首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human activities have resulted in increased nitrogen inputs into terrestrial ecosystems, but the impact of nitrogen on ecosystem function, such as nutrient cycling, will depend at least in part on the response of soil fungal communities. We examined the response of soil fungi to experimental nitrogen addition in a loblolly pine forest (North Carolina, USA) using a taxonomic marker (large subunit rDNA, LSU) and a functional marker involved in a critical step of cellulose degradation (cellobiohydrolase, cbhI) at five time points that spanned fourteen months. Sampling date had no impact on fungal community richness or composition for either gene. Based on the LSU, nitrogen addition led to increased fungal community richness, reduced relative abundance of fungi in the phylum Basidiomycota and altered community composition; however, similar shifts were not observed with cbhI. Fungal community dissimilarity of the LSU and cbhI genes was significantly correlated in the ambient plots, but not in nitrogen‐amended plots, suggesting either functional redundancy of fungi with the cbhI gene or shifts in other functional groups in response to nitrogen addition. To determine whether sequence similarity of cbhI could be predicted based on taxonomic relatedness of fungi, we conducted a phylogenetic analysis of publically available cbhI sequences from known isolates and found that for a subset of isolates, similar cbhI genes were found within distantly related fungal taxa. Together, these findings suggest that taxonomic shifts in the total fungal community do not necessarily result in changes in the functional diversity of fungi.  相似文献   

2.
Rising temperatures associated with climate change have been shown to negatively affect the photosynthetic rates of boreal forest tree saplings at their southern range limits. To quantify the responses of ectomycorrhizal (EM) fungal communities associated with poorly performing hosts, we sampled the roots of Betula papyrifera and Abies balsamea saplings growing in the B4Warmed (Boreal Forest Warming at an Ecotone in Danger) experiment. EM fungi on the root systems of both hosts were compared from ambient and +3.4 °C air and soil warmed plots at two sites in northern Minnesota. EM fungal communities were assessed with high‐throughput sequencing along with measures of plant photosynthesis, soil temperature, moisture, and nitrogen. Warming selectively altered EM fungal community composition at both the phylum and genus levels, but had no significant effect on EM fungal operational taxonomic unit (OTU) diversity. Notably, warming strongly favored EM Ascomycetes and EM fungi with short‐contact hyphal exploration types. Declining host photosynthetic rates were also significantly inversely correlated with EM Ascomycete and EM short‐contact exploration type abundance, which may reflect a shift to less carbon demanding fungi due to lower photosynthetic capacity. Given the variation in EM host responses to warming, both within and between ecosystems, better understanding the link between host performance and EM fungal community structure will to clarify how climate change effects cascade belowground.  相似文献   

3.
Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root‐associated, respond to warming. Here, we investigate how long‐term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long‐term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU‐rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium‐distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium‐distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage.  相似文献   

4.
Root‐associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree‐seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems were EMF, with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree‐seedling establishment beyond current treeline.  相似文献   

5.
Soil warming (0–5.5 °C above controls) effects on ectomycorrhizal growth, carbon sequestration and community composition were examined in a Picea sitchensis forest spanning a geothermal gradient in Iceland. Fungal communities were assayed with sand-filled ingrowth meshbags incubated in the soil for 5 months. Meshbags amended with compost made from maize leaves (a C4 plant enriched in 13C) were incubated for 5 or 12 months and used to estimate C sequestration by the fungal community. Despite increases in tree growth, moderate warming only slightly reduced or had no effect on mycelial growth and had no effect on fungal carbon sequestration or overall ectomycorrhizal community composition. Warming was associated with increased abundance of ascomycetes, particularly pyronemataceous ectomycorrhizal fungi, and altered saprotrophic community composition. Increased nitrate availability and root turnover may explain the lack of a positive ectomycorrhizal growth response to increased tree growth and observed shifts in community composition with warming.  相似文献   

