首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO2) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that modify the peatland CO2 exchange in response to altered winter soil frost, we conducted a snow exclusion experiment to enhance winter soil frost and to evaluate its short‐term (1–3 years) and long‐term (11 years) effects on CO2 fluxes during subsequent growing seasons in a boreal peatland. In the first 3 years after initiating the treatment, no significant effects were observed on either gross primary production (GPP) or ecosystem respiration (ER). However, after 11 years, the temperature sensitivity of ER was reduced in the treatment plots relative to the control, resulting in an overall lower ER in the former. Furthermore, early growing season GPP was also lower in the treatment plots than in the controls during periods with photosynthetic photon flux density (PPFD) ≥800 μmol m?2 s?1, corresponding to lower sedge leaf biomass in the treatment plots during the same period. During the peak growing season, a higher GPP was observed in the treatment plots under the low light condition (i.e. PPFD 400 μmol m?2 s?1) compared to the control. As Sphagnum moss maximizes photosynthesis at low light levels, this GPP difference between the plots may have been due to greater moss photosynthesis, as indicated by greater moss biomass production, in the treatment plots relative to the controls. Our study highlights the different responses to enhanced winter soil frost among plant functional types which regulate CO2 fluxes, suggesting that winter climate change could considerably alter the growing season CO2 exchange in boreal peatlands through its effect on vegetation development.  相似文献   

2.
In high‐latitude regions, carbon dioxide (CO2) emissions during the winter represent an important component of the annual ecosystem carbon budget; however, the mechanisms that control the winter CO2 emissions are currently not well understood. It has been suggested that substrate availability from soil labile carbon pools is a main driver of winter CO2 emissions. In ecosystems that are dominated by annual herbaceous plants, much of the biomass produced during the summer is likely to contribute to the soil labile carbon pool through litter fall and root senescence in the autumn. Thus, the summer carbon uptake in the ecosystem may have a significant influence on the subsequent winter CO2 emissions. To test this hypothesis, we conducted a plot‐scale shading experiment in a boreal peatland to reduce the gross primary production (GPP) during the growing season. At the growing season peak, vascular plant biomass in the shaded plots was half that in the control plots. During the subsequent winter, the mean CO2 emission rates were 21% lower in the shaded plots than in the control plots. In addition, long‐term (2001–2012) eddy covariance data from the same site showed a strong correlation between the GPP (particularly the late summer and autumn GPP) and the subsequent winter net ecosystem CO2 exchange (NEE). In contrast, abiotic factors during the winter could not explain the interannual variation in the cumulative winter NEE. Our study demonstrates the presence of a cross‐seasonal link between the growing season biotic processes and winter CO2 emissions, which has important implications for predicting winter CO2 emission dynamics in response to future climate change.  相似文献   

3.
A reduction in the length of the snow‐covered season in response to a warming of high‐latitude and high‐elevation ecosystems may increase soil carbon availability both through increased litter fall following longer growing seasons and by allowing early winter soil frosts that lyse plant and microbial cells. To evaluate how an increase in labile carbon during winter may affect ecosystem carbon balance we investigated the relationship between carbon availability and winter CO2 fluxes at several locations in the Colorado Rockies. Landscape‐scale surveys of winter CO2 fluxes from sites with different soil carbon content indicated that winter CO2 fluxes were positively related to carbon availability and experimental additions of glucose to soil confirmed that CO2 fluxes from snow‐covered soil at temperatures between 0 and ?3°C were carbon limited. Glucose added to snow‐covered soil increased CO2 fluxes by 52–160% relative to control sites within 24 h and remained 62–70% higher after 30 days. Concurrently a shift in the δ13C values of emitted CO2 toward the glucose value indicated preferential utilization of the added carbon confirming the presence of active heterotrophic respiration in soils at temperatures below 0°C. The sensitivity of these winter fluxes to substrate availability, coupled with predicted changes in winter snow cover, suggests that feedbacks between growing season carbon uptake and winter heterotrophic activity may have unforeseen consequences for carbon and nutrient cycling in northern forests. For example, published winter CO2 fluxes indicate that on average 50% of growing season carbon uptake currently is respired during the winter; changes in winter CO2 flux in response to climate change have the potential to reduce substantially the net carbon sink in these ecosystems.  相似文献   

