首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome complements of 20 hybrid clones obtained by fusing Mus musculus embryonic stem cells (ESCs) and Mus caroli splenocytes were studied. The use of two-color fluorescence hybridization in situ with chromosome- and species-specific probes has allowed us to reliably reveal the parental origin of homologs of any chromosome in hybrid cells. Depending on the ratio of parental chromosome homologs, all 20 hybrid clones were separated in several groups ranging from the clones that contain cells that are nearly tetraploid with two diploid sets of M. musculus and single M. caroli chromosomes to clones with a marked predominance of the M. caroli chromosome. In eight hybrid cell clones, we observed the pronounced prevalence of chromosomes of the pluripotent partner over chromosomes of the somatic partner in a ratio of 5: 1 to 3: 1. In other hybrid cell clones, the ratio of M. musculus to M. caroli chromosomes was either equal (1: 1; 2: 2) or with the prevalence of the pluripotent (2: 1) or differentiated (1: 2) partner. In three hybrid cell clones, for the first time, we observed the predominant segregation of ESC-derived pluripotent chromosomes. This might indicate the compensation for the epigenetic differences between parental chromosomes of the ESC and splenocyte origin.  相似文献   

2.
3.
Two dozen hybrid clones were produced by fusion of diploid embryonic stem (ES) cells positive for green fluorescent protein (GFP) with tetraploid fibroblasts derived from DD/c and C57BL-I(I)1RK mice. Cytogenetic analysis demonstrated that most cells from these hybrid clones contained near-hexaploid chromosome sets. Additionally, the presence of chromosomes derived from both parental cells was confirmed by polymerase chain reaction (PCR) analysis of polymorphic microsatellites. All hybrid cells were positive for GFP and demonstrated growth characteristics and fibroblast-like morphology. In addition, most hybrid cells were positive for collagen type I, fibronectin, and lamin A/C but were negative for Oct4 and Nanog proteins. Methylation status of the Oct4 and Nanog gene promoters was evaluated by bisulfite genomic sequencing analysis. The methylation sites (CpG-sites) of the Oct4 and Nanog gene promoters were highly methylated in hybrid cells, whereas the CpG-sites were unmethylated in the parental ES cells. Thus, the fibroblast genome dominated the ES genome in the diploid ES cell/tetraploid fibroblast hybrid cells. Immunofluorescent analysis of the pluripotent and fibroblast markers demonstrated that establishment of the fibroblast phenotype occurred shortly after fusion and that the fibroblast phenotype was further maintained in the hybrid cells. Fusion of karyoplasts and cytoplast derived from tetraploid fibroblasts with whole ES cells demonstrated that karyoplasts were able to establish the fibroblast phenotype of the reconstructed cells but not fibroblast cytoplasts. Thus, these data suggest that the dominance of parental genomes in hybrid cells of ES cell/somatic cell type depends on the ploidy of the somatic partner.  相似文献   

4.
5.
Unequal segregation of parental chromosomes in embryonic stem cell hybrids   总被引:4,自引:0,他引:4  
Chromosome segregation was studied in 14 intra- and 20 inter-specific hybrid clones generated by fusion of Mus musculus embryonic stem (ES) cells with fibroblasts or splenocytes of DD/c mice or Mus caroli. As a control for in vitro evolution of tetraploid karyotype we used a set of hybrid clones obtained by fusion of ES cells (D3) with ES cells (TgTP6.3). Identification of the parental chromosomes in the clones was performed by microsatellite analysis and in situ hybridization with labeled species-specific probes. Both analyses have revealed three types of clones: (i) stable tetraploid, observed only for ES x ES cell hybrids; (ii) bilateral loss of chromosomes of both ES and somatic partners; (iii) unilateral segregation of chromosomes of the somatic partner. Observed unilateral segregation was extensive in ES-splenocyte cell hybrids, but lower in ES-fibroblast hybrid clones. Developmental state of the somatic partner is presumably responsible for directional chromosome loss. Nonrandom segregation implies that initial differences in the parental homologous chromosomes were not immediately equalized implying at least transient persistence of the differentiated epigenotype.  相似文献   