6.
以西南亚高山针叶林建群种粗枝云杉(Picea asperata)为研究对象,采用红外加热模拟增温结合外施氮肥(NH4NO3 25 g N m-2 a-1)的方法,研究连续3a夜间增温和施肥对云杉幼苗外生菌根侵染率、土壤外生菌根真菌生物量及其群落多样性的影响。结果表明:夜间增温对云杉外生菌根侵染率的影响具有季节性及根级差异。夜间增温对春季(2011年5月)云杉1级根,夏季(2011年7月)和秋季(2010年10月)云杉2级根侵染率影响显著。除2011年7月1级根外,施氮对云杉1、2级根侵染率无显著影响。夜间增温对土壤中外生菌根真菌的生物量和群落多样性无显著影响,施氮及增温与施氮联合处理使土壤中外生菌根真菌生物量显著降低,但却提高了外生菌根真菌群落的多样性。这说明云杉幼苗外生菌根侵染率对温度较敏感,土壤外生菌根真菌生物量及其群落多样性对施氮较敏感。这为进一步研究该区域亚高山针叶林地下过程对全球气候变化的响应机制提供了科学依据。  相似文献   

7.
Arctic tundra regions have been responding to global warming with visible changes in plant community composition, including expansion of shrubs and declines in lichens and bryophytes. Even though it is well known that the majority of arctic plants are associated with their symbiotic fungi, how fungal community composition will be different with climate warming remains largely unknown. In this study, we addressed the effects of long‐term (18 years) experimental warming on the community composition and taxonomic richness of soil ascomycetes in dry and moist tundra types. Using deep Ion Torrent sequencing, we quantified how OTU assemblage and richness of different orders of Ascomycota changed in response to summer warming. Experimental warming significantly altered ascomycete communities with stronger responses observed in the moist tundra compared with dry tundra. The proportion of several lichenized and moss‐associated fungi decreased with warming, while the proportion of several plant and insect pathogens and saprotrophic species was higher in the warming treatment. The observed alterations in both taxonomic and ecological groups of ascomycetes are discussed in relation to previously reported warming‐induced shifts in arctic plant communities, including decline in lichens and bryophytes and increase in coverage and biomass of shrubs.  相似文献   

8.
Ectomycorrhizal networks may facilitate the establishment and survival of seedlings regenerating under the canopies of tropical forests and are often invoked as a potential contributor to monodominance. We identified ectomycorrhizal fungi in a monodominant Gilbertiodendron dewevrei (Fabaceae) rain forest in Cameroon, using sporocarps and ectomycorrhizae of three age categories (seedlings, intermediate trees, and large trees) and tentatively revealed nutrient transfer through ectomycorrhizal networks by measuring spontaneous isotopic (13C and 15N) abundances in seedlings. Sporocarp surveys revealed fewer ectomycorrhizal fungal taxa (59 species from 1030 sporocarps) than molecular barcoding of ectomycorrhizal roots (75 operational taxonomic units from 828 ectomycorrhizae). Our observations suggest that ectomycorrhizal fungal diversity is similar to that in other mixed tropical forests and provide the first report of the TuberHelvella lineage in a tropical forest. Despite some differences, all age categories of G. dewevrei had overlapping ectomycorrhizal fungal communities, with families belonging to Thelephoraceae, Russulaceae, Sebacinaceae, Boletaceae, and Clavulinaceae. Of the 49 operational taxonomic units shared by the three age categories (65.3% of the ectomycorrhizal fungal community), 19 were the most abundant on root tips of all categories (38.7% of the shared taxa), supporting the likelihood of ectomycorrhizal networks. However, we obtained no evidence for nutrient transfer from trees to seedlings. We discuss the composition of the ectomycorrhizal fungal community among the G. dewevrei age categories and the possible role of common ectomycorrhizal networks in this rain forest.  相似文献   

