首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root‐associated, respond to warming. Here, we investigate how long‐term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long‐term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU‐rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium‐distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium‐distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage.  相似文献   

2.
Arctic tundra regions have been responding to global warming with visible changes in plant community composition, including expansion of shrubs and declines in lichens and bryophytes. Even though it is well known that the majority of arctic plants are associated with their symbiotic fungi, how fungal community composition will be different with climate warming remains largely unknown. In this study, we addressed the effects of long‐term (18 years) experimental warming on the community composition and taxonomic richness of soil ascomycetes in dry and moist tundra types. Using deep Ion Torrent sequencing, we quantified how OTU assemblage and richness of different orders of Ascomycota changed in response to summer warming. Experimental warming significantly altered ascomycete communities with stronger responses observed in the moist tundra compared with dry tundra. The proportion of several lichenized and moss‐associated fungi decreased with warming, while the proportion of several plant and insect pathogens and saprotrophic species was higher in the warming treatment. The observed alterations in both taxonomic and ecological groups of ascomycetes are discussed in relation to previously reported warming‐induced shifts in arctic plant communities, including decline in lichens and bryophytes and increase in coverage and biomass of shrubs.  相似文献   

3.
We used snow fences and small (1 m2) open‐topped fiberglass chambers (OTCs) to study the effects of changes in winter snow cover and summer air temperatures on arctic tundra. In 1994, two 60 m long, 2.8 m high snow fences, one in moist and the other in dry tundra, were erected at Toolik Lake, Alaska. OTCs paired with unwarmed plots, were placed along each experimental snow gradient and in control areas adjacent to the snowdrifts. After 8 years, the vegetation of the two sites, including that in control plots, had changed significantly. At both sites, the cover of shrubs, live vegetation, and litter, together with canopy height, had all increased, while lichen cover and diversity had decreased. At the moist site, bryophytes decreased in cover, while an increase in graminoids was almost entirely because of the response of the sedge Eriophorum vaginatum. These community changes were consistent with results found in studies of responses to warming and increased nutrient availability in the Arctic. However, during the time period of the experiment, summer temperature did not increase, but summer precipitation increased by 28%. The snow addition treatment affected species abundance, canopy height, and diversity, whereas the summer warming treatment had few measurable effects on vegetation. The interannual temperature fluctuation was considerably larger than the temperature increases within OTCs (<2°C), however. Snow addition also had a greater effect on microclimate by insulating vegetation from winter wind and temperature extremes, modifying winter soil temperatures, and increasing spring run‐off. Most increases in shrub cover and canopy height occurred in the medium snow‐depth zone (0.5–2 m) of the moist site, and the medium to deep snow‐depth zone (2–3 m) of the dry site. At the moist tundra site, deciduous shrubs, particularly Betula nana, increased in cover, while evergreen shrubs decreased. These differential responses were likely because of the larger production to biomass ratio in deciduous shrubs, combined with their more flexible growth response under changing environmental conditions. At the dry site, where deciduous shrubs were a minor part of the vegetation, evergreen shrubs increased in both cover and canopy height. These changes in abundance of functional groups are expected to affect most ecological processes, particularly the rate of litter decomposition, nutrient cycling, and both soil carbon and nitrogen pools. Also, changes in canopy structure, associated with increases in shrub abundance, are expected to alter the summer energy balance by increasing net radiation and evapotranspiration, thus altering soil moisture regimes.  相似文献   

