首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper binding and X-ray aborption spectroscopy studies are reported on untagged human CCS (hCCS; CCS = copper chaperone for superoxide dismutase) isolated using an intein self-cleaving vector and on single and double Cys to Ala mutants of the hCCS MTCQSC and CSC motifs of domains 1 (D1) and 3 (D3), respectively. The results on the wild-type protein confirmed earlier findings on the CCS-MBP (maltose binding protein) constructs, namely, that Cu(I) coordinates to the CXC motif, forming a cluster at the interface of two D3 polypeptides. In contrast to the single Cys to Ser mutations of the CCS-MBP protein (Stasser, J. P., Eisses, J. F., Barry, A. N., Kaplan, J. H., and Blackburn, N. J. (2005) Biochemistry 44, 3143-3152), single Cys to Ala mutations in D3 were sufficient to eliminate cluster formation and significantly reduce CCS activity. Analysis of the intensity of the Cu-Cu cluster interaction in C244A, C246A, and C244/246A variants suggested that the nuclearity of the cluster was greater than 2 and was most consistent with a Cu4S6 adamantane-type species. The relationship among cluster formation, oligomerization, and metal loading was evaluated. The results support a model in which Cu(I) binding converts the apo dimer with a D2-D2 interface to a new dimer connected by cluster formation at two D3 CSC motifs. The predominance of dimer over tetramer in the cluster-containing species strongly suggests that the D2 dimer interface remains open and available for sequestering an SOD1 monomer. This work implicates the copper cluster in the reactive form and adds detail to the cluster nuclearity and how copper loading affects the oligomerization states and reactivity of CCS for its partner SOD1.  相似文献   

2.
The copper chaperone for superoxide dismutase (CCS) gene encodes a protein that is believed to deliver copper ions specifically to copper-zinc superoxide dismutase (CuZnSOD). CCS proteins from different organisms share high sequence homology and consist of three distinct domains; a CuZnSOD-like central domain 2 flanked by domains 1 and 3, which contain putative metal-binding motifs. We report deduced protein sequences from tomato and Arabidopsis, the first functional homologues of CCS identified in plants. We have purified recombinant human (hCCS) and tomato (tCCS) copper chaperone proteins, as well as a truncated version of tCCS containing only domains 2 and 3. Their cobalt(2+) binding properties in the presence and absence of mercury(2+) were characterized by UV-vis and circular dichroism spectroscopies and it was shown that hCCS has the ability to bind two spectroscopically distinct cobalt ions whereas tCCS binds only one. The cobalt binding site that is common to both hCCS and tCCS displayed spectroscopic characteristics of cobalt(2+) bound to four or three cysteine ligands. There are only four cysteine residues in tCCS, two in domain 1 and two in domain 3; all four are conserved in other CCS sequences including hCCS. Thus, an interaction between domain 1 and domain 3 is concluded, and it may be important in the copper chaperone mechanism of these proteins.  相似文献   

3.
Cysteine-to-serine mutants of a maltose binding protein fusion with the human copper chaperone for superoxide dismutase (hCCS) were studied with respect to (i) their ability to transfer Cu to E,Zn superoxide dismutase (SOD) and (ii) their Zn and Cu binding and X-ray absorption spectroscopic (XAS) properties. Previous work has established that Cu(I) binds to four cysteine residues, two of which, C22 and C25, reside within an Atox1-like N-terminal domain (DI) and two of which, C244 and C246, reside in a short unstructured polypeptide chain at the C-terminus (DIII). The wild-type (WT) protein shows an extended X-ray absorption fine structure (EXAFS) spectrum characteristic of cluster formation, but it is not known how such a cluster is formed. Cys to Ser mutagenesis was used to investigate the Cu binding in more detail. Single Cys to Ser mutations, as represented by C22S and C244S, did little to affect the metal binding ratios of hCCS. Both mutants still showed approximately 2 Cu(I) ions and 1 Zn ion per protein. The double mutants C22/24S and C244/246S, on the other hand, showed Cu binding stoichiometries close to 1:1. The Zn-EXAFS of WT CCS showed a 3-4 histidine ligand environment that is consistent with Zn binding in the SOD-like domain II of CCS. The Zn environment remained unchanged between wild type and all of the mutant CCS proteins. Single Cys to Ser mutations displayed lower activity than WT protein, although close to full activity could be rescued by increasing the CCS:SOD ratios to 8:1 in the assay mixture. The structure of the Cu centers of the single mutants as revealed by EXAFS was also similar to that of WT protein, with clear indications of a Cu cluster. On the other hand, the double mutants showed a greater degree of perturbation. The DI C22/25S mutant was 70% active and formed a cluster with a more intense Cu-Cu interaction. The DIII C244/246S mutant retained only a fraction (16%) of activity and did not form a cluster. The results suggest the formation of a DIII-DIII cluster within a dimeric or tetrameric protein and further suggest that this cluster may be an important element of the copper transfer machinery.  相似文献   

