首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Panjet‐applied alcian blue did not produce a reliable long‐term (> 5 months) mark. Average time to mark loss was 9·5 months for chub Leuciscus cephalus, 6·0 months for dace Leuciscus leuciscus and 11·1 months for roach Rutilus rutilus. Growth rate did not influence retention.  相似文献   

2.
This paper gives the first detailed data on the number and body part related distribution of superficial neuromasts in twelve common European Cypriniform species and examines whether such anatomical variables can be related to rough scale habitat occurrence. The fishes (Barbatula barbatula, Barbus barbus, Chondrostoma nasus, Cobitis taenia, Leuciscus cephalus, Leuciscus leuciscus, Phoxinus phoxinus, Rutilus rutilus, Rhodeus sericeus, Scardinius erythrophthalmus, Tinca tinca, Vimba vimba) were classified in two generalized ‘ecological guilds’, 1) rheophilic and 2) limnophilic or indifferent, based on literature data. The total number of superficial neuromasts was consistent within each species, but differed considerably between species. Lowest numbers of superficial neuromasts were found in Barbatula barbatula (21 ± 4.9 superficial neuromasts per cm body length) (mean ± SD), highest numbers in Vimba vimba (233 ± 36.1). Both species can be classified as rheophilic. Over all no relationship was found between the total number of superficial neuromasts and large scale habitat occurrence. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.

Aim

To measure the effects of including biotic interactions on climate‐based species distribution models (SDMs) used to predict distribution shifts under climate change. We evaluated the performance of distribution models for an endangered marsupial, the northern bettong (Bettongia tropica), comparing models that used only climate variables with models that also took into account biotic interactions.

Location

North‐east Queensland, Australia.

Methods

We developed separate climate‐based distribution models for the northern bettong, its two main resources and a competitor species. We then constructed models for the northern bettong by including climate suitability estimates for the resources and competitor as additional predictor variables to make climate + resource and climate + resource + competition models. We projected these models onto seven future climate scenarios and compared predictions of northern bettong distribution made by these differently structured models, using a ‘global’ metric, the I similarity statistic, to measure overlap in distribution and a ‘local’ metric to identify where predictions differed significantly.

Results

Inclusion of food resource biotic interactions improved model performance. Over moderate climate changes, up to 3.0 °C of warming, the climate‐only model for the northern bettong gave similar predictions of distribution to the more complex models including interactions, with differences only at the margins of predicted distributions. For climate changes beyond 3.0 °C, model predictions diverged significantly. The interactive model predicted less contraction of distribution than the simpler climate‐only model.

Main conclusions

Distribution models that account for interactions with other species, in particular direct resources, improve model predictions in the present‐day climate. For larger climate changes, shifts in distribution of interacting species cause predictions of interactive models to diverge from climate‐only models. Incorporating interactions with other species in SDMs may be needed for long‐term prediction of changes in distribution of species under climate change, particularly for specialized species strongly dependent on a small number of biotic interactions.  相似文献   

4.
Hybrid zones, where two divergent taxa meet and interbreed, offer unique opportunities to investigate how climate contributes to reproductive isolation between closely related taxa and how these taxa may respond to climatic changes. Red‐naped (Sphyrapicus nuchalis) and Red‐breasted (Sphyrapicus ruber) sapsuckers (Aves: Picidae) hybridize along a narrow contact zone that stretches from northern California to British Columbia. The hybrid zone between these species has been studied extensively for more than 100 years and represents an excellent system for investigations of the evolution of reproductive isolation. Shifts in the proportions of phenotypes at hybrid localities since 1910 that were inferred using specimens from museum collections were confirmed using species distribution models. We predicted the historical, current, and future distributions of parental and hybrid sapsuckers using Random Forests models to quantify how climate change is affecting hybrid zone movement in the Pacific Northwest. We found observed distribution shifts of parental sapsuckers were likely the result of climate change over the past 100 years, with these shifts predicted to continue for both sapsuckers over the next 80 years. We found Red‐breasted Sapsuckers are predicted to continue to expand, while Red‐naped Sapsuckers are predicted to contract substantially under future climate scenarios. As a result of the predicted changes, the amount of overlap in the distribution of these sapsuckers may decrease. Using hybrid phenotypes, we found the climate niche occupied by the hybrid zone is predicted to disappear under future conditions. The disappearance of this climate niche where the two parental species come into contact and hybridize may lead to a substantial reduction in genetic introgression. Understanding the impacts of global climate change on hybrid zones may help us to better understand how speciation has been shaped by climate in the past, as well as how evolution may respond to climate change in the future.  相似文献   