4.
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.  相似文献   

5.
Ectomycorrhizal (ECM) fungi are important for efficient nutrient uptake of several widespread arctic plant species. Knowledge of temporal variation of ECM fungi, and the relationship of these patterns to environmental variables, is essential to understand energy and nutrient cycling in Arctic ecosystems. We sampled roots of Bistorta vivipara ten times over two years; three times during the growing‐season (June, July and September) and twice during winter (November and April) of both years. We found 668 ECM OTUs belonging to 25 different ECM lineages, whereof 157 OTUs persisted throughout all sampling time‐points. Overall, ECM fungal richness peaked in winter and species belonging to Cortinarius, Serendipita and Sebacina were more frequent in winter than during summer. Structure of ECM fungal communities was primarily affected by spatial factors. However, after accounting for spatial effects, significant seasonal variation was evident revealing correspondence with seasonal changes in environmental conditions. We demonstrate that arctic ECM richness and community structure differ between summer (growing‐season) and winter, possibly due to reduced activity of the core community, and addition of fungi adapted for winter conditions forming a winter‐active fungal community. Significant month × year interactions were observed both for fungal richness and community composition, indicating unpredictable between‐year variation. Our study indicates that addressing seasonal changes requires replication over several years.  相似文献   

6.
Background: Gradients in the amounts and duration of snowpack and resulting soil moisture gradients have been associated with different plant communities across alpine landscapes.

Aims: The extent to which snow additions could alter plant community structure, both alone and in combination with nitrogen (N) and phosphorus (P) additions, provided an empirical assessment of the strength of these variables on structuring the plant communities of the alpine tundra at Niwot Ridge, Colorado Front Range.

Methods: A long-term snow fence was used to study vegetation changes in responses to snowpack, both alone and in conjunction with nutrient amendments, in plots established in dry and moist meadow communities in the alpine belt. Species richness, diversity, evenness and dissimilarity were evaluated after 20 years of treatments.

Results: Snow additions, alone, reduced species richness and altered species composition in dry meadow plots, but not in moist meadow; more plant species were found in the snow-impacted areas than in nearby controls. Changes in plant community structure to N and N + P additions were influenced by snow additions. Above-ground plant productivity in plots not naturally affected by snow accumulation was not increased, and the positive responses of plant species to nutrient additions were reduced by snow addition. Plant species showed individualistic responses to changes in snow and nutrients, and indirect evidence suggested that competitive interactions mediated responses. A Permanova analysis demonstrated that community dissimilarity was affected by snow, N, and P additions, but with these responses differing by community type for snow and N. Snow influenced community patterns generated by N, and finally, the communities impacted by N + P were significantly different than those affected by the individual nutrients.

Conclusions: These results show that changes in snow cover over a 20-year interval produce measureable changes in community composition that concurrently influence and are influenced by soil nutrient availability. Dry meadow communities exhibit more sensitivity to increases in snow cover whereas moist meadow communities appear more sensitive to N enrichment. This study shows that the dynamics of multiple limiting resources influence both the productivity and composition of alpine plant communities, with, species, life form, and functional traits mediating these responses.  相似文献   

7.
Laura Gough  Sarah E. Hobbie 《Oikos》2003,103(1):204-216
In arctic Alaska, researchers have manipulated air temperature, light availability, and soil nutrient availability in several tundra communities over the past two decades. These communities responded quite differently to the same manipulations, and species responded individualistically within communities and among sites. For example, moist acidic tundra is primarily nitrogen (N)‐limited, whereas wet sedge tundra is primarily phosphorus (P)‐limited, and the magnitude of growth responses varies across sites within communities. Here we report results of four years of manipulated nutrients (N and/or P) and/or air temperature in an understudied, diverse plant community, moist non‐acidic tussock tundra, in northern Alaska. Our goals were to determine which factors limit above‐ground net primary productivity (ANPP) and biomass, how community composition changes may affect ecosystem attributes, and to compare these results with those from other communities to determine their generality. Although relative abundance of functional groups shifted in several treatments, the only significant change in community‐level ANPP and biomass occurred in plots that received both N and P, driven by an increase in graminoid biomass and production resulting from a positive effect of adding N. There was no difference in community biomass among any other treatments; however, some growth forms and individual species did respond. After four years no one species has come to dominate the treatment plots and species richness has not changed. These results are similar to studies in dry heath, wet sedge, and moist acidic tundra where community biomass had the greatest response to both N and P and warming results were more subtle. Unlike in moist acidic tundra where shrub biomass increased markedly with fertilization, our results suggest that in non‐acidic tundra carbon sequestration in plant biomass will not increase substantially under increased soil nutrient conditions because of the lack of overstory shrub species.  相似文献   