4.
Changes in winter time conditions at high‐latitude ecosystems could severely affect the carbon exchange processes. Using a 15 year stream record combined with winter field measurements and laboratory experiment, we studied the regulation of dissolved organic carbon (DOC) concentration in stream water draining boreal mire during snow melt. The most unanticipated finding was that cold soils with deep soil frost resulted in increased snow melt DOC concentrations in the stream runoff. Wintertime field measurements of DOC concentrations below the mire soil frost showed that this phenomenon could be explained by freeze‐out of DOC giving higher levels of DOC in the soil water below the ice as the soil frost developed downwards in the mire. Experimental freezing of water with a certain DOC concentration in the laboratory further corroborated the freeze‐out of DOC. In this experiment, as much as 96% of the DOC was excluded from the ice, whereas the freeze‐out in the mire was less effective (60%). The difference between the proportion of DOC retained in pure water relative to the proportion retained in peat water during freezing is probably due to trapped DOC in the solid peat soil matrix. A simple mass‐balance model showed that to explain the higher stream DOC concentrations during a winter with deep soil frost, approximately 0.5% of the mire area needed to be hydrologically connected to the stream discharge. In the stream records, we also found that the DOC concentrations during snow melt episodic runoff were negatively related to increasing intensity of the snow melt episodes (dilution by low DOC snow melt water) and higher previous export of DOC.  相似文献   

5.
Soil–atmosphere fluxes of trace gases (especially nitrous oxide (N2O)) can be significant during winter and at snowmelt. We investigated the effects of decreases in snow cover on soil freezing and trace gas fluxes at the Hubbard Brook Experimental Forest, a northern hardwood forest in New Hampshire, USA. We manipulated snow depth by shoveling to induce soil freezing, and measured fluxes of N2O, methane (CH4) and carbon dioxide (CO2) in field chambers monthly (bi-weekly at snowmelt) in stands dominated by sugar maple or yellow birch. The snow manipulation and measurements were carried out in two winters (1997/1998 and 1998/1999) and measurements continued through 2000. Fluxes of CO2 and CH4 showed a strong seasonal pattern, with low rates in winter, but N2O fluxes did not show strong seasonal variation. The snow manipulation induced soil freezing, increased N2O flux and decreased CH4 uptake in both treatment years, especially during winter. Annual N2O fluxes in sugar maple treatment plots were 207 and 99 mg N m−2 yr−1 in 1998 and 1999 vs. 105 and 42 in reference plots. Tree species had no effect on N2O or CO2 fluxes, but CH4 uptake was higher in plots dominated by yellow birch than in plots dominated by sugar maple. Our results suggest that winter fluxes of N2O are important and that winter climate change that decreases snow cover will increase soil:atmosphere N2O fluxes from northern hardwood forests.  相似文献   

6.
不同施肥处理对土壤活性有机碳和甲烷排放的影响   总被引:5,自引:0,他引:5  
通过采集田间试验区连续3a施入有机肥的稻田耕层土壤,分析土壤中微生物量碳(MBC)、水溶性有机碳(DOC)、易氧化有机碳(ROC)和可矿化有机碳(readily mineralizable carbon,RMC)等活性有机碳的含量,稻田甲烷(CH_4)的排放通量,探讨施用有机肥的土壤活性有机碳变化及与CH_4排放的关系。研究结果显示:(1)施有机肥对土壤中的活性有机碳均有一定的促进作用。3a不同施肥处理土壤中DOC、ROC、MBC和RMC的平均含量分别为383.6、2501.2、640.4 mg/kg和291.7 mg/kg。3a施猪粪(猪粪+化肥,PM)、鸡粪(鸡粪+化肥,CM)和稻草(稻草+化肥,RS)的DOC的含量分别比化肥(CF)处理增加5.6%、6.7%和19.3%,ROC的含量分别比CF增加6.6%、8.4%和9.8%;MBC含量分别比CF增加5.1%、14.8%和21.5%,RMC增加6.8%、22.0%和33.9%。不同施肥处理的稻田土壤活性有机碳为分蘖期高于成熟期。(2)施肥处理显著增加稻田CH_4排放,CH_4分蘖期的排放通量是成熟期的143倍,3a PM、CM和RS处理的CH_4排放分别比CF处理增加37.0%(P0.05)、92.7%(P0.05)和99.4%(P0.05)。(3)不同施肥处理的DOC、ROC、MBC和RMC含量与CH_4排放通量均存在显著正相关关系,ROC与CH_4排放的相关系数最高,为0.754(P0.01),且4种有机碳间关系密切。稻田分蘖期土壤中的活性有机碳与稻田CH_4排放呈显著正相关关系。(4)综合分析,在4种有机碳中,土壤中ROC和MBC的含量直接影响CH_4排放。  相似文献   