5.
Mechanisms of hybridization between bream Abramis brama and roach Rutilus rutilus were studied within the native range of the species in a lake in southern Finland. Through the genetic analysis of A. brama, R. rutilus and putative hybrids, hybridization is shown to have occurred between female A. brama and male R. rutilus. These results match with previous findings from introduced habitats, suggesting that mating between female A. brama and male R. rutilus is the predominant mechanism through which the two species hybridize.  相似文献   

6.
The sensitivity of early plant regeneration to environmental change makes regeneration a critical stage for understanding species response to climate change. We investigated the spatial and temporal response of eucalypt trees in the Central Highland region of south eastern Australia to high and low climate change scenarios. We developed a novel mechanistic model incorporating germination processes, TACA‐GEM, to evaluate establishment probabilities of five key eucalypt species, Eucalyptus pauciflora, Eucalyptus delegatensis, Eucalyptus regnans, Eucalyptus nitens and Eucalyptus obliqua. Changes to regeneration potential at landscape and site levels were calculated to determine climate thresholds. Model results demonstrated that climate change is likely to impact plant regeneration. We observed increases and decreases in regeneration potential depending on the ecosystem, indicating that some species will increase in abundance in some forest types, whilst other forest types will become inhabitable. In general, the dry forest ecosystems were most impacted, whilst the wet forests were least impacted. We also observed that species with seed dormancy mechanisms, like E. pauciflora and E. delegatensis, are likely to be at higher risk than those without. Landscape‐ and site‐level analysis revealed heterogeneity in species response at different scales. On a landscape scale, a 4.3 °C mean temperature increase and 22% decline in precipitation (predicted for 2080) is predicted to be a threshold for large spatial shifts in species regeneration niches across the study region, while a 2.6 °C increase and 15% decline in precipitation (predicted for 2050) will likely result in local site‐level shifts. Site‐level analysis showed that considerable declines in regeneration potential for E. delegatensis, E. pauciflora and E. nitens were modelled to occur in some ecosystems by 2050. While overall model performance and accuracy was good, better understanding of effects from extreme events and other underlying processes on regeneration will improve modelling and development of species conservation strategies.  相似文献   

7.
The polymerase chain reaction with arbitrary primers (RAPD–PCR) was used to study and to evaluate the genetic variation in the hybrid progeny of two Cyprinidae species, common bream Abramis brama L. and roach Rutilus rutilusL. Genetic polymorphism was studied in 20 fishes (young of the current year) obtained in four individual crosses: R. rutilus × R. rutilus (RR), A. brama × A. brama (AA), R. rutilus × A. brama (RA), and A. brama × R. rutilus (AR). Amplification spectra obtained with eight primers contained 288 fragments, 97.6% of which proved to be polymorphic. The proportion of polymorphic fragments was 75.0% in the RR progeny, 58.1% in the AA progeny, 84.9% in the AR progeny, and 77.8% in the RA progeny. Classification analysis in the space of principal components was performed with the first four components, which together accounted for 64% of the total variance of the character under study. The individual contributions of components I, II, III, and IV were 26.8, 16.8, 11.5, and 8.9%, respectively. Fishes of the two pure species and the hybrid progeny (direct and reverse hybrids together) were clearly differentiated in the space of principal components I and II. The best differentiation of the four samples (RR, AA, RA, and AR) was observed in the space of principal components II and IV. Possible causes of high genetic variation in interspecific hybrids are discussed.  相似文献   

8.
Traditional morphological studies need to be complemented with modern genetic methods to facilitate the identification of hybrids. By using a combination of landmark‐based techniques and microsatellite markers, natural hybridization was investigated between the cyprinids Abramis brama (L.) and Blicca bjoerkna (L.) and their hybrids. Geometric morphometrics revealed significant differences in body shape between A. brama, B. bjoerkna, and hybrids. Hybrids were of intermediate body shape with a tendency of being more like A. brama. Genetic differentiation was found between both parental species and their hybrids. However, hybrids revealed a higher genetical similarity with A. brama. Based on sequencing of the mitochondrial ATP synthase subunit 6 and 8 region a clear split was found between the two sibling species. Seventeen out of 19 hybrid specimens clustered within the A. brama clade. Data indicate that hybridization between A. brama and B. bjoerkna is mainly unidirectional and has not yet resulted in fusion of the two parental gene pools. Genetic integrity is maintained in B. bjoerkna, but F1 hybrid backcrosses might lead to introgression into the genepool of A. brama.  相似文献   