8.
In arctic tundra, shrubs can significantly modify the distribution and physical characteristics of snow, influencing the exchanges of energy and moisture between terrestrial ecosystems and the atmosphere from winter into the growing season. These interactions were studied using a spatially distributed, physically based modelling system that represents key components of the land–atmosphere system. Simulations were run for 4 years, over a 4‐km2 tundra domain located in arctic Alaska. A shrub increase was simulated by replacing the observed moist‐tundra and wet‐tundra vegetation classes with shrub‐tundra; a procedure that modified 77% of the simulation domain. The remaining 23% of the domain, primarily ridge tops, was left as the observed dry‐tundra vegetation class. The shrub enhancement increased the averaged snow depth of the domain by 14%, decreased blowing‐snow sublimation fluxes by 68%, and increased the snowcover's thermal resistance by 15%. The shrub increase also caused significant changes in snow‐depth distribution patterns; the shrub‐enhanced areas had deeper snow, and the non‐modified areas had less snow. This snow‐distribution change influenced the timing and magnitude of all surface energy‐balance components during snowmelt. The modified snow distributions also affected meltwater fluxes, leading to greater meltwater production late in the melt season. For a region with an annual snow‐free period of approximately 90 days, the snow‐covered period decreased by 11 days on the ridges and increased by 5 days in the shrub‐enhanced areas. Arctic shrub increases impact the spatial coupling of climatically important snow, energy and moisture interactions by producing changes in both shrub‐enhanced and non‐modified areas. In addition, the temporal coupling of the climate system was modified when additional moisture held within the snowcover, because of less winter sublimation, was released as snowmelt in the spring.  相似文献   

9.
Abstract. We studied the relationship between plant N:P ratio, soil characteristics and species richness in wet sedge and tussock tundra in northern Alaska at seven sites. We also collected data on soil characteristics, above‐ground biomass, species richness and composition. The N:P ratio of the vegetation did not show any relationship with species richness. The N:P ratio of the soil was related with species richness for both vegetation types. Species richness in the tussock tundra was most strongly correlated with soil calcium content and soil pH, with a strong correlation between these two factors. N:P ratio of the soil was also correlated with soil pH. Other factors correlated with species richness were soil moisture and Sphagnum cover. Organic matter content was the factor most strongly correlated with species richness in the wet sedge vegetation. N:P ratio of the soil was strongly correlated with organic matter content. We conclude that N:P ratio in the vegetation is not an important factor determining species richness in arctic tundra and that species richness in arctic tundra is mainly determined by pH and flooding. In tussock tundra the pH, declining with soil age, in combination with Sphagnum growth strongly decreases species richness, while in wet sedge communities flooding over long periods of time creates less favourable conditions for species richness.  相似文献   

10.
Articulating the consequences of global climate change on terrestrial ecosystem biogeochemistry is a critical component of Arctic system studies. Leaf mineral nutrition responses of tundra plants is an important measure of changes in organismic and ecosystem attributes because leaf nitrogen and carbon contents effect photosynthesis, primary production, carbon budgets, leaf litter, and soil organic matter decomposition as well as herbivore forage quality. In this study, we used a longterm experiment where snow depth and summer temperatures were increased independently and together to articulate how a series of climate change scenarios would affect leaf N, leaf C, and leaf C:N for vegetation in dry and moist tussock tundra in northern Alaska, USA. Our findings were: 1) moist tundra vegetation is much more responsive to this suite of climate change scenarios than dry tundra with up to a 25% increase in leaf N; 2) life forms exhibit divergence in leaf C, N, and C:N with deciduous shrubs and graminoids having almost identical leaf N contents; 3) for some species, leaf mineral nutrition responses to these climate change scenarios are tundra type dependent ( Betula ), but for others ( Vaccinium vitis-idaea ), strong responses are exhibited regardless of tundra type; and 4) the seasonal patterns and magnitudes of leaf C and leaf N in deciduous and evergreen shrubs were responsive to conditions of deeper snow in winter. Leaf N is was generally higher immediately after emergence from the deep snow experimental treatments and leaf N was higher during the subsequent summer and fall, and the leaf C:N were lower, especially in deciduous shrubs. These findings indicate that coupled increases in snow depth and warmer summer temperatures will alter the magnitudes and patterns of leaf mineral nutrition and that the long term consequences of these changes may feed-forward and affect ecosystem processes.  相似文献   