6.
Phenotype and hybrids between lymphoid cells and rat hepatoma cells   总被引:3,自引:0,他引:3  
Subtetraploid rat hepatoma cells were fused with diploid or tetraploid lymphoid cells of various origins. All hybrid cells, analysed 28 h to 26 days after fusion, expressed basal and steroid-induced activities of the liver-specific enzyme tyrosine aminotransferase within the range given by the parental hepatoma cell line. Only the rat enzyme was produced in the hybrids. This was true, irrespective of the gene dosage of the lymphoid partner cell and of the presence of human X chromosomes. In contrast, the lymphoid phenotype, as monitored by production of kappa light chains specified by the diploid and tetraploid lymphoid partner cells, was totally suppressed within 72 h after fusion. No difference in phenotypic expression was observed, whether the hybrid cells were grown as monolayer or as suspension cultures.  相似文献   

7.
The effect of B chromosomes on meiosis is described in the diploid and tetraploid interspecific hybrid Lolium multiflorum x Lolium perenne. Although the parental species are very closely related, the presence of B chromosomes in the diploid hybrid reduced both chiasma frequency and the number of bivalents at meiosis by a small but significant amount. However at the tetraploid level the presence of B chromosomes did not seem to alter the pairing pattern and chiasma frequency in any way. The use of B chromosomes to stabilize meiosis in amphiploids of this type between closely related outbreeding species is therefore ruled out.  相似文献   

8.
Mammalian haploid cell lines provide useful tools for both genetic studies and transgenic animal production. To derive porcine haploid cells, three sets of experiments were conducted. First, genomes of blastomeres from 8-cell to 16-cell porcine parthenogenetically activated (PA) embryos were examined by chromosome spread analysis. An intact haploid genome was maintained by 48.15% of blastomeres. Based on this result, two major approaches for amplifying the haploid cell population were tested. First, embryonic stem-like (ES-like) cells were cultured from PA blastocyst stage embryos, and second, fetal fibroblasts from implanted day 30 PA fetuses were cultured. A total of six ES-like cell lines were derived from PA blastocysts. No chromosome spread with exactly 19 chromosomes (the normal haploid complement) was found. Four cell lines showed a tendency to develop to polyploidy (more than 38 chromosomes). The karyotypes of the fetal fibroblasts showed different abnormalities. Cells with 19–38 chromosomes were the predominant karyotype (59.48–60.91%). The diploid cells were the second most observed karyotype (16.17%–22.73%). Although a low percentage (3.45–8.33%) of cells with 19 chromosomes were detected in 18.52% of the fetus-derived cell lines, these cells were not authentic haploid cells since they exhibited random losses or gains of some chromosomes. The haploid fibroblasts were not efficiently enriched via flow cytometry sorting. On the contrary, the diploid cells were efficiently enriched. The enriched parthenogenetic diploid cells showed normal karyotypes and expressed paternally imprinted genes at extremely low levels. We concluded that only a limited number of authentic haploid cells could be obtained from porcine cleavage-stage parthenogenetic embryos. Unlike mouse, the karyotype of porcine PA embryo-derived haploid cells is not stable, long-term culture of parthenogenetic embryos, either in vivo or in vitro, resulted in abnormal karyotypes. The porcine PA embryo-derived diploid fibroblasts enriched from sorting might be candidate cells for paternally imprinted gene research.  相似文献   

9.
Ten primary clones of hybrid cells were produced by the fusion of diploid embryonic stem (ES) cells, viz., line E14Tg2aSc4TP6.3 marked by green fluorescent protein (GFP), with diploid embryonic or adult fibroblasts derived from DD/c mice. All the hybrid clones had many characteristics similar to those of ES cells and were positive for GFP. Five hybrid clones having ploidy close to tetraploidy (over 80% of cells had 76–80 chromosomes) were chosen for the generation of chimeras via injection into C57BL blastocysts. These hybrid clones also contained microsatellites marking all ES cell and fibroblast chromosomes judging from microsatellite analysis. Twenty chimeric embryos at 11–13 days post-conception were obtained after injection of hybrid cells derived from two of three clones. Many embryos showed a high content of GFP-positive descendents of the tested hybrid cells. Twenty one adult chimeras were generated by the injection of hybrid cells derived from three clones. The contribution of GFP-labeled hybrid cells was significant and comparable with that of diploid E14Tg2aSc4TP6.3 cells. Cytogenetic and microsatellite analyses of cell cultures derived from chimeric embryos or adults indicated that the initial karyotype of the tested hybrid cells remained stable during the development of the chimeras, i.e., the hybrid cells were mainly responsible for the generation of the chimeras. Thus, ES cell/fibroblast hybrid cells with near-tetraploid karyotype are able to generate chimeras at a high rate, and many adult chimeras contain a high percentage of descendants of the hybrid cells. A. A. Kruglova and E. A. Kizilova contributed equally to this work. This study was financially supported by grants from the Russian Academy of Sciences, Siberian Branch 5.2 and 14.0.  相似文献   

