首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Theanine (γ-glutamylethylamide) is one of the major amino acid components in green tea and can pass through the blood-brain barrier. Recent studies suggest that theanine affects the mammalian central nervous system; however, the detailed mechanism remains unclear. In this study, we demonstrated the effect of theanine on neurotransmission in the brain striatum by in vivo brain microdialysis. Theanine injection into the rat brain striatum did not increase the concentration of excitatory neurotransmitters in the perfusate. On the other hand, theanine injection increased the concentration of glycine in the perfusate. Because it has been reported that theanine promotes dopamine release in the rat striatum, we investigated the glycine and dopamine concentrations in the perfusate. Co-injection of glycine receptor antagonist, strychnine, reduced theanine-induced changes in dopamine. Moreover, AMPA receptor antagonist, which regulates glycine and GABA release from glia cells, inhibited these effects of theanine and this result was in agreement with the known inhibitory effect of theanine at AMPA receptors.  相似文献   

2.
Time-dependent changes of theanine (gamma-glutamylethylamide) and other amino acids in various tissues of rats were investigated during the 24 hrs after theanine administration. When theanine (4 g/kg of body weight) was intragastrically administered to rats, the concentrations of theanine in the serum, liver and brain were significantly increased 1 hr after its administration, and thereafter gradually decreased, but reached the maximum level in the brain after 5 hrs. Theanine in these tissues had completely disappeared 24 hrs after its administration. In contrast, the administration of theanine resulted in the concentrations of theanine, urea, ethylamine and glutamic acid in the urine being significantly enhanced. These results suggest that theanine might be degraded via glutamic acid.  相似文献   

3.
To investigate the bioavailability and mode of action of theanine against cancer, we examined in vitro and ex vivo effects of theanine on invasion of a rat ascites hepatoma cell line of AH109A. Theanine dose-dependently inhibited the invasion of AH109A cells across rat mesentery-derived mesothelial-cell (M-cell) monolayers without restraining AH109A cell proliferation in vitro. Rat sera obtained after oral intubation of theanine also inhibited the invasion. A competitive N-methyl-D-aspartate (NMDA) type glutamate receptor antagonist, (±) 2-amino-5-phosphonopentanoic acid (AP-5), dose-dependently counteracted the theanine-mediated in vitro and ex vivo inhibition of AH109A invasion. A competitive non-NMDA type glutamate receptor antagonist, 6,7-dinitroquinoxaline 2,3-dione (DNQX), did not affect this inhibition by theanine in vitro. These results suggest that the inhibition of AH109A invasion by theanine may be mediated by the NMDA receptor of AH109A. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Summary We have explored the role of excitatory amino acids in the increased dopamine (DA) release that occurs in the neostriatum during stress-induced behavioral activation. Studies were performed in awake, freely moving rats, usingin vivo microdialysis. Extracellular DA was used as a measure of DA release; extracellular 3,4-dihydroxyphenylalanine (DOPA) after inhibition of DOPA decarboxylase provided a measure of apparent DA synthesis. Mild stress increased the synthesis and release of DA in striatum. DA synthesis and release also were enhanced by the intra-striatal infusion of N-methyl-D-aspartate (NMDA), an agonist at NMDA receptors, and kainic acid, an agonist at the DL-a-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA)/kainate site. Stress-induced increase in DAsynthesis was attenuated by co-infusion of 2-amino-5-phosphonovalerate (APV) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), antagonists of NMDA and AMPA/kainate receptors, respectively. In contrast, intrastriatal APV, CNQX, or kynurenic acid (a non-selective ionotropic glutamate receptor antagonist) did not block the stress-induced increase in DArelease. Stress-induced increase in DA release was, however, blocked by administration of tetrodotoxin along the nigrostriatal DA projection. It also was attenuated when APV was infused into substantia nigra. Thus, glutamate may act via ionotropic receptors within striatum to regulate DA synthesis, whereas glutamate may influence DA release via an action on receptors in substantia nigra. However, our method for monitoring DA synthesis lowers extracellular DA and this may permit the appearance of an intra-striatal glutamatergic influence by reducing a local inhibitory influence of DA. If so, under conditions of low extracellular DA glutamate may influence DA release, as well as DA synthesis, by an intrastriatal action. Such conditions might occur during prolonged severe stress and/or DA neuron degeneration. These results may have implications for the impact of glutamate antagonists on the ability of patients with Parkinson's disease to tolerate stress.  相似文献   