11.
Changes in winter precipitation that include both decreases and increases in winter snow are underway across the Arctic. In this study, we used a 14-year experiment that has increased and decreased winter snow in the moist acidic tussock tundra of northern Alaska to understand impacts of variation in winter snow depth on summer leaf-level ecophysiology of two deciduous shrubs and a graminoid species, including: instantaneous rates of leaf gas exchange, and δ13C, δ15N, and nitrogen (N) concentrations of Betula nana, Salix pulchra, and Eriophorum vaginatum. Leaf-level measurements were complemented by measurements of canopy leaf area index (LAI) and depth of thaw. Reductions in snow lowered summer leaf photosynthesis, conductance, and transpiration rates by up to 40 % compared to ambient and deep snow conditions for Eriophorum vaginatum, and reduced Salix pulchra conductance and transpiration by up to 49 %. In contrast, Betula nana exhibited no changes in leaf gas exchange in response to lower or deeper snow. Canopy LAI increased with added snow, while reduced winter snow resulted in lower growing season soil temperatures and reduced thaw depths. Our findings indicate that the spatial and temporal variability of future snow depth will have individualistic consequences for leaf-level C fixation and water flux by tundra species, and that these responses will be manifested over the longer term by changes in canopy traits, depth of thaw, soil C and N processes, and trace gas (CO2 and H2O) exchanges between the tundra and the atmosphere.  相似文献   

12.
Climate warming is leading to shrub expansion in Arctic tundra. Shrubs form ectomycorrhizal (ECM) associations with soil fungi that are central to ecosystem carbon balance as determinants of plant community structure and as decomposers of soil organic matter. To assess potential climate change impacts on ECM communities, we analysed fungal internal transcribed spacer sequences from ECM root tips of the dominant tundra shrub Betula nana growing in treatments plots that had received long‐term warming by greenhouses and/or fertilization as part of the Arctic Long‐Term Ecological Research experiment at Toolik Lake Alaska, USA. We demonstrate opposing effects of long‐term warming and fertilization treatments on ECM fungal diversity; with warming increasing and fertilization reducing the diversity of ECM communities. We show that warming leads to a significant increase in high biomass fungi with proteolytic capacity, especially Cortinarius spp., and a reduction of fungi with high affinities for labile N, especially Russula spp. In contrast, fertilization treatments led to relatively small changes in the composition of the ECM community, but increased the abundance of saprotrophs. Our data suggest that warming profoundly alters nutrient cycling in tundra, and may facilitate the expansion of B. nana through the formation of mycorrhizal networks of larger size.  相似文献   

13.
Snow accumulation can influence soil properties in arctic and alpine tundra, boreal and temperate forests, and temperate grasslands. However, snow may be even more influential in arid ecosystems, which by definition are water limited, such as the hyper-arid polar desert of the McMurdo Dry Valleys, Antarctica. Moreover, snow accumulation may be altered by climate change in the future. In order to investigate the impact of changes in snow accumulation on soils in the McMurdo Dry Valleys we experimentally manipulated the quantity of snow at two locations and monitored soil properties over 5 years in relation to a snow depth gradient created by snow fences. We predicted that increased snow depth would be associated with increased soil moisture and a shift in soil animal community structure. While we did not observe changes in soil biochemistry or community structure along the snow depth gradient at either site, increased snow accumulation caused by the snow fence altered soil properties across the entire length of the transects at one site (Fryxell), which collected substantially more snow than the other site. At Fryxell, the presence of the snow fence increased gravimetric soil moisture from 1 to 5–9%. This was associated with a decline in abundance of the dominant animal, Scottnema lindsayae, a nematode typically found in dry soil, and an increase in Eudorylaimus sp. a nematode associated with moist soil. We also observed changes in soil pH, salinity, and concentrations of inorganic nitrogen and chlorophyll a over the course of the experiment, but it was difficult to determine if these were caused by snow accumulation or simply represented temporal variation related to other factors.  相似文献   