10.
Hybrids were generated between mouse hepatoma cells which exhibit a transformed phenotype, and rat normal diploid fibroblasts. Most isolated hybrid clones contain a single set of chromosomes from each parent. Such clones grow to low saturation densities and are unable to grow or to form colonies in soft agar. The transformed phenotype of the parental hepatoma cells is thus suppressed in these hybrids. Suppression is very stable; however, subclones which have regained a transformed phenotype could be selected; these subclones show a significant reduction of their chromosome number. Amongst the hybrid clones isolated after fusion, a few are characterized by an excess of mouse chromosomes and a reduced number of rat chromosomes. Such clones exhibit a transformed phenotype. Our results show that, provided the hybrids contain an almost complete single set of chromosomes of each parent, spontaneous transformation behaves as a recessive trait in hybrids formed with normal diploid cells.  相似文献   

11.
W. Lange  G. Jochemsen 《Genetica》1976,46(2):217-233
Chromosome measurements were carried out in Hordeum vulgare, H. bulbosum, and their diploid, triploid, and tetraploid hybrids. The chromosomes were classified by using relative values, and thus karyotypes were established. For comparison of these karyotypes both relative and absolute values were used. It was concluded that differential amphiplasty occurred, whereas neutral amphiplasty could not be demonstrated. In the hybrids the relative length of the parts of the chromosomes (long arm, short arm, satellite) was not changed in comparison with these lengths in the pure species. The karyotypes of both species had considerable similarities. From comparing the mean absolute genome lengths, it was, however, concluded that in the pure species, as well as in all hybrid types, the chromosomes of H. vulgare were longer than those of H. bulbosum. In the diploid and tetraploid hybrids the mean genome lengths were shorter than those in the pure species and the triploid hybrids. The differential amphiplasty was such that the secondary constriction of chromosome 6 of H. bulbosum, did not show up in the hybrids. This could be related to the suppression of nucleolar formation in the genome of H. bulbosum, because the maximum number of nucleoli in root tip cells equalled the number of satellite chromosomes. Finally it was found that the pattern of nucleolar fusion in diploid and triploid hybrids deviated from the expectation. The results were discussed in relation to chromosomal disturbances that occurred in the hybrid tissues and that resulted in elimination of chromosomes and other effects.  相似文献   

12.
13.
Skin fibroblasts (LNSV) derived from a hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient patient with the Lesch-Nyhan syndrome, who has glucose-6-phosphate dehydrogenase (G6PD) type A, were transformed with SV40 and hybridized with WI38 human diploid fibroblasts derived from a female embryo which have normal HGPRT and G6PD type B activities. The hybrid clones selected in hypoxanthine, aminopterin and thymidine (HAT) medium, were essentially tetraploid and contained three X and one Y chromosomes. These hybrids contained HGPRT, types A and B and the AB heteropolymeric form of G6PD enzymes which were indicative that in these cells X linked genes of both parental cells were fully active. Hybrids back-selected in medium containing 8-azaguanine (8-AG) contained only two X chromosomes. They had no HGPRT activity and they contained only G6PD type A enzyme. It is concluded that the hybrid cells which grew in the presence of 8-AG retained the X chromosome of the LNSV parental cell and apparently the inactive X of the WI 38 cell.  相似文献   

14.
S. Nayak  S. Sen 《Biologia Plantarum》1992,34(1-2):135-141
Cytological and cytophotometric analysis of root tips of regenerated plants, derived from rhizome expiant ofKniphofia nelsonii andKniphofia uvaria, revealed marked difference in behaviour of chromosomes and level of 4C nuclear DNA content. Karyotypic stability could be retained in all 52 regenerants of K. nelsonii whereas inK. uvaria out of 75 regenerants analysed, 12 plants were exclusively diploid and the rest 63 plants were predominantly diploid comprising variable amount of aneuploid and tetraploid cells. Cytological data was further confirmed by nuclear DNA content estimation. Alteration in the structure of chromosomes could also be noted in 57 regenerants ofK. uvaria giving rise to two new karyotypes. The use of polysomatic tissue for securing variantsin vitro inK. uvaria has been suggested.  相似文献   

