. Contrary to expectations, we found a significant increase in length overall but with high variability in trends among populations and species. More than two-thirds of the populations we examined increased in length over time. Secondary regressions revealed larger-bodied populations are experiencing greater increases in length than smaller-bodied populations. Mean water temperature was weakly predictive of changes in body length but overall minimal influences of environmental variables suggest that it is difficult to predict an organism's response to changing temperatures by solely looking at climatic factors. Our results suggest that declining body size is not universal, and the response of fishes to climate change may be largely influenced by local factors. It is important to know that we cannot assume the effects of climate change are predictable and negative at a large spatial scale.  相似文献   

11.
Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide‐ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short‐ and long‐term tree growth responses, focusing on among‐tree variability and potential feedback effects. Although among‐tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth–climate relationships. We compiled tree‐ring data including almost 600 trees of major treeline species (Larix decidua, Picea abies, Pinus cembra, and Pinus mugo) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among‐tree variability, we employed information‐theoretic model selections based on linear mixed‐effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long‐term trends in ring‐width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among‐tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall (L. decidua) and current year's spring (L. decidua, P. abies). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies, P. cembra, and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree growth over time, but also reveals first signs of long‐suspected negative and positive feedback of climate change on stand dynamics at treeline.  相似文献   

12.
This study assessed potential changes in the distributions of Australian butterfly species in response to global warming. The bioclimatic program, BIOCLIM, was used to determine the current climatic ranges of 77 butterfly species restricted to Australia. We found that the majority of these species had fairly wide climatic ranges in comparison to other taxa, with only 8% of butterfly species having a mean annual temperature range spanning less than 3 °C. The potential changes in the distributions of 24 butterfly species under four climate change scenarios for 2050 were also modelled using BIOCLIM. Results suggested that even species with currently wide climatic ranges may still be vulnerable to climate change; under a very conservative climate change scenario (with a temperature increase of 0.8–1.4 °C by 2050) 88% of species distributions decreased, and 54% of species distributions decreased by at least 20%. Under an extreme scenario (temperature increase of 2.1–3.9 °C by 2050) 92% of species distributions decreased, and 83% of species distributions decreased by at least 50%. Furthermore, the proportion of the current range that was contained within the predicted range decreased from an average of 63% under a very conservative scenario to less than 22% under the most extreme scenario. By assessing the climatic ranges that species are currently exposed to, the extent of potential changes in distributions in response to climate change and details of their life histories, we identified species whose characteristics may make them particularly vulnerable to climate change in the future.  相似文献   

13.
The Peruvian Andes presents a climate suitable for many species of sandfly that are known vectors of leishmaniasis or bartonellosis, including Lutzomyia peruensis (Diptera: Psychodidae), among others. In the present study, occurrences data for Lu. peruensis were compiled from several items in the scientific literature from Peru published between 1927 and 2015. Based on these data, ecological niche models were constructed to predict spatial distributions using three algorithms [Support vector machine (SVM), the Genetic Algorithm for Rule‐set Prediction (GARP) and Maximum Entropy (MaxEnt)]. In addition, the environmental requirements of Lu. peruensis and three niche characteristics were modelled in the context of future climate change scenarios: (a) potential changes in niche breadth; (b) shifts in the direction and magnitude of niche centroids, and (c) shifts in elevation range. The model identified areas that included environments suitable for Lu. peruensis in most regions of Peru (45.77%) and an average altitude of 3289 m a.s.l. Under climate change scenarios, a decrease in the distribution areas of Lu. peruensis was observed for all representative concentration pathways. However, the centroid of the species' ecological niche showed a northwest direction in all climate change scenarios. The information generated in this study may help health authorities responsible for the supervision of strategies to control leishmaniasis to coordinate, plan and implement appropriate strategies for each area of risk, taking into account the geographic distribution and potential dispersal of Lu. peruensis.  相似文献   

14.
15.
西天目山针叶树直径生长与气候变化的关系   总被引:2,自引:0,他引:2  
利用树木年轮分析方法研究了西天目山的三种主要针叶树:柳杉、金钱松和黄山松在林分范围内的直径生长与气候因子的关系。用逐步回归分析建立生长指数与13个气候因子的回归方程,然后将生长曲线加入回归方程获得估计胸高处直径生长量的模型。结果表明,显著影响柳杉直径生长指数的因素为前期生长和夏季气温;影响金钱松生长指数达显著水平的有前期生长和夏、秋两季降水量;显著影响黄山松生长指数的因素有前期生长、夏季气温和秋季降水量。如果未来气温比目前分别升高1℃、2℃和3℃,柳杉的直径生长量将增加3.2%、6.3%和11.1%;金钱松的将增加3.7%、5.6%和7.4%;黄山松的将增加3.5%、7.1%和11.8%。文中对影响直径生长的其他因素也进行了讨论。  相似文献   