7.
The impact of changes in winter soil frost regime on soil CO2 concentration and its atmospheric exchange in a boreal Norway spruce forest was investigated using a field‐scale soil frost manipulation experiment. The experiment comprised three treatments: deep soil frost, shallow soil frost and control plots (n= 3). Winter soil temperatures and soil frost distribution were significantly altered by the different treatments. The average soil CO2 concentrations during the growing season were significantly lower in plots with deep soil frost than in plots with shallow soil frost. The average CO2 soil–atmosphere exchange rate exhibited the same pattern, and differences in soil respiration rates among the treatments were statistically significant. Both the variation in soil CO2 concentration and the CO2 soil–atmosphere exchange rate could statistically be explained by the differences in the maximum soil frost depth during the previous winter. A response model for growing season soil respiration rates suggests that every 1 cm change in winter soil frost depth will change the emission rates by ca. 0.01 g CO2 m?2 day?1, corresponding to 0.2–0.5% of the estimated net ecosystem productivity (NEP). This suggests that the soil frost regime has a significant influence on the C balance of the system, because interannual variations in soil frost up to 60 cm have been recorded at the site. We conclude that winter climate conditions can be important in controlling C balances in northern terrestrial ecosystems, and also that indirect effects of the winter season must be taken into account, because these can affect the prevailing conditions during the growing season.  相似文献   

8.
It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process‐based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS‐TEM), was calibrated with data collected during 2005–2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water‐table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.  相似文献   

9.
Methane emissions from wetland soils are generally a positive function ofplant size and primary productivity, and may be expected to increase dueto enhanced rates of plant growth in a future atmosphere of elevatedCO2. We performed two experiments with Orontium aquaticum, acommon emergent aquatic macrophyte in temperate and sub-tropical wetlands, todetermine if enhanced rates of photosynthesis in elevated CO2atmospheres would increase CH4 emissions from wetland soils.O. aquaticum was grown from seed in soil cores under ambient and elevated(ca. 2-times ambient) concentrations of CO2 in an initialglasshouse study lasting 3 months and then a growth chamber study lasting 6months. Photosynthetic rates were 54 to 71% higher underelevated CO2 than ambient CO2, but plantbiomass was not significantly different at the end of the experiment. Ineach case, CH4 emissions were higher under elevated thanambient CO2 levels after 2 to 4 months of treatment, suggestinga close coupling between photosynthesis and methanogenesis in our plant-soilsystem. Methane emissions in the growth chamber study increased by 136%. We observed a significant decrease in transpirationrates under elevated CO2 in the growth chamber study, andspeculate that elevated CO2 may also stimulate CH4 emissions by increasing the extent and duration offlooding in some wetland ecosystems. Elevated CO2 maydramatically increase CH4 emissions from wetlands, a sourcethat currently accounts for 40% of global emissions.  相似文献   

10.
Aims Boreal forest is the largest and contains the most soil carbon among global terrestrial biomes. Soil respiration during the prolonged winter period may play an important role in the carbon cycles in boreal forests. This study aims to explore the characteristics of winter soil respiration in the boreal forest and to show how it is regulated by environmental factors, such as soil temperature, soil moisture and snowpack.Methods Soil respiration in an old-growth larch forest (Larix gmelinii Ruppr.) in Northeast China was intensively measured during the winter soil-freezing process in 2011 using an automated soil CO2 flux system. The effects of soil temperature, soil moisture and thin snowpack on soil respiration and its temperature sensitivity were investigated.Important findings Total soil respiration and heterotrophic respiration both showed a declining trend during the observation period, and no significant difference was found between soil respiration and heterotrophic respiration until the snowpack exceeded 20cm. Soil respiration was exponentially correlated with soil temperature and its temperature sensitivity (Q 10 value) for the entire measurement duration was 10.5. Snow depth and soil moisture both showed positive effects on the temperature sensitivity of soil respiration. Based on the change in the Q 10 value, we proposed a 'freeze–thaw critical point' hypothesis, which states that the Q 10 value above freeze–thaw critical point is much higher than that below it (16.0 vs. 3.5), and this was probably regulated by the abrupt change in soil water availability during the soil-freezing process. Our findings suggest interactive effects of multiple environmental factors on winter soil respiration and recommend adopting the freeze–thaw critical point to model soil respiration in a changing winter climate.  相似文献   