4.
The mechanism for copper loading of the antioxidant enzyme copper, zinc superoxide dismutase (SOD1) by its partner metallochaperone protein is not well understood. Here we show the human copper chaperone for Cu,Zn-SOD1 (hCCS) activates either human or yeast enzymes in vitro by direct protein to protein transfer of the copper cofactor. Interestingly, when denatured with organic solvents, the apo-form of human SOD1 cannot be reactivated by added copper ion alone, suggesting an additional function of hCCS such as facilitation of an active folded state of the enzyme. While hCCS can bind several copper ions, metal binding studies in the presence of excess copper scavengers that mimic the intracellular chelation capacity indicate a limiting stoichiometry of one copper and one zinc per hCCS monomer. This protein is active and unlike the yeast protein, is a homodimer regardless of copper occupancy. Matrix-assisted laser desorption ionization-mass spectrometry and metal binding studies suggest that Cu(I) is bound by residues from the first and third domains and no bound copper is detected for the second domain of hCCS in either the full-length or truncated forms of the protein. Copper-induced conformational changes in the essential C-terminal peptide of hCCS are consistent with a "pivot, insert, and release" mechanism that is similar to one proposed for the well characterized metal handling enzyme, mercuric ion reductase.  相似文献   

5.
The incorporation of copper into biological macromolecules such as SOD1 (Cu,Zn superoxide dismutase) is essential for the viability of most organisms. However, copper is toxic and therefore the intracellular free copper concentration is kept to an absolute minimum. Several proteins, termed metallochaperones, are charged with the responsibility of delivering copper from membrane transporters to its intracellular destination. The CCS (copper chaperone for SOD1) is the major pathway for SOD1 copper loading. We have determined the first solution structure of hCCS (human CCS) by SAXS (small-angle X-ray scattering) in conjunction with SEC (size-exclusion chromatography). The findings of the present study highlight the importance of this combined on-line chromatographic technology with SAXS, which has allowed us to unambiguously separate the hCCS dimer from other oligomeric and non-physiological aggregated states that would otherwise adversely effect measurements performed on bulk solutions. The present study exposes the dynamic molecular conformation of this multi-domain chaperone in solution. The metal-binding domains known to be responsible for the conveyance of copper to SOD1 can be found in positions that would expedite this movement. Domains I and III of a single hCCS monomer are able to interact and can also move into positions that would facilitate initial copper binding and ultimately transfer to SOD1. Conversely, the interpretation of our solution studies is not compatible with an interaction between these domains and their counterparts in an hCCS dimer. Overall, the results of the present study reveal the plasticity of this multi-domain chaperone in solution and are consistent with an indispensable flexibility necessary for executing its dual functions of metal binding and transfer.  相似文献   

6.
Barry AN  Blackburn NJ 《Biochemistry》2008,47(17):4916-4928
We report the semisynthesis of a selenocysteine (Sec) derivative of the human copper chaperone for superoxide dismutase, substituted with Sec at the C-terminal C246 residue. Measurements of hCCS-induced SOD1 activation were used to show that the C-terminal CXC sequence is both necessary and sufficient for EZn-SOD maturation. Therefore, an active CAU variant carrying Sec as the terminal amino acid was prepared by expressed protein ligation of a single selenocysteine amino acid to a 243-CA truncation. This reaction proceeded in high yield and generated the desired 243-CAX (X = C or U) protein with the expected mass. Se-edge XAS of the apoprotein indicated that both Se-S and Se-Se interactions were present in a 0.3:0.7 ratio, indicating an equilibrium between species with either a selenosulfide or a diselenide cross-link. After reduction on immobilized TCEP, the ligated Cys and Sec apoproteins bound up to 2.5 Cu(I) ions per hCCS monomer with both Cu and Se as constituent atoms of the cluster which forms at the domain 3 interface of a hCCS dimer. Merging of XAS data at the Cu and Se K-absorption edges provided additional details of the cluster composition, specifically the fact that both Se atoms occupied bridging positions between two Cu(I) atoms. Further, the requirement for identical Cu-Se bond lengths and Debye-Waller factors at each absorption edge allowed us to rule out simple models for the cluster composition such as a bis-Cys(Sec)-bridged dinuclear cluster and was indicative of a more complex cluster with a nuclearity of >or=3.  相似文献   