5.
Theanine, γ-glutamylethylamide, is one of the major amino acid components in green tea. In this study, cognitive function and the related mechanism were examined in theanine-administered young rats. Newborn rats were fed theanine through dams, which were fed water containing 0.3% theanine, and then fed water containing 0.3% theanine after weaning. Theanine level in the brain was under the detectable limit 6 weeks after the start of theanine administration. Theanine administration did not influence locomotor activity in the open-field test. However, rearing behavior was significantly increased in theanine-administered rats, suggesting that exploratory activity is increased by theanine intake. Furthermore, object recognition memory was enhanced in theanine-administered rats. The increase in exploratory activity in the open-field test seems to be associated with the enhanced object recognition memory after theanine administration. On the other hand, long-term potentiation (LTP) induction at the perforant path-granule cell synapse was not changed by theanine administration. To check hippocampal neurogenesis, BrdU was injected into rats 3 weeks after the start of theanine administration, and brain-derived neurotropic factor (BDNF) level was significantly increased at this time. Theanine intake significantly increased the number of BrdU-, Ki67-, and DCX-labeled cells in the granule cell layer 6 weeks after the start of theanine administration. This study indicates that 0.3% theanine administration facilitates neurogenesis in the developing hippocampus followed by enhanced recognition memory. Theanine intake may be of benefit to the postnatal development of hippocampal function.  相似文献   

6.
Abstract: Amino acid and monoamine concentrations were examined in tissue extracts of caudate nucleus of genetic substrains of BALB/c mice susceptible or resistant to audiogenic seizures. Amino acids [aspartate, glutamate, glycine, taurine, serine, γ-aminobutyric acid (GABA)], monoamines, and related metabolites were separated by isocratic reverse-phase chromatography and detected by a coulometric electrode array system. In situ activity of tyrosine hydroxylase and tryptophan hydroxylase were determined by measuring the accumulation of L-DOPA and 5-hydroxytryptophan after administration of the decarboxylase inhibitor NSD-1015. Highly significant decreases in concentrations of both excitatory (glutamate and aspartate) and inhibitory amino acids (GABA and taurine) were observed in extracts of caudate nucleus of seizure-prone mice. Substantial decreases in concentrations of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, were also noted. Decreased accumulation of L-DOPA after NSD-1015 administration provided evidence for decreased tyrosine hydroxylase activity and decreased DA synthesis in striatum of seizure-prone mice compared with seizure-resistant mice. Decreased concentrations of the DA metabolite 3-methoxytyramine (after NSD-1015 administration) suggested that DA release was also compromised in seizure-prone mice. No significant difference in 5-hydroxytryptophan accumulation in striatum of seizure-prone and seizure-resistant mice suggested that tryptophan hydroxylase activity and serotonin synthesis were not affected. The data suggest that seizure-prone BALB/c mice have a deficiency in intracellular content of both excitatory and inhibitory amino acids. The data also raise the issue of whether GABAergic interactions with the nigrostriatal DA system are important in the regulation of audiogenic seizure susceptibility.  相似文献   