9.
We examined changes in the types of fungi consumed by six species of small mammals across a habitat gradient in north‐eastern New South Wales that graded from swamp, to woodland, to open forest and then to rainforest. All mammals ate some fungus, but only bush rats (Rattus fuscipes) regularly did so, and their diet included most of the fungal taxa that we identified across all mammals in the study. The composition of bush rat diet changed significantly with each change in habitat from woodland, to forest, to rainforest. In particular, there was a significant difference in the diets of rats caught either side of the open forest‐rainforest ecotone, which marks the change in fungal community from one dominated by ectomycorrhizal fungi, to a community dominated by arbuscular mycorrhizal fungi. Movement patterns of bush rats living around the open forest‐rainforest ecotone suggest that they transport fungal spores between these contrasting fungal communities. Therefore, bush rats have the potential, by way of spore dispersal, to influence the structure of vegetation communities.  相似文献   

10.
Tuber spp. are ectomycorrhizal ascomycetes that produce subterranean ascomata known as truffles. Truffles can be regarded as complex microhabitats hosting bacteria and yeasts. In this paper we show that guest filamentous fungi are also associated to truffle ascomata, regardless of the Tuber spp., and report the morpho-molecular characterization of seven truffle-hosted mycelia isolated from healthy and intact Tuber ascomata. Some of these isolates were shown to be related to the fungal endophytes of plants. Interestingly, the truffle-hosted mycelia grew stuck to the hyphal wall of their partner when co-cultivated with the Tuber borchii mycelium, but not when co-cultivated with the test species Agaricus macrosporus. The present data suggest that guest filamentous fungi can be added to the list of truffle-interacting microorganisms.  相似文献   

11.
A diverse range of fungi associate with ectomycorrhizal (EcM) root tips, however, their identity and the biotic and abiotic filters structuring these communities remain unknown. We employed a metabarcoding approach to characterize fungal communities associating with the EcM root tips of Quercus rubra along a natural soil nitrogen gradient. EcM communities and ectomycorrhizal associated fungi (EcAF) were tightly linked across the breadth of the soil gradient. Notably, EcAF communities were primarily shaped by the morphological attributes of EcM communities, particularly the relative abundance of EcM taxa forming rhizomorphic hyphae. Edaphic properties (soil C:N and net N mineralization) exerted minimal influence, suggesting a strong role of biotic interactions in EcAF community assembly. The presence of plants forming ericoid mycorrhizal associations also shapes the prevalence of ericoid mycorrhizal fungi associating with EcM root tips. Overall, EcAF communities were dominated by helotialean fungi, ericoid mycorrhizal fungi, dark septate endophytes, and the white-rot fungi Mycena.  相似文献   

12.
Crops’ wild relatives host a wide range of microorganisms, including some beneficial species that are not found or are under-represented in the domesticated crops. Our goal was to study the underexplored composition of root-associated fungal communities in endangered wild grapevines. We found high taxonomic diversity representing multiple trophic guilds that include beneficial symbiotrophs and endophytes. Soil factors explain a relatively small part of their overall variability. In contrast, the majority of the associated fungal taxa shows a close fit to the neutral model for prediction of their distributions. Only beneficial arbuscular mycorrhizal fungi and the pathogenic Ilyonectria depart from the neutral distribution model and form intimate interactions with the plant host. In addition, pathogenic fungi rarely occurred in samples that included ectomycorrhizal fungi, which suggested potentially applicable inter-microorganism interactions. High abundance and diversity of fungal endophytes on the wild grapevine roots highlight the need for their careful consideration in future studies.  相似文献   