7.
The structure of the copper sites in oxidized and reduced dopamine beta-hydroxylase has been studied by extended x-ray absorption fine structure spectroscopy using a restrained refinement approach to data analysis. An histidine-rich active site has been found to be present with an average histidine coordination of between two and three histidine ligands per copper. In the oxidized protein, the data support four-coordination, involving two to three imidazole groups at 1.99 A with additional ligands derived from water or exogenous O-donor groups at an average distance of 1.94 A. Studies on the reduced enzyme have focused on resolving the controversy in the literature (Scott, R. A., Sullivan, R. J., De Wolfe, W. E., Dolle, R. E., and Kruse, L. I. (1988) Biochemistry 27, 5411-5417; Blumberg, W. E., Desai, P. R., Powers, L., Freedman, J. H., and Villafranca, J. J. (1989) J. Biol. Chem. 264, 6029-6032) as to whether a S/Cl scatterer is a ligand to Cu(I). Five independent samples of reduced enzyme prepared under conditions designed to probe the Cu(I) ligand environment have been measured and analyzed. All five samples gave identical spectra and could be simulated by two to three imidazoles (1.93 A) and 0.5 S/Cl (2.25 A) per Cu(I). The spectra were insensitive to the presence of added bromide or to exclusion of chloride during preparation. The results establish that the heavy atom scatterer is derived from a sulfur donor. Some evidence was found for an additional O/N scatterer at 2.6 A in the reduced enzyme. A hypothesis for the structure of the copper sites has been proposed involving inequivalent CuA(His)3(H2O)...CuB-(His)2X(H2O) coordination in the oxidized enzyme, which upon reduction loses coordinated water and coordinates a sulfur probably from a methionine.  相似文献   

8.
9.
Bacterial CopZ proteins deliver copper to P1B-type Cu+-ATPases that are homologous to the human Wilson and Menkes disease proteins. The genome of the hyperthermophile Archaeoglobus fulgidus encodes a putative CopZ copper chaperone that contains an unusual cysteine-rich N-terminal domain of 130 amino acids in addition to a C-terminal copper binding domain with a conserved CXXC motif. The N-terminal domain (CopZ-NT) is homologous to proteins found only in extremophiles and is the only such protein that is fused to a copper chaperone. Surprisingly, optical, electron paramagnetic resonance, and x-ray absorption spectroscopic data indicate the presence of a [2Fe-2S] cluster in CopZ-NT. The intact CopZ protein binds two copper ions, one in each domain. The 1.8 A resolution crystal structure of CopZ-NT reveals that the [2Fe-2S] cluster is housed within a novel fold and that the protein also binds a zinc ion at a four-cysteine site. CopZ can deliver Cu+ to the A. fulgidus CopA N-terminal metal binding domain and is capable of reducing Cu2+ to Cu+. This unique fusion of a redox-active domain with a CXXC-containing copper chaperone domain is relevant to the evolution of copper homeostatic mechanisms and suggests new models for copper trafficking.  相似文献   

10.
Mutations of the tyrosinase gene are responsible for type I (tyrosinase-related) oculocutaneous albinism (OCA), an autosomal recessive genetic syndrome with a broad phenotypic spectrum. Mutant tyrosinase alleles can be associated with no melanin synthesis (I-A, tyrosinase-negative OCA), small to moderate amounts of melanin (I-B, yellow OCA) or unusual pigment patterns (I-TS, temperature-sensitive OCA). A total of 26 mutations of this gene have been described in type I OCA. Analysis of all known missense mutations (n = 17) shows that most cluster in three areas of the coding region. Two clusters involve the copper A or copper B binding sites and may disrupt the metal ion-protein interaction necessary for enzyme function and the third cluster is located in exon I. Computer modeling of the secondary structure of the copper binding regions based on homology with the known crystal structure of hemocyanin show that they both consist of two a helicies containing three histidine ligands that complex to a single copper atom. Mutations in the copper B binding region lie in the region between the two a helices that consists of a loop structure. These mutations may affect tyrosinase activity by either altering the position of the a helical domains and thus preventing proper copper binding to the histidine ligands, or affecting a catalytic or substrate binding site located between the two a helical domains.  相似文献   