7.
Methamphetamine (METH) is a widely abused psychostimulant. Multiple high doses of METH cause long-term toxicity to dopamine (DA) and serotonin (5-HT) nerve terminals in the brain, as evidenced by decreases in DA and 5-HT content, decreases in tyrosine and tryptophan hydroxylase activities, decreases in DA and 5-HT re-uptake sites, and nerve terminal degeneration. Multiple high doses of METH are known to elicit a rapid increase in DA release and hyperthermia. Although METH also produces a delayed and sustained rise in glutamate, no studies have shown whether METH produces structural evidence of excitotoxicity in striatum, or identified the receptors that mediate this toxicity directly, independent of alterations in METH-induced hyperthermia. These experiments investigated whether METH can cause excitotoxicity as evidenced by cytoskeletal protein breakdown in a glutamate receptor-dependent manner. METH increased calpain-mediated spectrin proteolysis in the rat striatum 5 and 7 days after METH administration without affecting caspase 3-dependent spectrin breakdown. This effect was completely blocked with the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, GYKI 52466, but not the NMDA receptor antagonist, MK-801. However, AMPA or NMDA receptor antagonism did not attenuate the METH-induced depletions of the dopamine transporter (DAT). Independent mechanisms involved in mediating spectrin proteolysis and DAT protein loss are discussed.  相似文献   

8.
In an investigation of the mechanisms of the neuroprotective effects of theanine (gamma-glutamylethylamide) in brain ischemia, inhibition by theanine of the binding of [3H](RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), [3H]kainate, and [3H](E)-3-(2-phenyl-2-carboxyethenyl)-4,6-dichloro-1-H-indole-2-carboxylic acid (MDL 105,519) to glutamate receptors was studied in terms of its possible inhibiting effects on the three receptor subtypes (AMPA, kainate, and NMDA glycine), with rat cortical neurons. Theanine bound the three receptors, but its IC50 of theanine was 80- to 30,000-fold less than that of L-glutamic acid.  相似文献   

9.
Kim NH  Jeong HJ  Kim HM 《Amino acids》2012,42(5):1609-1618
The increasing occurrences of allergic disorders may be attributed to exposure to environmental factors that contribute to the pathogenesis of allergy. The health benefits of green tea have been widely reported but are largely unsubstantiated. Theanine is the major amino acid present in green tea. In this study, we investigated the role of theanine in both IgE- and non- IgE-induced allergic response. Theanine inhibited compound 48/80-induced systemic anaphylactic shock and ear swelling responses. IgE-mediated passive cutaneous anaphylaxis was inhibited by the oral administration or pharmaceutical acupuncture of theanine. Histamine release from mast cells was decreased with the treatment of theanine. Theanine also repressed phorbol 12-myristate 13-acetate and calcium ionophore A23187-induced TNF-α, IL-1β, IL-6, and IL-8 secretion by suppressing NF-κB activation. Furthermore, theanine suppressed the activation of caspase-1 and the expression of receptor interacting protein-2. The current study demonstrates for the first time that theanine might possess mast cell-stabilizing capabilities.  相似文献   

10.
Abstract: 2-Amino-7-phosphonoheptanoic acid, an antagonist of excitation caused by dicarboxylic amino acids with a selective action on N -methyl-d-aspartate receptors, has been administered in an anticonvulsant dose (1 mmol/kg i.p.) to fed or fasted rats and mice. The drug impaired motor activity in fasted mice. Glucose and amino acids were determined in dissected regions of brain fixed by microwave irradiation. Glucose content was low in the brains of fasted rats and mice but was restored to normal (fed) concentration 45 min after the administration of 2-amino-7-phosphonoheptanoic acid in fasted mice. In fed animals, 2-amino-7-phosphonoheptanoic acid did not change brain aspartate concentration. In fasted animals, aspartate concentration was raised in most brain regions. In fasted rats and mice, 2-amino-7-phosphonoheptanoic acid significantly increased glutamine in rat cortex and mouse striatum, decreased glutamate content in rat striatum, and decreased aspartate concentration in all regions except mouse cortex and striatum. GABA levels were significantly decreased in rat striatum and hippocampus. These changes are consistent with an increased synaptic release of glutamate and aspartate following blockage of their post-synaptic action at selected sites.  相似文献   

11.
茶氨酸的制取及应用   总被引:8,自引:0,他引:8  
茶氨酸是茶叶中的一种主要氨基酸 ,通常占茶叶干重的 2 %左右 ,约占茶树体内游离氨基酸5 0 %。茶氨酸具有鲜甜味 ,是茶叶特征物质之一 ,与茶叶品质呈正相关。现已作为食品添加剂应用于食品领域。除此以外 ,茶氨酸还具有一些重要的药理作用。如抗肿瘤、降压安神、拮抗咖啡碱等医疗功效。本文综述了茶氨酸的性质、制取方法及应用前景等方面的内容。  相似文献   