13.
Rising climate temperatures in the future are predicted to accelerate the microbial decomposition of soil organic matter. A field microcosm experiment was carried out to examine the impact of soil warming in freshwater wetlands on different organic carbon (C) pools and associated microbial functional responses. GeoChip 4.0, a functional gene microarray, was used to determine microbial gene diversity and functional potential for C degradation. Experimental warming significantly increased soil pore water dissolved organic C and phosphorus (P) concentrations, leading to a higher potential for C emission and P export. Such losses of total organic C stored in soil could be traced back to the decomposition of recalcitrant organic C. Warming preferentially stimulated genes for degrading recalcitrant C over labile C. This was especially true for genes encoding cellobiase and mnp for cellulose and lignin degradation, respectively. We confirmed this with warming-enhanced polyphenol oxidase and peroxidase activities for recalcitrant C acquisition and greater increases in recalcitrant C use efficiency than in labile C use efficiency (average percentage increases of 48% versus 28%, respectively). The relative abundance of lignin-degrading genes increased by 15% under warming; meanwhile, soil fungi, as the primary decomposers of lignin, were greater in abundance by 27%. This work suggests that future warming may enhance the potential for accelerated fungal decomposition of lignin-like compounds, leading to greater microbially mediated C losses than previously estimated in freshwater wetlands.  相似文献   

14.
Ectomycorrhizal fungi constitute an important component of forest ecosystems that enhances plant nutrition and resistance against stresses. Diversity of ectomycorrhizal (EcM) fungi is, however, affected by host plant diversity and soil heterogeneity. This study provides information about the influence of host plants and soil resources on the diversity of ectomycorrhizal fungal fruiting bodies from rainforests of the Democratic Republic of the Congo. Based on the presence of fungal fruiting bodies, significant differences in the number of ectomycorrhizal fungi species existed between forest stand types (p < 0.001). The most ectomycorrhizal species‐rich forest was the Gilbertiodendron dewevrei‐dominated forest (61 species). Of all 93 species of ectomycorrhizal fungi, 19 demonstrated a significant indicator value for particular forest stand types. Of all analysed edaphic factors, the percentage of silt particles was the most important parameter influencing EcM fungi host plant tree distribution. Both host trees and edaphic factors strongly affected the distribution and diversity of EcM fungi. EcM fungi may have developed differently their ability to successfully colonise root systems in relation to the availability of nutrients.  相似文献   

15.
呼伦贝尔沙地樟子松外生菌根真菌多样性   总被引:1,自引:0,他引:1  
沙地樟子松是我国北方重要的防风固沙造林树种,也是一种典型的外生菌根依赖型树种。为揭示呼伦贝尔沙地樟子松外生菌根真菌多样性,以中龄、近熟、成熟3个龄组沙地樟子松人工林和沙地樟子松天然林为研究对象,采用野外调查和分子生物学相结合的研究方法,鉴定分析沙地樟子松外生菌根真菌种群特征。研究结果表明:(1)呼伦贝尔沙地樟子松外生菌根真菌共有10个OTU属于子囊菌,48个OTU属于担子菌,隶属于21科25属。(2)天然林优势菌为糙缘腺革菌属Amphinema、丝膜菌属Cortinarius和乳牛肝菌属Suillus,人工林优势菌为乳牛肝菌属,其余菌种相对丰度随着林龄变化波动较大。(3)天然林与人工林外生菌根真菌种群Shannon、Simpson和Pielou指数存在显著差异(P<0.05),人工林间alpha多样性指数差异不显著(P>0.05)。(4)呼伦贝尔沙地樟子松天然林和人工林外生菌根真菌种群组成存在较大差异,其中近熟林的外生菌根真菌群落组成与天然林的最为接近。  相似文献   

16.
Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15‐year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021–2080 period by means of regional climate change models. Simple models based on early spring temperature and summer–autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15‐year period. However, their predictions for the 2021–2080 period diverged. Rainfall‐based models predicted a maintenance of fungal yield, whereas water balance‐based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer–autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century.  相似文献   