11.
Changes in growing season climate are often the foci of research exploring forest response to climate change. By contrast, little is known about tree growth response to projected declines in winter snowpack and increases in soil freezing in seasonally snow‐covered forest ecosystems, despite extensive documentation of the importance of winter climate in mediating ecological processes. We conducted a 5‐year snow‐removal experiment whereby snow was removed for the first 4–5 weeks of winter in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire, USA. Our results indicate that adverse impacts of reduced snowpack and increased soil freezing on the physiology of Acer saccharum (sugar maple), a dominant species across northern temperate forests, are accompanied by a 40 ± 3% reduction in aboveground woody biomass increment, averaged across the 6 years following the start of the experiment. Further, we find no indication of growth recovery 1 year after cessation of the experiment. Based on these findings, we integrate spatial modeling of snowpack depth with forest inventory data to develop a spatially explicit, regional‐scale assessment of the vulnerability of forest aboveground growth to projected declines in snowpack depth and increased soil frost. These analyses indicate that nearly 65% of sugar maple basal area in the northeastern United States resides in areas that typically experience insulating snowpack. However, under the RCP 4.5 and 8.5 emissions scenarios, we project a 49%–95% reduction in forest area experiencing insulating snowpack by the year 2099 in the northeastern United States, leaving large areas of northern forest vulnerable to these changes in winter climate, particularly along the northern edge of the region. Our study demonstrates that research focusing on growing season climate alone overestimates the stimulatory effect of warming temperatures on tree and forest growth in seasonally snow‐covered forests.  相似文献   

12.
Soil surface carbon dioxide (CO2) flux (RS) was measured for 2 years at the Boreal Soil and Air Warming Experiment site near Thompson, MB, Canada. The experimental design was a complete random block design that consisted of four replicate blocks, with each block containing a 15 m × 15 m control and heated plot. Black spruce [Picea mariana (Mill.) BSP] was the overstory species and Epilobium angustifolium was the dominant understory. Soil temperature was maintained (~5 °C) above the control soil temperature using electric cables inside water filled polyethylene tubing for each heated plot. Air inside a 7.3‐m‐diameter chamber, centered in the soil warming plot, contained approximately nine black spruce trees was heated ~5 °C above control ambient air temperature allowing for the testing of soil‐only warming and soil+air warming. Soil surface CO2 flux (RS) was positively correlated (P < 0.0001) to soil temperature at 10 cm depth. Soil surface CO2 flux (RS) was 24% greater in the soil‐only warming than the control in 2004, but was only 11% greater in 2005, while RS in the soil+air warming treatments was 31% less than the control in 2004 and 23% less in 2005. Live fine root mass (< 2 mm diameter) was less in the heated than control treatments in 2004 and statistically less (P < 0.01) in 2005. Similar root mass between the two heated treatments suggests that different heating methods (soil‐only vs. soil+air warming) can affect the rate of decomposition.  相似文献   

13.
The accumulation of soil carbon (C) is regulated by a complex interplay between abiotic and biotic factors. Our study aimed to identify the main drivers of soil C accumulation in the boreal forest of eastern North America. Ecosystem C pools were measured in 72 sites of fire origin that burned 2–314 years ago over a vast region with a range of ? mean annual temperature of 3°C and one of ? 500 mm total precipitation. We used a set of multivariate a priori causal hypotheses to test the influence of time since fire (TSF), climate, soil physico‐chemistry and bryophyte dominance on forest soil organic C accumulation. Integrating the direct and indirect effects among abiotic and biotic variables explained as much as 50% of the full model variability. The main direct drivers of soil C stocks were: TSF >bryophyte dominance of the FH layer and metal oxide content >pH of the mineral soil. Only climate parameters related to water availability contributed significantly to explaining soil C stock variation. Importantly, climate was found to affect FH layer and mineral soil C stocks indirectly through its effects on bryophyte dominance and organo‐metal complexation, respectively. Soil texture had no influence on soil C stocks. Soil C stocks increased both in the FH layer and mineral soil with TSF and this effect was linked to a decrease in pH with TSF in mineral soil. TSF thus appears to be an important factor of soil development and of C sequestration in mineral soil through its influence on soil chemistry. Overall, this work highlights that integrating the complex interplay between the main drivers of soil C stocks into mechanistic models of C dynamics could improve our ability to assess C stocks and better anticipate the response of the boreal forest to global change.  相似文献   