12.
3-((±)-2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) is an antagonist at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor. In the present study, levels of dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA) were measured after intracerebroventricular injection of NMDA, CPP or both in rat striatum using a brain dialysis method. The injection of NMDA produced a significant increase in DOPAC level. HVA level was also increased by NMDA injection. The level of 5-HIAA was not affected by NMDA injection. The injection of CPP had no effect on DOPAC, HVA and 5-HIAA levels. The injection of CPP restrained the increase of DOPAC and HVA levels induced by NMDA injection. The results suggest that intracerebral injection of NMDA may increase dopamine release from rat striatum, but have no effect on serotonin release. Furthermore, CPP inhibits NMDA induced release of dopamine.  相似文献   

13.
Abstract: We have used in vivo microdialysis in anaesthetised rats to investigate whether somatostatin (SRIF) can play a neuromodulatory role in the striatum. When 100 n M SRIF was retrodialysed for 15 min, it increased concentrations of dopamine (DA) by 28-fold, γ-aminobutyric acid (GABA) by eightfold, and glutamate (Glu) by sixfold as well as those of aspartate (Asp) and taurine (Tau). These effects were both calcium- and tetrodotoxin-sensitive. Lower (10 or 50 n M ) and higher (1 µ M ) SRIF concentrations were less effective. Rapid sampling showed that whereas Asp and Glu concentrations were raised for 3 min at the start of 15-min SRIF infusions, those of DA were increased for 12 min. A second 15-min application of 100 n M SRIF given 135 min after the first application failed to increase transmitter release. An NMDA receptor antagonist, 2-amino-5-phosphonopentanoic acid (200 µ M ), blocked SRIF (100 n M )-evoked Asp, Glu, Tau, and GABA release and reduced that of DA. An α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate antagonist, 6,7-dinitroquinoxaline-2,3-dione (100 µ M ), blocked SRIF-induced DA and Tau release and reduced that of Asp, Glu, and GABA. These results show that SRIF increases DA, Glu, Asp, GABA, and Tau release in the rat striatum and suggest that its actions on DA and GABA release are mainly mediated through increased excitatory amino acid release.  相似文献   

14.
Abstract: This study examined the effects of intrastriatal administration of ionotropic excitatory amino acid receptor antagonists on biochemical markers of excitatory amino acid transmission in the rat striatum. High-affinity glutamate uptake was measured ex vivo on striatal homogenates 15 min after the local administration of either 6,7-dinitroquinoxaline-2,3-dione (DNQX), a non-NMDA receptor antagonist, or dl -2-amino-5-phosphonopentanoic acid (AP5), a competitive NMDA antagonist, at various doses (10–500 pmol injected). DNQX induced a dose-dependent increase in glutamate uptake rate, related to an increase in the V max of the transport process, whereas no significant change in glutamate uptake was detected after AP5 administration. Similar results were obtained from animals subjected to excitotoxic lesion of striatal neurons by kainate administration 15 days before the injection of DNQX or AP5. In a parallel series of experiments using in vivo microdialysis we showed that DNQX (10−5 M ) in the dialysis probe diminished by ∼30–40% the increases in the concentrations of glutamate and aspartate elicited by l - trans -pyrrolidine-2,4-dicarboxylic acid (1 m M ). These data suggest that presynaptic glutamate transmission in the rat striatum may undergo facilitatory autoregulatory processes involving ionotropic non-NMDA receptors and highlight the view that transporters for glutamate may be potent regulatory sites for glutamatergic transmission.  相似文献   