14.
Background: The extent to which nutrient availability influences plant community composition and dynamics has been a focus of ecological enquiry for decades.

Aims: Results from a long-term nitrogen (N) and phosphorus (P) addition experiment in alpine tundra were used to evaluate the importance of the two nutrients in structuring plant communities in three communities that differed in their snow cover amounts and duration and soil moisture characteristics.

Methods: A factorial N and P experiment was established in three meadows differing in initial vegetation composition and soil moisture. Plant and soil characteristics were measured after 20 years, and the dissimilarity among meadows and treatments were measured using permutational analysis of variance.

Results: Plant species richness declined uniformly across the three meadow types and in response to N and N + P additions, while both evenness and the Shannon diversity index finding indicated that nutrient additions had the highest impact on moister habitats. Overall, N impacts overshadowed changes attributed to P additions, and the N and N + P plots in wet meadow sites were the least diverse and scored the lowest dissimilarity averages among treatments. Dissimilarity estimates indicated that the control and P plots in the dry meadow community were more distinct in composition than all other plots, and especially those in the moist or wet meadows. Above-ground biomass of grasses and sedges (graminoids) increased with N additions while forbs appeared to show responses dictated in part by the graminoid responses. The most abundant grass species of moist and wet meadow, Deschampsia cespitosa, dominated N and N + P plots of the wet sites, but did not show a N response in moist areas in spite of its general abundance in moist meadow. Competition from other plant species in the moist areas likely diminished the D. cespitosa response and contributed to the resilience of the community to nutrient enrichment.

Conclusions: Initial community composition, as influenced by the specific moisture regime, appears to control the extent to which changes in nutrient resources can alter plant community structure. Long-term fertilization tends to support most but not all findings obtained from shorter-termed efforts, and wet meadows exhibit the largest changes in plant species numbers and composition when chronically enriched with N.  相似文献   

15.
Soil microbes constitute an important control on nitrogen (N) turnover and retention in arctic ecosystems where N availability is the main constraint on primary production. Ectomycorrhizal (ECM) symbioses may facilitate plant competition for the specific N pools available in various arctic ecosystems. We report here our study on the N uptake patterns of coexisting plants and microbes at two tundra sites with contrasting dominance of the circumpolar ECM shrub Betula nana. We added equimolar mixtures of glycine-N, NH4+–N and NO3–N, with one N form labelled with 15N at a time, and in the case of glycine, also labelled with 13C, either directly to the soil or to ECM fungal ingrowth bags. After 2 days, the vegetation contained 5.6, 7.7 and 9.1% (heath tundra) and 7.1, 14.3 and 12.5% (shrub tundra) of the glycine-, NH4+- and NO315N, respectively, recovered in the plant–soil system, and the major part of 15N in the soil was immobilized by microbes (chloroform fumigation-extraction). In the subsequent 24 days, microbial N turnover transferred about half of the immobilized 15N to the non-extractable soil organic N pool, demonstrating that soil microbes played a major role in N turnover and retention in both tundra types. The ECM mycelial communities at the two tundras differed in N-form preferences, with a higher contribution of glycine to total N uptake at the heath tundra; however, the ECM mycelial communities at both sites strongly discriminated against NO3. Betula nana did not directly reflect ECM mycelial N uptake, and we conclude that N uptake by ECM plants is modulated by the N uptake patterns of both fungal and plant components of the symbiosis and by competitive interactions in the soil. Our field study furthermore showed that intact free amino acids are potentially important N sources for arctic ECM fungi and plants as well as for soil microorganisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Ectomycorrhizal (ECM) fungi play major ecological roles in temperate and tropical ecosystems. Although the richness of ECM fungal communities and the factors controlling their structure have been documented at local spatial scales, how they vary at larger spatial scales remains unclear. In this issue of Molecular Ecology, Tedersoo et al. (2012) present the results of a meta‐analysis of ECM fungal community structure that sheds important new light on global‐scale patterns. Using data from 69 study systems and 6021 fungal species, the researchers found that ECM fungal richness does not fit the classic latitudinal diversity gradient in which species richness peaks at lower latitudes. Instead, richness of ECM fungal communities has a unimodal relationship with latitude that peaks in temperate zones. Intriguingly, this conclusion suggests the mechanisms driving ECM fungal community richness may differ from those of many other organisms, including their plant hosts. Future research will be key to determine the robustness of this pattern and to examine the processes that generate and maintain global‐scale gradients of ECM fungal richness.  相似文献   