9.
To identify general patterns in the effects of climate change on the outbreak dynamics of forest‐defoliating insect species, we examined a 212‐year record (1800–2011) of outbreaks of five pine‐defoliating species (Bupalus piniarius, Panolis flammea, Lymantria monacha, Dendrolimus pini, and Diprion pini) in Bavaria, Germany for the evidence of climate‐driven changes in the severity, cyclicity, and frequency of outbreaks. We also accounted for historical changes in forestry practices and examined effects of past insecticide use to suppress outbreaks. Analysis of relationships between severity or occurrence of outbreaks and detrended measures of temperature and precipitation revealed a mixture of positive and negative relationships between temperature and outbreak activity. Two moth species (P. flammea and Dendrolimus pini) exhibited lower outbreak activity following years or decades of unusually warm temperatures, whereas a sawfly (Diprion pini), for which voltinism is influenced by temperature, displayed increased outbreak occurrence in years of high summer temperatures. We detected only one apparent effect of precipitation, which showed Dendrolimus pini outbreaks tending to follow drought. Wavelet analysis of outbreak time series suggested climate change may be associated with collapse of L. monacha and Dendrolimus pini outbreak cycles (loss of cyclicity and discontinuation of outbreaks, respectively), but high‐frequency cycles for B. piniarius and P. flammea in the late 1900s. Regional outbreak severity was generally not related to past suppression efforts (area treated with insecticides). Recent shifts in forestry practices affecting tree species composition roughly coincided with high‐frequency outbreak cycles in B. piniarius and P. flammea but are unlikely to explain the detected relationships between climate and outbreak severity or collapses of outbreak cycles. Our results highlight both individualistic responses of different pine‐defoliating species to climate changes and some patterns that are consistent across defoliator species in this and other forest systems, including collapsing of population cycles.  相似文献   

10.
The altitudinal shifts of many montane populations are lagging behind climate change. Understanding habitual, daily behavioural rhythms, and their climatic and environmental influences, could shed light on the constraints on long‐term upslope range‐shifts. In addition, behavioural rhythms can be affected by interspecific interactions, which can ameliorate or exacerbate climate‐driven effects on ecology. Here, we investigate the relative influences of ambient temperature and an interaction with domestic sheep (Ovis aries) on the altitude use and activity budgets of a mountain ungulate, the Alpine chamois (Rupicapra rupicapra). Chamois moved upslope when it was hotter but this effect was modest compared to that of the presence of sheep, to which they reacted by moving 89–103 m upslope, into an entirely novel altitudinal range. Across the European Alps, a range‐shift of this magnitude corresponds to a 46% decrease in the availability of suitable foraging habitat. This highlights the importance of understanding how factors such as competition and disturbance shape a given species’ realised niche when predicting potential future responses to change. Furthermore, it exposes the potential for manipulations of species interactions to ameliorate the impacts of climate change, in this case by the careful management of livestock. Such manipulations could be particularly appropriate for species where competition or disturbance already strongly restricts their available niche. Our results also reveal the potential role of behavioural flexibility in responses to climate change. Chamois reduced their activity when it was warmer, which could explain their modest altitudinal migrations. Considering this behavioural flexibility, our model predicts a small 15–30 m upslope shift by 2100 in response to climate change, less than 4% of the altitudinal shift that would be predicted using a traditional species distribution model‐type approach (SDM), which assumes that species’ behaviour remains unchanged as climate changes. Behavioural modifications could strongly affect how species respond to a changing climate.  相似文献   

11.
Ecological niche models, or species distribution models, have been widely used to identify potentially suitable areas for species in future climate change scenarios. However, there are inherent errors to these models due to their inability to evaluate species occurrence influenced by non‐climatic factors. With the intuit to improve the modelling predictions for a bromeliad‐breeding treefrog (Phyllodytes melanomystax, Hylidae), we investigate how the climatic suitability of bromeliads influences the distribution model for the treefrog in the context of baseline and 2050 climate change scenarios. We used point occurrence data on the frog and the bromeliad (Vriesea procera, Bromeliaceae) to generate their predicted distributions based on baseline and 2050 climates. Using a consensus of five algorithms, we compared the accuracy of the models and the geographic predictions for the frog generated from two modelling procedures: (i) a climate‐only model for P. melanomystax and V. procera; and (ii) a climate‐biotic model for P. melanomystax, in which the climatic suitability of the bromeliad was jointly considered with the climatic variables. Both modelling approaches generated strong and similar predictive power for P. melanomystax, yet climate‐biotic modelling generated more concise predictions, particularly for the year 2050. Specifically, because the predicted area of the bromeliad overlaps with the predictions for the treefrog in the baseline climate, both modelling approaches produce reasonable similar predicted areas for the anuran. Alternatively, due to the predicted loss of northern climatically suitable areas for the bromeliad by 2050, only the climate‐biotic models provide evidence that northern populations of P. melanomystax will likely be negatively affected by 2050.  相似文献   