15.
Abstract: Disruption of corticostriatal glutamate input in the striatum decreased significantly extracellular striatal glutamate and dopamine levels. Local administration of 300 µ M concentration of excitatory receptor agonist kainic acid increased significantly extracellular striatal dopamine in intact freely moving rats. These findings support the hypothesis that glutamate exerts a tonic facilitatory effect on striatal dopamine release. The effect of kainic acid on extracellular striatal glutamate concentration in intact rats was a biphasic increase. The first glutamate increase can be explained by stimulation of presynaptic kainate receptors present on corticostriatal glutamatergic nerve terminals; the second increase is probably the result of a continuous interaction of the different striatal neurotransmitters after disturbance of their balance. Release of dopamine and glutamate was modulated differently in the intact striatum and in the striatum deprived of corticostriatal input. Dopamine release in the denervated striatum after kainate receptor stimulation was significantly lower than in intact striatum, confirming the so-called cooperativity between glutamate and kainic acid. Loss of presynaptic kainate receptors on the glutamatergic nerve terminals after decortication resulted in a loss of effect of kainic acid on glutamate release in denervated striatum. Aspartate showed no significant changes in this study.  相似文献   

16.
Abstract: The extracellular concentrations of amino acids in the hippocampal CA1 field and striatum of conscious freely moving rats were monitored simultaneously by in vivo brain microdialysis using HPLC with electrochemical detection. Under basal conditions, aspartate, glutamate, glutamine, glycine, taurine, and alanine were detected, but γ-aminobutyric acid was undetectable in both regions. In-traperitoneal injection of N -methyl- d -aspartic acid (NMDA; 10 mg/kg) caused a significant increase (three-to fivefold) in the taurine concentration in the dialysate obtained from both the hippocampal CA1 and striatum, whereas other amino acids (aspartate, glutamate, and alanine) did not show significant changes. Local application of NMDA (300 γ) to both regions via the dialysis probes also caused a similar increase (three-to fivefold) in both regions. Under infusion of hypertonic Ringer's solution containing 150 m M sucrose, the effect of NMDA on the level of taurine in both the regional dialysates was not affected. The effect of NMDA was totally reduced by intraperitoneal administration of MK-801 (0.3–1.0 mg/kg), a noncompetitive antagonist of NMDA receptors. Continuous infusion of dl -2-amino-5-phosphonovaleric acid (1.0 mM), a competitive antagonist of NMDA receptors, via the dialysis probes completely inhibited the effect of NMDA. These findings suggest that systemic administration of NMDA is effective as well as local administration into the brain and that NMDA receptors might be involved in the regulation of the extracellular taurine level in the brain without dependence on cell swelling.  相似文献   

17.
We investigated the molecular mechanism underlying the neuroprotective effect of theanine, a green tea component, using primary cultured rat cortical neurons, focusing on group I metabotropic glutamate receptors (mGluRs). Theanine and a group I mGluR agonist, DHPG, inhibited the delayed death of neurons caused by brief exposure to glutamate, and this effect of theanine was abolished by group I mGluR antagonists. Although the administration of glutamate alone decreased the neuronal expression of phospholipase C (PLC)-beta1 and -gamma1, which are linked to group I mGluRs, their expression was equal to the control levels on cotreatment with theanine. Treatment with theanine or DHPG alone for 5-7 days resulted in increased expression of PLC-beta1 and -gamma1, and the action of theanine was completely abolished by group I mGluR antagonists. These findings indicate that group I mGluRs might be involved in neuroprotective effect of theanine by increasing the expression levels of PLC-beta1 and -gamma1.  相似文献   