17.
Herbivores in nutrient‐limited systems such as arctic tundra have been suggested to play a minor role in controlling plant growth simply because they are relatively few in number. However, theory predicts that as net primary productivity (NPP) increases because of greater inputs of nutrients or energy, herbivores may have greater effects on plant growth. This prediction has not been tested in the context of climate warming in arctic tundra, which may increase soil nutrient availability and thus NPP. We examined a long‐term experiment that excluded small and large mammalian herbivores and increased soil nutrients in two arctic Alaskan tundra communities: dry heath (DH) and moist acidic tussock (MAT). In the ninth year of manipulations, we measured weekly growth of three plant species of three growth forms: tussock‐forming graminoid, rhizomatous graminoid, and dwarf deciduous shrub, in each community. All species grew better when fertilized. In DH, this increase in growth was exaggerated when plants were protected from herbivores, confirming that herbivory had a negative effect on plant growth under increased nutrient conditions, but was unimportant under ambient soil conditions. However, in MAT, the importance of herbivory differed among species with fertilization. The tussock‐forming sedge at MAT, Eriophorum vaginatum, grew better and flowered more when fenced under both ambient and amended nutrients compared to plants exposed to herbivores. This species decreases in abundance in long‐term fertilized plots when mammals are present, and our results suggest that herbivory may be accounting for at least some of that loss, in addition to shifts in competitive relationships. Although we only focused on individual plants here rather than the entire community, our results suggest that under the increased soil nutrient conditions expected with continued climate warming in the Arctic, herbivores may become more important in affecting several abundant tundra plant populations, and should not be ignored.  相似文献   

18.
The Arctic climate is projected to change during the coming century, with expected higher air temperatures and increased winter snowfall. These climatic changes might alter litter decomposition rates, which in turn could affect carbon (C) and nitrogen (N) cycling rates in tundra ecosystems. However, little is known of seasonal climate change effects on plant litter decomposition rates and N dynamics, hampering predictions of future arctic vegetation composition and the tundra C balance. We tested the effects of snow addition (snow fences), warming (open top chambers), and shrub removal (clipping), using a full-factorial experiment, on mass loss and N dynamics of two shrub tissue types with contrasting quality: deciduous shrub leaf litter (Salix glauca) and evergreen shrub shoots (Cassiope tetragona). We performed a 10.5-month decomposition experiment in a low-arctic shrub tundra heath in West-Greenland. Field incubations started in late fall, with harvests made after 249, 273, and 319 days of field incubation during early spring, summer and fall of the next year, respectively. We observed a positive effect of deeper snow on winter mass loss which is considered a result of observed higher soil winter temperatures and corresponding increased winter microbial litter decomposition in deep-snow plots. In contrast, warming reduced litter mass loss during spring, possibly because the dry spring conditions might have dried out the litter layer and thereby limited microbial litter decomposition. Shrub removal had a small positive effect on litter mass loss for C. tetragona during summer, but not for S. glauca. Nitrogen dynamics in decomposing leaves and shoots were not affected by the treatments but did show differences in temporal patterns between tissue types: there was a net immobilization of N by C. tetragona shoots after the winter incubation, while S. glauca leaf N-pools were unaltered over time. Our results support the widely hypothesized positive linkage between winter snow depth and litter decomposition rates in tundra ecosystems, but our results do not reveal changes in N dynamics during initial decomposition stages. Our study also shows contrasting impacts of spring warming and snow addition on shrub decomposition rates that might have important consequences for plant community composition and vegetation-climate feedbacks in rapidly changing tundra ecosystems.  相似文献   