15.
In non-hypotonically treated mitoses from tissue cultures of Microtus agrestis, both the constitutive heterochromatin of the sex chromosomes and the spindle apparatus were stained by the Giemsa C-banding technique. By means of counting the heterochromatic chromosomes, we determined the cell ploidy and studied the number of centrioles and the spindle arrangement of diploid, triploid, tetraploid and octoploid mitoses. Diploid and triploid prophases contained 2 centrioles in most cases, tetraploid prophases 4, binucleate cells with 2 diploid nuclei likewise 4 and binucleate cells with 2 tetraploid nuclei 8 centrioles. Nearly 99% of diploid and triploid metaphases were bipolar. Of the tetraploid metaphases only 45% were bipolar, 29.5% tripolar, 7.5% quadripolar and 18% formed as a parallel mitosis. In all examined binucleate cells that had had an asynchronous DNA synthesis, a multipolar mitosis was found.  相似文献   

16.
Somatic cell hybrids were isolated from fusions of diploid embryonic rat fibroblasts with transformed Rat-1 cells which contained 4 to 5 copies of the transforming human Ha-ras 1 gene. In contrast to their transformed parental cells four hybrid clones showed normal morphology, long latency periods of tumorigenicity in newborn rats, anchorage requirement of proliferation, and an eightfold-reduced amount of secreted transforming growth factor activity. Thus these hybrids are called suppressed with regard to expression of the Ha-ras-induced transformed phenotype. Tumorigenic derivatives of the suppressed hybrids that had segregated chromosomes were isolated. Since two of the tumorigenic hybrid clones showed the similar low level of secreted transforming growth factors as the suppressed hybrids, decreased production of transforming growth factor activity is unlikely to be a sufficient criterion for suppression of malignancy. Whereas one of the suppressed hybrids expressed the transforming gene product p21 at a level similar to that of the transformed parental cells, other suppressed hybrids expressed less p21. This suggests that the suppressed phenotype can be regulated at the posttranslational level of p21 but that additional controls of expression of p21 are likely to exist. DNA of the suppressed hybrids transformed Rat-1 cells to proliferation in the presence of semisolid agar. Thus the activated human Ha-ras gene in the suppressed hybrids retained its biological activity even though it did not transform these cells to tumorigenicity.  相似文献   

17.
Ann Kenton  Keith Jones 《Chromosoma》1985,92(3):176-184
Two closely related species of Gibasis, G. karwinskyana and G. consobrina, and their F1 hybrids were studied cytologically at the diploid and tetraploid level. Despite similarity in their basic karyotype, pairing was extremely limited in the diploid hybrid and almost exclusively autosyndetic in the tetraploid, except for multivalent formation due to interchange heterozygosity. The analysis was considerably facilitated by the use of C-banding techniques at meiosis, by which the chromosomes of each species could be readily identified. In the parents, quadrivalents were formed between homologous but non-identical chromosomes, which also formed autosyndetic bivalents in the hybrids. Meiotic pairing in the hybrids was unaffected by polytypy for C-bands among different populations of the parental species.  相似文献   

18.
Summary Sodium butyrate causes proliferation arrest with a G2 (4C) DNA content and induces formation of tetraploid cells upon removal of the inhibitor, in rat 3Y1 diploid fibroblasts. We isolated tetraploid clones from the butyrate-treated 3Y1 cells with high efficiency; among 21 clones randomly isolated, 5 were pure diploid, 7 were mainly tetraploid with a small contaminating diploid population, and 7 were pure tetraploid. Among the pure tetraploid clones, two showed doubled chromosome numbers with slightly broader distributions than that seen in parental 3Y1 cells. Butyrate further induced polyploid formation in the tetraploid cells thus produced, but octaploid cells that resulted could not be maintained for prolongeed, cultivation. We found no difference between the tetraploid and the (parental and parallel isolated) diploid clones in terms of colony-forming ability, proliferation rate, and sensitivity to density-dependent inhibition of proliferation. These results suggest that doubling of chromosome number by itself does not cause a change in proliferation property. The tetraploid clones had lower average saturation densities possibly due to enlargement of cell size represented by higher cellular protein content.  相似文献   

19.
20.
In the diploid vegetative plant cell, the nuclear DNA is present in two copies, whereas the chloroplast and mitochondria genomes are present in a higher and variable copy number. We have studied the replication of the nuclear, chloroplast and mitochondrial DNA in culturedNicotiana tabacum cells using density and radioactive markers. Essentially all the 10 000 chloroplast genomes in a given cell replicate in one cell cycle as do all the mitochondrial DNA molecules. No measurable level of unreplicated organellar DNA molecules can be detected in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号