11.
《Biophysical journal》2022,121(20):3862-3873
Herein, we present, to our knowledge, the first spectroscopic characterization of the Cu(I) active site of the plant ethylene receptor ETR1. The x-ray absorption (XAS) and extended x-ray absorption fine structure (EXAFS) spectroscopies presented here establish that ETR1 has a low-coordinate Cu(I) site. The EXAFS resolves a mixed first coordination sphere of N/O and S scatterers at distances consistent with potential histidine and cysteine residues. This finding agrees with the coordination of residues C65 and H69 to the Cu(I) site, which are critical for ethylene activity and well conserved. Furthermore, the Cu K-edge XAS and EXAFS of ETR1 exhibit spectroscopic changes upon addition of ethylene that are attributed to modifications in the Cu(I) coordination environment, suggestive of ethylene binding. Results from umbrella sampling simulations of the proposed ethylene binding helix of ETR1 at a mixed quantum mechanics/molecular mechanics level agree with the EXAFS fit distance changes upon ethylene binding, particularly in the increase of the distance between H69 and Cu(I), and yield binding energetics comparable with experimental dissociation constants. The observed changes in the copper coordination environment might be the triggering signal for the transmission of the ethylene response.  相似文献   

12.
The human copper chaperone for superoxide dismutase (hCCS) delivers the essential copper ion cofactor to copper,zinc superoxide dismutase (SOD1), a key enzyme in antioxidant defense. Mutations in SOD1 are linked to familial amyotrophic lateral sclerosis (FALS), a fatal neurodegenerative disorder. The molecular mechanisms by which SOD1 is recognized and activated by hCCS are not understood. To better understand this biochemical pathway, we have determined the X-ray structure of the largest domain of hCCS (hCCS Domain II) to 2. 75 A resolution. The overall structure is closely related to that of its target enzyme SOD1, consisting of an eight-stranded beta-barrel and a zinc-binding site formed by two extended loops. The first of these loops provides the ligands to a bound zinc ion, and is analogous to the zinc subloop in SOD1. The second structurally resembles the SOD1 electrostatic channel loop, but lacks many of the residues important for catalysis. Like SOD1 and yCCS, hCCS forms a dimer using a highly conserved interface. In contrast to SOD1, however, the hCCS structure does not contain a copper ion bound in the catalytic site. Notably, the structure reveals a single loop proximal to the dimer interface which is unique to the CCS chaperones.  相似文献   

13.
The N-terminal, extracellular regions of eukaryotic high affinity copper transport (Ctr) proteins vary in composition of the Cu(i) binding amino acids: methionine, histidine, and cysteine. To examine why certain amino acids are exploited over others in Ctrs from different organisms, the relative Cu(i) binding affinity and the dependence of binding on pH were examined for 3 peptides of the sequence MG(2)XG(2)MK, where X is either Met, His, or Cys. Cu(i) affinity was examined using an ascorbic acid oxidation assay, an electrospray ionization mass spectrometry technique, and spectrophotometric titration with a competitive Cu(i) chelator. The relative affinities of the peptides with Cu(i) reveal a trend whereby Cys > His > Met at pH 7.4 and Cys > Met > His at pH 4.5. Ligand geometry and metric parameters were determined with X-ray absorption spectroscopy. Susceptibility of the peptides to oxidation by hydrogen peroxide and copper-catalyzed oxidative conditions was evaluated by mass spectrometry. These results support hypotheses as to why certain Cu(i) binding amino acids are preferred over others in proteins expressed at different pH and exposed to oxidative environments. The results also have implications for interpreting site-directed mutagenesis studies aimed at identifying copper binding amino acids in copper trafficking proteins.  相似文献   