19.
Arctic winter precipitation is projected to increase with global warming, but some areas will experience decreases in snow accumulation. Although Arctic CH4 emissions may represent a significant climate forcing feedback, long‐term impacts of changes in snow accumulation on CH4 fluxes remain uncertain. We measured ecosystem CH4 fluxes and soil CH4 and CO2 concentrations and 13C composition to investigate the metabolic pathways and transport mechanisms driving moist acidic tundra CH4 flux over the growing season (Jun–Aug) after 18 years of experimental snow depth increases and decreases. Deeper snow increased soil wetness and warming, reducing soil %O2 levels and increasing thaw depth. Soil moisture, through changes in soil %O2 saturation, determined predominance of methanotrophy or methanogenesis, with soil temperature regulating the ecosystem CH4 sink or source strength. Reduced snow (RS) increased the fraction of oxidized CH4 (Fox) by 75–120% compared to Ambient, switching the system from a small source to a net CH4 sink (21 ± 2 and ?31 ± 1 mg CH4 m?2 season?1 at Ambient and RS). Deeper snow reduced Fox by 35–40% and 90–100% in medium‐ (MS) and high‐ (HS) snow additions relative to Ambient, contributing to increasing the CH4 source strength of moist acidic tundra (464 ± 15 and 3561 ± 97 mg CH4 m?2 season?1 at MS and HS). Decreases in Fox with deeper snow were partly due to increases in plant‐mediated CH4 transport associated with the expansion of tall graminoids. Deeper snow enhanced CH4 production within newly thawed soils, responding mainly to soil warming rather than to increases in acetate fermentation expected from thaw‐induced increases in SOC availability. Our results suggest that increased winter precipitation will increase the CH4 source strength of Arctic tundra, but the resulting positive feedback on climate change will depend on the balance between areas with more or less snow accumulation than they are currently facing.  相似文献   

20.
During winter in the Arctic, plant litter is scoured from exposed hills and ridges by wind and snow and is redistributed to other portions of the landscape. The aim of this research was to quantify the physical and biological consequences of this litter redistribution. Litter biomass accumulation was ten times greater in areas of high deposition (e.g. snow drifts) than in areas of low deposition. Spring snow melt was delayed by several days and soils were cooler throughout the growing season and throughout winter in areas of increased litter deposition than areas with no litter. Photosynthetically active radiation (PAR) was reduced to near zero with small accumulations of litter. Annual C and N inputs from allochthonous litter were 143 g Cm-2 and 14 g Nm in high lilter areas and 3.4 g C m−2 and 0.3 g N m-2 in non-drift, ambient litter deposition areas. Although PAR and soil temperatures were significantly reduced with increased litter deposition, we did not observe significant delays in key plant phenological events of several species or measure a decrease in gross ecosystem photosynthesis. We did measure a significant increase in ecosystem respiration with increased litter deposition, which resulted in a shift in the net C balance of dry heath tundra from near zero with no litter to a net source of CO2 to the atmosphere. Our study indicates that the redistribution of litter by wind and snow during winter is an important mechanism of nutrient transfer across the arctic landscape and that allochthonous litter inputs are of great enough magnitude to alter the carbon balance of some areas of the arctic landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号