14.
15.
To determine how elevated night temperature interacts with carbon dioxide concentration ([CO2]) to affect methane (CH4) emission from rice paddy soil, we conducted a pot experiment using four controlled‐environment chambers and imposed a combination of two [CO2] levels (ambient: 380 ppm; elevated: 680 ppm) and two night temperatures (22 and 32 °C). The day temperature was maintained at 32 °C. Rice (cv. IR72) plants were grown outside until the early‐reproductive growth stage and then transferred to the chambers. After onset of the treatment, day and night CH4 fluxes were measured every week. The CH4 fluxes changed significantly with the growth stage, with the largest fluxes occurring around the heading stage in all treatments. The total CH4 emission during the treatment period was significantly increased by both elevated [CO2] (P=0.03) and elevated night temperature (P<0.01). Elevated [CO2] increased CH4 emission by 3.5% and 32.2% under high and low night temperature conditions, respectively. Elevated [CO2] increased the net dry weight of rice plants by 12.7% and 38.4% under high and low night temperature conditions, respectively. These results imply that increasing night temperature reduces the stimulatory effect of elevated [CO2] on both CH4 emission and rice growth. The CH4 emission during the day was larger than at night even under the high‐night‐temperature treatment (i.e. a constant temperature all day). This difference became larger after the heading stage. We observed significant correlations between the night respiration and daily CH4 flux (P<0.01). These results suggest that net plant photosynthesis contributes greatly to CH4 emission and that increasing night temperature reduces the stimulatory effect of elevated [CO2] on CH4 emission from rice paddy soil.  相似文献   

16.
在人类活动和气候变化影响下,泥炭沼泽生态系统急剧退化,其独特的氧化还原过程使得退化泥炭沼泽及其恢复过程中土壤有机碳(SOC)分解与存储机制成为研究的热点问题。泥炭沼泽排水/再湿过程会显著改变土壤的氧化还原条件,进而改变土壤微生物群落和酶活性,驱动铁氧化还原过程,影响SOC分解。已有研究对"缺氧是维持泥炭地碳存储的关键"的传统理论提出了质疑,而土壤酶及铁(Fe)在土壤SOC分解与存储过程中分别扮演着"酶锁"和"铁门"的作用,二者同时受到氧化还原条件的影响。然而,有关退化泥炭沼泽及其恢复过程中酶-土壤SOC-Fe相互作用及微生物驱动机制还有待深入。总结了干旱/排水/再湿对泥炭沼泽土壤SOC组分、分子结构、碳排放的影响,并从微生物、酶、Fe化学的角度归纳总结了泥炭沼泽土壤SOC分解的生物化学机制。未来研究中应将土壤水分与土壤SOC分解的生物地球化学机制联系起来,探寻水位变化过程中生物及非生物要素对土壤SOC分子结构变化的调控机制及土壤氧化酶-酚类物质/SOC分子结构-水解酶之间的作用机制。同时,关注Fe的氧化和还原过程,评估Fe-SOC在泥炭沼泽土壤有机碳中的地位,利用分子生物学手段探究水位变化过程中酶-SOC分解/碳排放-铁之间的权衡机制。  相似文献   