18.
Nitric oxide (NO) is a key neuromodulator of corticostriatal synaptic transmission. We have shown previously that dopamine (DA) D1/5 receptor stimulation facilitates neuronal NO synthase (nNOS) activity in the intact striatum. To study the impact of local manipulations of D1/5 and glutamatergic NMDA receptors on striatal nNOS activity, we combined the techniques of in vivo amperometry and reverse microdialysis. Striatal NO efflux was monitored proximal to the microdialysis probe in urethane‐anesthetized rats during local infusion of vehicle or drug. NO efflux elicited by systemic administration of SKF‐81297 was blocked following intrastriatal infusion of: (i) the D1/5 receptor antagonist SCH‐23390, (ii) the nNOS inhibitor 7‐nitroindazole, (iii) the non‐specific ionotropic glutamate receptor antagonist kynurenic acid, and (iv) the selective NMDA receptor antagonist 3‐phosphonopropyl‐piperazine‐2‐carboxylic acid. Glycine co‐perfusion did not affect SKF‐81297‐induced NO efflux. Furthermore, intrastriatal infusion of SKF‐81297 potentiated NO efflux evoked during electrical stimulation of the motor cortex. The facilitatory effects of cortical stimulation and SKF‐81297 were both blocked by intrastriatal infusion of SCH‐23390, indicating that striatal D1/5 receptor activation is necessary for the activation of nNOS by corticostriatal afferents. These studies demonstrate for the first time that reciprocal DA‐glutamate interactions play a critical role in stimulating striatal nNOS activity.  相似文献   

19.
There is a considerable amount of conflicting evidence from several studies as to the action of applied N-methyl-D-aspartate (NMDA) on the release of glutamate and aspartate in the brain. In the present study the effect of NMDA on extracellular levels of endogenous amino acids was investigated in conscious, unrestrained rats using intracerebral microdialysis. NMDA caused dose-related increases in extracellular levels of glutamate and aspartate; threonine and glutamine were unaffected. The NMDA-evoked release of glutamate and aspartate was significantly decreased by the specific NMDA receptor antagonist 3-[(+-)-2-carboxypiperazin-4-yl]-propyl-l-phosphonic acid. In addition, increasing the perfusate concentration (and therefore the extracellular concentration) of Ca2+ significantly enhanced the NMDA-evoked release of glutamate and aspartate, whereas removal of Ca2+ and addition of a high Mg2+ concentration to the perfusate caused a significant reduction in their NMDA-evoked release. Moreover, the NMDA-evoked release of glutamate and aspartate was reduced in decorticate animals. These results demonstrate that, in the striatum in vivo, NMDA causes selective release of endogenous glutamate and aspartate from neurone terminals and that this action occurs through an NMDA receptor-mediated mechanism. The ability of NMDA receptor activation to induce release of glutamate and aspartate, perhaps by a positive feedback mechanism, may be relevant to the pathologies underlying epilepsy and ischaemic and hypoglycaemic brain damage.  相似文献   

20.
The release of endogenous dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) was measured in superfused striatal slices of the rat and the results compared with data obtained for the release of endogenous (a) DA and DOPAC in the cerebral cortex, nucleus accumbens and thalamus; (b) 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), GABA, and glutamate in the striatum; and (c) GABA, glutamate and 5-HT in the cerebral cortex. In superfused slices of all four CNS regions, there appeared to be a Ca2+-dependent, K+-stimulated release of endogenous DA. In addition, in slices of the striatum and nucleus accumbens there also appeared to be a Ca2+-dependent, 60 mM K+ stimulated release of endogenous DOPAC. In the striatum, 16 mM Mg2+ was as effective as 2.5 mM Ca2+ in promoting the 60 mM K+-stimulated release of DOPAC. In addition, 16 mM Mg2+ appeared to function as a weak Ca2+ agonist since it also promoted the release of DA to approximately 40% of the level attained with Ca2+ in the presence of 60 mM K+. On the other hand, in the striatum, 16 mM Mg2+ inhibited the Ca2+-dependent, 60 mM K+-stimulated release of GABA and glutamate. Similar Mg2+-inhibition was observed in the cerebral cortex not only for GABA and glutamate but also for DA and 5-HT. With the use of -methyl -tyrosine (tyrosine hydroxylase inhibitor), cocaine (uptake inhibitor) and pargyline (monoamine oxidase inhibitor), it was determined that (a) most of the released DA and DOPAC was synthesized in the slices during the superfusion; (b) DOPAC was not formed from DA which had been released and taken up; and (c) DA and DOPAC were released from DA nerve terminals. In addition, the data indicate a difference in the release process between the amino acids and the monoamines from striatal slices since Mg2+ inhibited the Ca2+-dependent, K+-stimulated release of GABA and glutamate and appeared to promote the release of DA and 5-HT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号