16.
Aim Climate change threatens to shift vegetation, disrupting ecosystems and damaging human well‐being. Field observations in boreal, temperate and tropical ecosystems have detected biome changes in the 20th century, yet a lack of spatial data on vulnerability hinders organizations that manage natural resources from identifying priority areas for adaptation measures. We explore potential methods to identify areas vulnerable to vegetation shifts and potential refugia. Location Global vegetation biomes. Methods We examined nine combinations of three sets of potential indicators of the vulnerability of ecosystems to biome change: (1) observed changes of 20th‐century climate, (2) projected 21st‐century vegetation changes using the MC1 dynamic global vegetation model under three Intergovernmental Panel on Climate Change (IPCC) emissions scenarios, and (3) overlap of results from (1) and (2). Estimating probability density functions for climate observations and confidence levels for vegetation projections, we classified areas into vulnerability classes based on IPCC treatment of uncertainty. Results One‐tenth to one‐half of global land may be highly (confidence 0.80–0.95) to very highly (confidence ≥ 0.95) vulnerable. Temperate mixed forest, boreal conifer and tundra and alpine biomes show the highest vulnerability, often due to potential changes in wildfire. Tropical evergreen broadleaf forest and desert biomes show the lowest vulnerability. Main conclusions Spatial analyses of observed climate and projected vegetation indicate widespread vulnerability of ecosystems to biome change. A mismatch between vulnerability patterns and the geographic priorities of natural resource organizations suggests the need to adapt management plans. Approximately a billion people live in the areas classified as vulnerable.  相似文献   

17.
18.
气候变暖引起的植物物候变化影响了陆地生态系统功能和碳循环。目前研究着重关注温带和热带森林物候变化趋势、驱动因素,关于干旱半干旱地区草地物候变化及其对生态系统总初级生产力(gross primary productivity, GPP)影响仍知之甚少。因此,开展草地植物物候与生产力之间的关系研究对预测草地生态系统响应未来气候变化和区域碳循环至关重要。基于1982-2015年气象资料和GIMMS NDVI3g数据,分析了中国温带草原植被返青期(start of the growing season, SGS)和枯黄期(end of the growing season, EGS)变化及其对气候的响应,并借助一阶差分法量化物候对GPP动态变化的贡献。结果表明:(1)季前1-2个月的夜间温度增温会显著提前SGS, 而当月至季前2个月的白天温度对SGS有着微弱的促进作用;季前3个月的累积降水对SGS提前作用最为强烈,累积太阳辐射在各个时期对SGS影响相对较弱。(2)不同季前时间尺度昼夜温度对草地EGS均表现出相反的作用,短期累积降水对EGS起到显著延迟的区域范围最大,太阳辐射随着季前时间的增加对草地枯黄期的延迟作用逐渐转变为提前作用。(3)EGS对草地GPP年际变化趋势的相对贡献率强于返青期。研究结果有助于深化陆地生态系统与气候变化、碳循环之间相互作用的认识,为草地适应未来气候变化和生态建设提供科学依据。  相似文献   

19.
We used 179 tree ring chronologies of Douglas‐fir [Pseudotsuga menziesii (Mirb.) Franco] from the International Tree‐Ring Data Bank to study radial growth response to historical climate variability. For the coastal variety of Douglas‐fir, we found positive correlations of ring width with summer precipitation and temperature of the preceding winter, indicating that growth of coastal populations was limited by summer dryness and that photosynthesis in winter contributed to growth. For the interior variety, low precipitation and high growing season temperatures limited growth. Based on these relationships, we chose a simple heat moisture index (growing season temperature divided by precipitation of the preceding winter and current growing season) to predict growth response for the interior variety. For 105 tree ring chronologies or 81% of the interior samples, we found significant linear correlations with this heat moisture index, and moving correlation functions showed that the response was stable over time (1901–1980). We proceeded to use those relationships to predict regional growth response under 18 climate change scenarios for the 2020s, 2050s, and 2080s with unexpected results: for comparable changes in heat moisture index, the most southern and outlying populations of Douglas‐fir in Mexico showed the least reduction in productivity. Moderate growth reductions were found in the southern United States, and strongly negative response in the central Rocky Mountains. Growth reductions were further more pronounced for high than for low elevation populations. Based on regional differences in the slope of the growth–climate relationship, we propose that southern populations are better adapted to drought conditions and could therefore contain valuable genotypes for reforestation under climate change. The results support the view that climate change may impact species not just at the trailing edges but throughout their range due to genetic adaptation of populations to local environments.  相似文献   

20.
典型高寒植物生长繁殖特征对模拟气候变化的短期响应   总被引:1,自引:0,他引:1  
高寒植物的生长繁殖策略对气候变化的响应十分敏感但研究较少。在青藏高原东北的祁连山南麓坡地,于2007年沿3200~3800m海拔进行了植被的等距双向移栽实验并研究了典型高寒植物的生长繁殖策略对模拟气候变化的响应。结果表明,移栽样线年平均气温随海拔升高的递减率为0.51℃/100m。高寒植物移栽到高海拔后,其株高、基叶数、最大(小)叶面积等生长性状指标均发生显著变化,呈现出在3400m海拔处最高,其余3海拔处较低的趋势;而生殖枝数、花数和有性繁殖投入等生殖策略的响应则不明显,但具有随海拔升高而降低,最后在3800m处升高的变化。结果印证了气候变化对高寒植物生长性状的影响比生殖策略快速的假说。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号