12.
Scales collected during a maximum of seven fish population surveys over a 25-year period (1983–2008) in the River Wensum, a lowland river in Eastern England, enabled temporal analysis of the growth rates of roach Rutilus rutilus, dace Leuciscus leuciscus and chub Leuciscus cephalus. Across the study period, all species showed temporal variability in their growth patterns. Roach showed a significant temporal decrease in their growth, where rates recorded in surveys in 2005 and 2008 were significantly slower those recorded in surveys between 1983 and 1994. This change in growth rate was significantly associated with the implementation of phosphate stripping in the catchment’s sewage treatment works that reduced nutrient inputs (specifically orthophosphate). Prior to the implementation, temperature patterns explained most of the annual growth variability; following implementation and a consequent shift to the less eutrophic conditions, this relationship was lost, with changes in annual phosphate loadings now explaining most of the annual growth variation. This suggests that the changes in roach growth rates were related to shifts in river productivity resulting from water quality improvements.  相似文献   

13.
The relationship between body size and temperature of mammals is poorly resolved, especially for large keystone species such as bison (Bison bison). Bison are well represented in the fossil record across North America, which provides an opportunity to relate body size to climate within a species. We measured the length of a leg bone (calcaneal tuber, DstL) in 849 specimens from 60 localities that were dated by stratigraphy and 14C decay. We estimated body mass (M) as M = (DstL/11.49)3. Average annual temperature was estimated from δ18O values in the ice cores from Greenland. Calcaneal tuber length of Bison declined over the last 40,000 years, that is, average body mass was 37% larger (910 ± 50 kg) than today (665 ± 21 kg). Average annual temperature has warmed by 6°C since the Last Glacial Maximum (~24–18 kya) and is predicted to further increase by 4°C by the end of the 21st century. If body size continues to linearly respond to global temperature, Bison body mass will likely decline by an additional 46%, to 357 ± 54 kg, with an increase of 4°C globally. The rate of mass loss is 41 ± 10 kg per°C increase in global temperature. Changes in body size of Bison may be a result of migration, disease, or human harvest but those effects are likely to be local and short‐term and not likely to persist over the long time scale of the fossil record. The strong correspondence between body size of bison and air temperature is more likely the result of persistent effects on the ability to grow and the consequences of sustaining a large body mass in a warming environment. Continuing rises in global temperature will likely depress body sizes of bison, and perhaps other large grazers, without human intervention.  相似文献   

14.
The future distribution of river fishes will be jointly affected by climate and land use changes forcing species to move in space. However, little is known whether fish species will be able to keep pace with predicted climate and land use‐driven habitat shifts, in particular in fragmented river networks. In this study, we coupled species distribution models (stepwise boosted regression trees) of 17 fish species with species‐specific models of their dispersal (fish dispersal model FIDIMO) in the European River Elbe catchment. We quantified (i) the extent and direction (up‐ vs. downstream) of predicted habitat shifts under coupled “moderate” and “severe” climate and land use change scenarios for 2050, and (ii) the dispersal abilities of fishes to track predicted habitat shifts while explicitly considering movement barriers (e.g., weirs, dams). Our results revealed median net losses of suitable habitats of 24 and 94 river kilometers per species for the moderate and severe future scenarios, respectively. Predicted habitat gains and losses and the direction of habitat shifts were highly variable among species. Habitat gains were negatively related to fish body size, i.e., suitable habitats were projected to expand for smaller‐bodied fishes and to contract for larger‐bodied fishes. Moreover, habitats of lowland fish species were predicted to shift downstream, whereas those of headwater species showed upstream shifts. The dispersal model indicated that suitable habitats are likely to shift faster than species might disperse. In particular, smaller‐bodied fish (<200 mm) seem most vulnerable and least able to track future environmental change as their habitat shifted most and they are typically weaker dispersers. Furthermore, fishes and particularly larger‐bodied species might substantially be restricted by movement barriers to respond to predicted climate and land use changes, while smaller‐bodied species are rather restricted by their specific dispersal ability.  相似文献   