17.
Tropical rainforests have been thought to have low prevalence and diversity of ectomycorrhizal symbioses. However, to date, tropical regions have been poorly sampled for ectomycorrhizal fungi. Here, we investigated ectomycorrhizal fungal community diversity and the role of host plants in shaping this diversity in three main ultramafic rainforests in New Caledonia, an archipelago renowned for its exceptional plant diversity and recognized as a biodiversity hotspot. Sampling of ectomycorrhizal root tips and fruit bodies in Nothofagus aequilateralis-dominated, Arillastrum gummiferum-dominated and mixed rainforests showed high fungal diversity with, in total, 28 lineages and 311 operational taxonomic units (OTUs), of which 95% might be endemic. We also found that host preference and host density influenced ectomycorrhizal community composition and contributed to the high fungal diversity of New Caledonian rainforests. Finally, the /cortinarius lineage dominated the below- and above-ground communities, which suggests that this lineage plays a central role in ultramafic ecosystems functioning.  相似文献   

18.
晚生型外生菌根真菌通常出现在森林演替的后期,是成熟林中的优势外生菌根真菌类群。对四川都江堰一片亚热带针阔混交林中的菌根真菌地上群落进行调查,并应用二元逻辑回归分析对晚生型外生菌根真菌的主要类群,即鹅膏菌科、牛肝菌科和红菇科,与周围(5m×5m样方)树种组成的关系进行研究。还应用次级变量分析方法对主要外生菌根真菌类群的空间格局进行了分析。结果表明,非外生菌根树种及某些外生菌根树种对特定类群菌根真菌子实体的出现有抑制作用,而不同类群外生菌根真菌在克隆生长上的差异并不是子实体空间分布的决定因素。我们认为,当研究自然林中外生菌根子实体的空间分布时,除了宿主植物的分布,也应考虑非宿主植物的分布以及菌根真菌相互作用的影响。  相似文献   

19.
Ericaceous dwarf shrubs including Calluna vulgaris and Vaccinium spp. occur both in open heathland communities and in forest ecosystems as understory vegetation. Ericaceous shrubs were once thought to form ericoid mycorrhizal associations with a relatively narrow range of ascomycetous fungi closely related to, and including, Rhizoscyphus ericae. However, perceptions have recently changed since the realization that a broader range of ascomycete fungi, and in some cases basidiomycete fungi, can also form associations with the roots of ericaceous plants. We used a combination of molecular approaches, including denaturing gradient gel electrophoresis, terminal restriction fragment length polymorphism, cloning and sequencing, to investigate the diversity of fungi associated with C. vulgaris roots collected across a heathland/native Scots pine forest vegetation gradient. We also determined differences in fungal community composition between roots of co-occurring C. vulgaris and Vaccinium myrtillus in the forest understory. Collectively, the data show that a large diversity of potentially ericoid mycorrhizal fungal taxa associate with roots of C. vulgaris and V. myrtillus, and that ascomycetes were about 2.5 times more frequent than basidiomycetes. The assemblages of fungi associated with C. vulgaris and V. myrtillus were different. In addition, the community of fungi associated with C. vulgaris hair roots was different for samples collected from the forest, open heathland and a transition zone between the two. This separation was partly, but not entirely, due to the occurrence of typical ectomycorrhizal basidiomycetes associated with the hair roots of C. vulgaris in the forest understory. These data demonstrate that forest understory ericaceous shrubs associate with a diverse range of ascomycete and basidiomycete taxa, including typical ectomycorrhizal basidiomycetes.  相似文献   

20.
晚生型外生菌根真菌通常出现在森林演替的后期,是成熟林中的优势外生菌根真菌类群.对四川都江堰一片亚热带针阔混交林中的菌根真菌地上群落进行调查,并应用二元逻辑回归分析对晚生型外生菌根真菌的主要类群,即鹅膏菌科、牛肝菌科和红菇科,与周围(5 m×5 m样方)树种组成的关系进行研究.还应用次级变量分析方法对主要外生菌根真菌类群的空间格局进行了分析.结果表明,非外生菌根树种及某些外生菌根树种对特定类群菌根真菌子实体的出现有抑制作用,而不同类群外生菌根真菌在克隆生长上的差异并不是子实体空间分布的决定因素.我们认为,当研究自然林中外生菌根子实体的空间分布时,除了宿主植物的分布,也应考虑非宿主植物的分布以及菌根真菌相互作用的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号