14.
The human copper chaperone HAH1 transports copper to the Menkes and Wilson proteins, which are copper-translocating P-type ATPases located in the trans-Golgi apparatus and believed to provide copper for important enzymes such as ceruloplasmin, tyrosinase, and peptidylglycine monooxygenase. Although a substantial amount of structural data exist for HAH1 and its yeast and bacterial homologues, details of the copper coordination remain unclear and suggest the presence of two protein-derived cysteine ligands and a third exogenous thiol ligand. Here we report the preparation and reconstitution of HAH1 with Cu(I) using a protocol that minimizes the use of thiol reagents believed to be the source of the third ligand. We show by x-ray absorption spectroscopy that this reconstitution protocol generates an occupied Cu(I) binding site with linear biscysteinate coordination geometry, as evidenced by (i) an intense edge absorption centered at 8982.5 eV, with energy and intensity identical to the rigorously linear two-coordinate model complex bis-2,3,5,6-tetramethylbenzene thiolate Cu(I) and (ii) an EXAFS spectrum that could be fit to two Cu-S interactions at 2.16 A, a distance typical of digonal Cu(I) coordination. Binding of exogenous ligands (GSH, dithiothreitol, and tris-(2-carboxyethyl)-phosphine) to the Cu(I) was investigated. When GSH or dithiothreitol was added to the chaperone during the reconstitution procedure, the resulting Cu(I)- HAH1 remained two-coordinate, whereas the addition of the phosphine during reconstitution elicited a three-coordinate species. When the exogenous ligands were titrated into the Cu(I)-HAH1, all formed three-coordinate adducts but with differing affinities. Thus, GSH and dithiothreitol showed weaker binding, with estimated KD values in the range 10-25 mm, whereas tris-(2-carboxyethyl)-phosphine showed stronger affinity, with a KD value of <5 mm. The implications of these findings for mechanisms of copper transport are discussed.  相似文献   

15.
In some type-3 copper proteins (molluskan hemocyanin, catechol oxidase and fungal tyrosinase) one of the histidine residues, liganding the Cu(A) atom of the dinuclear copper active site, is covalently linked to a cysteine residue by a thioether bridge. The purpose of this study was to disclose the function of this bridge. Mass spectral analysis of a peptide, isolated from Rapana thomasiana (gastropodan mollusk) hemocyanin, indicated a stabilization of the peptide structure in the region of the bridge. Molecular modeling of three thioether containing type-3 copper proteins using the dead-end elimination method showed that the concerned histidine would be very flexible if not linked to the cysteine. Also, the side chain orientation of the histidine is rather exceptional, as evidenced by statistical data from the protein databank. It is suggested that the role of the bridge is to fix the histidine in an orientation that is optimal for coordination of the Cu(A) atom.  相似文献   

16.
The structure of the CuA-containing, extracellular domain of Thermus thermophilus ba3-type cytochrome c oxidase has been determined to 1.6 A resolution using multiple X-ray wavelength anomalous dispersion (MAD). The Cu2S2 cluster forms a planar rhombus with a copper-copper distance of 2.51 +/- 0.03 A. X-ray absorption fine-structure (EXAFS) studies show that this distance is unchanged by crystallization. The CuA center is asymmetrical; one copper is tetrahedrally coordinated to two bridging cysteine thiolates, one histidine nitrogen and one methionine sulfur, while the other is trigonally coordinated by the two cysteine thiolates and a histidine nitrogen. Combined sequence-structure alignment of amino acid sequences reveals conserved interactions between cytochrome c oxidase subunits I and II.  相似文献   

17.
The cofactor content of in vivo, as-isolated, and reconstituted forms of recombinant Escherichia coli biotin synthase (BioB) has been investigated using the combination of UV-visible absorption, resonance Raman, and M?ssbauer spectroscopies along with parallel analytical and activity assays. In contrast to the recent report that E. coli BioB is a pyridoxal phosphate (PLP)-dependent enzyme with intrinsic cysteine desulfurase activity (Ollagnier-deChoudens, S., Mulliez, E., Hewitson, K. S., and Fontecave, M. (2002) Biochemistry 41, 9145-9152), no evidence for PLP binding or for PLP-induced cysteine desulfurase or biotin synthase activity was observed with any of the forms of BioB investigated in this work. The results confirm that BioB contains two distinct Fe-S cluster binding sites. One site accommodates a [2Fe-2S](2+) cluster with partial noncysteinyl ligation that can only be reconstituted in vitro in the presence of O(2). The other site accommodates a [4Fe-4S](2+,+) cluster that binds S-adenosylmethionine (SAM) at a unique Fe site of the [4Fe-4S](2+) cluster and undergoes O(2)-induced degradation via a distinct type of [2Fe-2S](2+) cluster intermediate. In vivo M?ssbauer studies show that recombinant BioB in anaerobically grown cells is expressed exclusively in an inactive form containing only the as-isolated [2Fe-2S](2+) cluster and demonstrate that the [2Fe-2S](2+) cluster is not a consequence of overexpressing the recombinant enzyme under aerobic growth conditions. Overall the results clarify the confusion in the literature concerning the Fe-S cluster composition and the in vitro reconstitution and O(2)-induced cluster transformations that are possible for recombinant BioB. In addition, they provide a firm foundation for assessing cluster transformations that occur during turnover and the catalytic competence of the [2Fe-2S](2+) cluster as the immediate S-donor for biotin biosynthesis.  相似文献   