15.
Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide‐ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short‐ and long‐term tree growth responses, focusing on among‐tree variability and potential feedback effects. Although among‐tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth–climate relationships. We compiled tree‐ring data including almost 600 trees of major treeline species (Larix decidua, Picea abies, Pinus cembra, and Pinus mugo) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among‐tree variability, we employed information‐theoretic model selections based on linear mixed‐effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long‐term trends in ring‐width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among‐tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall (L. decidua) and current year's spring (L. decidua, P. abies). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies, P. cembra, and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree growth over time, but also reveals first signs of long‐suspected negative and positive feedback of climate change on stand dynamics at treeline.  相似文献   

16.
Recent climatic change has been recorded across the globe. Although environmental change is a characteristic feature of life on Earth and has played a major role in the evolution and global distribution of biodiversity, predicted future rates of climatic change, especially in temperature, are such that they will exceed any that has occurred over recent geological time. Climate change is considered as a key threat to biodiversity and to the structure and function of ecosystems that may already be subject to significant anthropogenic stress. The current understanding of climate change and its likely consequences for the fishes of Britain and Ireland and the surrounding seas are reviewed through a series of case studies detailing the likely response of several marine, diadromous and freshwater fishes to climate change. Changes in climate, and in particular, temperature have and will continue to affect fish at all levels of biological organization: cellular, individual, population, species, community and ecosystem, influencing physiological and ecological processes in a number of direct, indirect and complex ways. The response of fishes and of other aquatic taxa will vary according to their tolerances and life stage and are complex and difficult to predict. Fishes may respond directly to climate‐change‐related shifts in environmental processes or indirectly to other influences, such as community‐level interactions with other taxa. However, the ability to adapt to the predicted changes in climate will vary between species and between habitats and there will be winners and losers. In marine habitats, recent changes in fish community structure will continue as fishes shift their distributions relative to their temperature preferences. This may lead to the loss of some economically important cold‐adapted species such as Gadus morhua and Clupea harengus from some areas around Britain and Ireland, and the establishment of some new, warm‐adapted species. Increased temperatures are likely to favour cool‐adapted (e.g. Perca fluviatilis) and warm‐adapted freshwater fishes (e.g. roach Rutilus rutilus and other cyprinids) whose distribution and reproductive success may currently be constrained by temperature rather than by cold‐adapted species (e.g. salmonids). Species that occur in Britain and Ireland that are at the edge of their distribution will be most affected, both negatively and positively. Populations of conservation importance (e.g.Salvelinus alpinus and Coregonus spp.) may decline irreversibly. However, changes in food‐web dynamics and physiological adaptation, for example because of climate change, may obscure or alter predicted responses. The residual inertia in climate systems is such that even a complete cessation in emissions would still leave fishes exposed to continued climate change for at least half a century. Hence, regardless of the success or failure of programmes aimed at curbing climate change, major changes in fish communities can be expected over the next 50 years with a concomitant need to adapt management strategies accordingly.  相似文献   

17.
Eucalypts face increasing climate stress   总被引:1,自引:0,他引:1  
Global climate change is already impacting species and ecosystems across the planet. Trees, although long‐lived, are sensitive to changes in climate, including climate extremes. Shifts in tree species' distributions will influence biodiversity and ecosystem function at scales ranging from local to landscape; dry and hot regions will be especially vulnerable. The Australian continent has been especially susceptible to climate change with extreme heat waves, droughts, and flooding in recent years, and this climate trajectory is expected to continue. We sought to understand how climate change may impact Australian ecosystems by modeling distributional changes in eucalypt species, which dominate or codominate most forested ecosystems across Australia. We modeled a representative sample of Eucalyptus and Corymbia species (n = 108, or 14% of all species) using newly available Representative Concentration Pathway (RCP) scenarios developed for the 5th Assessment Report of the IPCC, and bioclimatic and substrate predictor variables. We compared current, 2025, 2055, and 2085 distributions. Overall, Eucalyptus and Corymbia species in the central desert and open woodland regions will be the most affected, losing 20% of their climate space under the mid‐range climate scenario and twice that under the extreme scenario. The least affected species, in eastern Australia, are likely to lose 10% of their climate space under the mid‐range climate scenario and twice that under the extreme scenario. Range shifts will be lateral as well as polewards, and these east–west transitions will be more significant, reflecting the strong influence of precipitation rather than temperature changes in subtropical and midlatitudes. These net losses, and the direction of shifts and contractions in range, suggest that many species in the eastern and southern seaboards will be pushed toward the continental limit and that large tracts of currently treed landscapes, especially in the continental interior, will change dramatically in terms of species composition and ecosystem structure.  相似文献   