17.
Climate warming is strongly altering the timing of season initiation and season length in the Arctic. Phenological activities are among the most sensitive plant responses to climate change and have important effects at all levels within the ecosystem. We tested the effects of two experimental treatments, extended growing season via snow removal and extended growing season combined with soil warming, on plant phenology in tussock tundra in Alaska from 1995 through 2003. We specifically monitored the responses of eight species, representing four growth forms: (i) graminoids (Carex bigellowii and Eriophorum vaginatum); (ii) evergreen shrubs (Ledum palustre, Cassiope tetragona, and Vaccinium vitis‐idaea); (iii) deciduous shrubs (Betula nana and Salix pulchra); and (iv) forbs (Polygonum bistorta). Our study answered three questions: (i) Do experimental treatments affect the timing of leaf bud break, flowering, and leaf senescence? (ii) Are responses to treatments species‐specific and growth form‐specific? and (iii) Which environmental factors best predict timing of phenophases? Treatment significantly affected the timing of all three phenophases, although the two experimental treatments did not differ from each other. While phenological events began earlier in the experimental plots relative to the controls, duration of phenophases did not increase. The evergreen shrub, Cassiope tetragona, did not respond to either experimental treatment. While the other species did respond to experimental treatments, the total active period for these species did not increase relative to the control. Air temperature was consistently the best predictor of phenology. Our results imply that some evergreen shrubs (i.e., C. tetragona) will not capitalize on earlier favorable growing conditions, putting them at a competitive disadvantage relative to phenotypically plastic deciduous shrubs. Our findings also suggest that an early onset of the growing season as a result of decreased snow cover will not necessarily result in greater tundra productivity.  相似文献   

18.
不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响   总被引:60,自引:0,他引:60  
通过两个生长季试验,研究了不同耕作方式和秸秆还田及其交互效应对小麦全生育期0~20 cm土壤有机碳含量的影响.结果表明:小麦不同生育时期0~20 cm土层有机碳含量呈明显的动态变化;秸秆还田各处理的有机碳含量都高于无秸秆还田处理;保护性耕作措施土壤有机碳增加量显著高于传统翻耕.除传统翻耕处理外,各处理0~10 cm土层的有机碳含量都高于10~20 cm土层,秸秆还田各处理0~10 cm土层有机碳含量表现为深松(PS)>旋耕(PR)>免耕(PZ)>耙耕(PH)>传统翻耕(PC),而10~20 cm土层表现为传统翻耕(PC)>深松(PS)>旋耕(PR)>耙耕(PH)>免耕(PZ),说明保护性耕作措施能提高0~10 cm土层的有机碳含量.多因素方差分析表明:耕作因素、秸秆因素和两者交互效应在不同生育期对0~20 cm土层的有机碳含量都有显著影响.  相似文献   

19.
《Global Change Biology》2018,24(8):3508-3525
Arctic climate warming will be primarily during winter, resulting in increased snowfall in many regions. Previous tundra research on the impacts of deepened snow has generally been of short duration. Here, we report relatively long‐term (7–9 years) effects of experimentally deepened snow on plant community structure, net ecosystem CO2 exchange (NEE), and soil biogeochemistry in Canadian Low Arctic mesic shrub tundra. The snowfence treatment enhanced snow depth from 0.3 to ~1 m, increasing winter soil temperatures by ~3°C, but with no effect on summer soil temperature, moisture, or thaw depth. Nevertheless, shoot biomass of the evergreen shrub Rhododendron subarcticum was near‐doubled by the snowfences, leading to a 52% increase in aboveground vascular plant biomass. Additionally, summertime NEE rates, measured in collars containing similar plant biomass across treatments, were consistently reduced ~30% in the snowfenced plots due to decreased ecosystem respiration rather than increased gross photosynthesis. Phosphate in the organic soil layer (0–10 cm depth) and nitrate in the mineral soil layer (15–25 cm depth) were substantially reduced within the snowfences (47–70 and 43%–73% reductions, respectively, across sampling times). Finally, the snowfences tended (= .08) to reduce mineral soil layer C% by 40%, but with considerable within‐ and among plot variation due to cryoturbation across the landscape. These results indicate that enhanced snow accumulation is likely to further increase dominance of R. subarcticum in its favored locations, and reduce summertime respiration and soil biogeochemical pools. Since evergreens are relatively slow growing and of low stature, their increased dominance may constrain vegetation‐related feedbacks to climate change. We found no evidence that deepened snow promoted deciduous shrub growth in mesic tundra, and conclude that the relatively strong R. subarcticum response to snow accumulation may explain the extensive spatial variability in observed circumpolar patterns of evergreen and deciduous shrub growth over the past 30 years.  相似文献   

20.
We present results from modelling studies, which suggest that, at most, only about 10–20% of recently observed soil carbon losses in England and Wales could possibly be attributable to climate warming. Further, we present reasons why the actual losses of SOC from organic soils in England and Wales might be lower than those reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号