18.
Cu x-ray absorption spectroscopy (XAS) has been used to investigate the effect of cyanide treatment on the structures of the copper sites in beef heart cytochrome c oxidase. The Cu K-edge spectrum changes significantly upon cyanide binding to resting state enzyme, as does the Cu extended x-ray absorption fine structure (EXAFS) spectrum. The Cu EXAFS Fourier transfer (FT) exhibits an enhanced peak for the cyanide-treated enzyme in the region containing the Cu...Fe peak in the resting state FT (at R' approximately equal to 2.6-2.7 A). This peak in the cyanide-treated sample is hypothesized to arise from "outer shell" scattering from a linear Cu-cyanide moiety, suggesting cyanide binding to CuB only (CuB 2+-CN-) or cyanide bridging between the Fe of heme a3 and CuB (Fe3+-(CN-)-CuB 2+).  相似文献   

19.
Human Cu-Zn superoxide dismutase (SOD1) protects cells from the effects of oxidative stress. Mutations in SOD1 are linked to the familial form of amyotrophic lateral sclerosis. Several hypotheses for their toxicity involve the mis-metallation of the enzyme. We present atomic-resolution crystal structures and biophysical data for human SOD1 in three metallation states: Zn-Zn, Cu-Zn and as-isolated. These data represent the first atomic-resolution structures for human SOD1, the first structure of a reduced SOD1, and the first structure of a fully Zn-substituted SOD1 enzyme. Recombinantly expressed as-isolated SOD1 contains a mixture of Zn and Cu at the Cu-binding site. The Zn-Zn structure appears to be at least as stable as the correctly (Cu-Zn) metallated enzyme. These data raise the possibility that in a cellular environment with low availability of free copper, Zn-Zn may be the preferred metallation state of SOD1 prior to its interaction with the copper chaperone.  相似文献   

20.
Horn D  Barrientos A 《IUBMB life》2008,60(7):421-429
Metals are essential elements of all living organisms. Among them, copper is required for a multiplicity of functions including mitochondrial oxidative phosphorylation and protection against oxidative stress. Here we will focus on describing the pathways involved in the delivery of copper to cytochrome c oxidase (COX), a mitochondrial metalloenzyme acting as the terminal enzyme of the mitochondrial respiratory chain. The catalytic core of COX is formed by three mitochondrially-encoded subunits and contains three copper atoms. Two copper atoms bound to subunit 2 constitute the Cu(A) site, the primary acceptor of electrons from ferrocytochrome c. The third copper, Cu(B), is associated with the high-spin heme a(3) group of subunit 1. Recent studies, mostly performed in the yeast Saccharomyces cerevisiae, have provided new clues about 1) the source of the copper used for COX metallation; 2) the roles of Sco1p and Cox11p, the proteins involved in the direct delivery of copper to the Cu(A) and Cu(B) sites, respectively; 3) the action mechanism of Cox17p, a copper chaperone that provides copper to Sco1p and Cox11p; 4) the existence of at least four Cox17p homologues carrying a similar twin CX(9)C domain suggestive of metal binding, Cox19p, Cox23p, Pet191p and Cmc1p, that could be part of the same pathway; and 5) the presence of a disulfide relay system in the intermembrane space of mitochondria that mediates import of proteins with conserved cysteines motifs such as the CX(9)C characteristic of Cox17p and its homologues. The different pathways are reviewed and discussed in the context of both mitochondrial COX assembly and copper homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号