18.
Understanding whether populations can adapt in situ or whether interventions are required is of key importance for biodiversity management under climate change. Landscape genomics is becoming an increasingly important and powerful tool for rapid assessments of climate adaptation, especially in long‐lived species such as trees. We investigated climate adaptation in Eucalyptus microcarpa using the DArTseq genomic approach. A combination of FST outlier and environmental association analyses were performed using >4200 genomewide single nucleotide polymorphisms (SNPs) from 26 populations spanning climate gradients in southeastern Australia. Eighty‐one SNPs were identified as putatively adaptive, based on significance in FST outlier tests and significant associations with one or more climate variables related to temperature (70/81), aridity (37/81) or precipitation (35/81). Adaptive SNPs were located on all 11 chromosomes, with no particular region associated with individual climate variables. Climate adaptation appeared to be characterized by subtle shifts in allele frequencies, with no consistent fixed differences identified. Based on these associations, we predict adaptation under projected changes in climate will include a suite of shifts in allele frequencies. Whether this can occur sufficiently rapidly through natural selection within populations, or would benefit from assisted gene migration, requires further evaluation. In some populations, the absence or predicted increases to near fixation of particular adaptive alleles hint at potential limits to adaptive capacity. Together, these results reinforce the importance of standing genetic variation at the geographic level for maintaining species’ evolutionary potential.  相似文献   

19.
Genetic diversity may play an important role in allowing individual species to resist climate change, by permitting evolutionary responses. Our understanding of the potential for such responses to climate change remains limited, and very few experimental tests have been carried out within intact ecosystems. Here, we use amplified fragment length polymorphism (AFLP) data to assess genetic divergence and test for signatures of evolutionary change driven by long‐term simulated climate change applied to natural grassland at Buxton Climate Change Impacts Laboratory (BCCIL). Experimental climate treatments were applied to grassland plots for 15 years using a replicated and spatially blocked design and included warming, drought and precipitation treatments. We detected significant genetic differentiation between climate change treatments and control plots in two coexisting perennial plant study species (Festuca ovina and Plantago lanceolata). Outlier analyses revealed a consistent signature of selection associated with experimental climate treatments at individual AFLP loci in P. lanceolata, but not in F. ovina. Average background differentiation at putatively neutral AFLP loci was close to zero, and genomewide genetic structure was associated neither with species abundance changes (demography) nor with plant community‐level responses to long‐term climate treatments. Our results demonstrate genetic divergence in response to a suite of climatic environments in reproductively mature populations of two perennial plant species and are consistent with an evolutionary response to climatic selection in P. lanceolata. These genetic changes have occurred in parallel with impacts on plant community structure and may have contributed to the persistence of individual species through 15 years of simulated climate change at BCCIL.  相似文献   

20.
Climate oscillations during the Quaternary altered the distributions of terrestrial animals at a global scale. In mountainous regions, temperature fluctuations may have led to shifts in range size and population size as species tracked their shifting habitats upslope or downslope. This creates the potential for both allopatric speciation and population size fluctuations, as species are either constrained to smaller patches of habitat at higher elevations or able to expand into broader areas at higher latitudes. We considered the impact of climate oscillations on three pairs of marsupial species from the Andes (Thylamys opossums) by inferring divergence times and demographic changes. We compare four different divergence dating approaches, using anywhere from one to 26 loci. Each pair comprises a northern (tropical) lineage and a southern (subtropical to temperate) lineage. We predicted that divergences would have occurred during the last interglacial (LIG) period approximately 125 000 years ago and that population sizes for northern and southern lineages would either contract or expand, respectively. Our results suggest that all three north–south pairs diverged in the late Pleistocene during or slightly after the LIG. The three northern lineages showed no signs of population expansion, whereas two southern lineages exhibited dramatic, recent expansions. We attribute the difference in responses between tropical and subtropical lineages to the availability of ‘montane‐like’ habitats at lower elevations in regions at higher latitudes. We conclude that climate oscillations of the late Quaternary had a powerful impact on the evolutionary history of some of these species, both promoting speciation and leading to significant population size shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号