首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The question of parallel (alpha/beta)8-barrel fold evolution remains unclear, owing mainly to the lack of sequence homology throughout the amino acid sequences of (alpha/beta)8-barrel enzymes. The "classical" approaches used in the search for homologies among (alpha/beta)8-barrels (e.g., production of structurally based alignments) have yielded alignments perfect from the structural point of view, but the approaches have been unable to reveal the homologies. These are proposed to be "hidden" in (alpha/beta)8-barrel enzymes. The term "hidden homology" means that the alignment of sequence stretches proposed to be homologous need not be structurally fully satisfactory. This is due to the very long evolutionary history of all (alpha/beta)8-barrels. This work identifies so-called hidden homology around the strand beta 2 that is flanked by loops containing invariant glycines and prolines in 17 different (alpha/beta)8-barrel enzymes, i.e., roughly in half of all currently known (alpha/beta)8-barrel proteins. The search was based on the idea that a conserved sequence region of an (alpha/beta)8-barrel enzyme should be more or less conserved also in the equivalent part of the structure of the other enzymes with this folding motif, given their mutual evolutionary relatedness. For this purpose, the sequence region around the well-conserved second beta-strand of alpha-amylase flanked by the invariant glycine and proline (56_GFTAIWITP, Aspergillus oryzae alpha-amylase numbering), was used as the sequence-structural template. The proposal that the second beta-strand of (alpha/beta)8-barrel fold is important from the evolutionary point of view is strongly supported by the increasing trend of the observed beta 2-strand structural similarity for the pairs of (alpha/beta)8-barrel enzymes: alpha-amylase and the alpha-subunit of tryptophan synthase, alpha-amylase and mandelate racemase, and alpha-amylase and cyclodextrin glycosyltransferase. This trend is also in agreement with the existing evolutionary division of the entire family of (alpha/beta)8-barrel proteins.  相似文献   

2.
Many (alpha/beta)8-barrel enzymes contain their conserved sequence regions at or around the beta-strand segments that are often preceded and succeeded by glycines and prolines, respectively. alpha-Amylase is one of these enzymes. Its sequences exhibit a very low degree of similarity, but strong conservation is seen around its beta-strands. These conserved regions were used in the search for similarities with beta-strands of other (alpha/beta)8-barrel enzymes. The analysis revealed an interesting similarity between the segment around the beta 2-strand of alpha-amylase and the one around the beta 4-strand of glycolate oxidase that are flanked in loops by glycines and prolines. The similarity can be further extended on other members of the alpha-amylase and glycolate oxidase subfamilies, i.e., cyclodextrin glycosyltransferase and oligo-1,6-glucosidase, and flavocytochrome b2, respectively. Moreover, the alpha-subunit of tryptophan synthase, the (alpha/beta)8-barrel enzyme belonging to the other subfamily of (alpha/beta)8-barrels, has both investigated strands, beta 2 and beta 4, similar to beta 2 of alpha-amylase and beta 4 of glycolate oxidase. The possibilities of whether this similarity exists only by chance or is a consequence of some processes during the evolution of (alpha/beta)8-barrel proteins are briefly discussed.  相似文献   

3.
Glucoamylase: structure/function relationships, and protein engineering   总被引:10,自引:0,他引:10  
Glucoamylases are inverting exo-acting starch hydrolases releasing beta-glucose from the non-reducing ends of starch and related substrates. The majority of glucoamylases are multidomain enzymes consisting of a catalytic domain connected to a starch-binding domain by an O-glycosylated linker region. Three-dimensional structures have been determined of free and inhibitor complexed glucoamylases from Aspergillus awamori var. X100, Aspergillus niger, and Saccharomycopsis fibuligera. The catalytic domain folds as a twisted (alpha/alpha)(6)-barrel with a central funnel-shaped active site, while the starch-binding domain folds as an antiparallel beta-barrel and has two binding sites for starch or beta-cyclodextrin. Certain glucoamylases are widely applied industrially in the manufacture of glucose and fructose syrups. For more than a decade mutational investigations of glucoamylase have addressed fundamental structure/function relationships in the binding and catalytic mechanisms. In parallel, issues of relevance for application have been pursued using protein engineering to improve the industrial properties. The present review focuses on recent findings on the catalytic site, mechanism of action, substrate recognition, the linker region, the multidomain architecture, the engineering of specificity and stability, and roles of individual substrate binding subsites.  相似文献   

4.
Clostridium thermosulfurogenes, an anaerobic bacterium which ferments starch into ethanol at 62 degrees C, produced an active extracellular amylase and contained intracellular glucoamylase but not pullulanase activity. The extracellular amylase was purified 2.4-fold, and its general physicochemical and catalytic properties were examined. The extracellular amylase was characterized as a beta-amylase (1,4-alpha-d-glucan maltohydrolase) based on demonstration of exocleavage activity and the production of maltose with a beta-anomeric configuration from starch. The beta-amylase activity was stable and optimally active at 80 and 75 degrees C, respectively. The pH optimum for activity and the pH stability range was 5.5 to 6 and 3.5 to 6.5, respectively. The apparent [S](0.5V) and V(max) for beta-amylase activity on starch was 1 mg/ml and 60 U/mg of protein. Similar to described beta-amylase, the enzyme was inhibited by p-chloromercuribenzoate, Cu, and Hg; however, alpha- and beta-cyclodextrins were not competitive inhibitors. The beta-amylase was active and stable in the presence of air or 10% (vol/vol) ethanol. The beta-amylase and glucoamylase activities enabled the organism to actively ferment raw starch in the absence of significant pullulanase or alpha-amylase activity.  相似文献   

5.
Starch, total alpha- and beta-amylase, and phosphorylase levels and the zymogram patterns of these 3 starch-degrading enzymes were determined in the cotyledons of smooth pea (Pisum sativum L.) during the first 15 days of germination. Starch is degraded slowly in the first 6 days; during this time, alpha-amylase is very low, beta-amylase is present at a constant level while phosphorylase gradually increases and reaches a peak on the fifth day. Beginning on the sixth day there is a more rapid degradation of starch which coincides with alpha-amylase production. One phosphorylase band and 2 beta-amylase bands are present in the zymogram of the imbibed cotyledon. An additional phosphorylase band and 1 alpha-amylase band appear during germination. Seeds imbibed in benzyladenine, chloramphenicol, and in cycloheximide show retarded growth and slower starch degradation and enzyme production than the controls. We conclude that alpha-amylase is the major enzyme involved in the initial degradation of starch into more soluble forms while phosphorylase and beta-amylase assist in the further conversion to free sugars.  相似文献   

6.
Although both the alpha-amylase super-family, i.e. the glycoside hydrolase (GH) clan GH-H (the GH families 13, 70 and 77), and family GH31 share some characteristics, their different catalytic machinery prevents classification of GH31 in clan GH-H. A significant but remote evolutionary relatedness is, however, proposed for clan GH-H with GH31. A sequence alignment, based on the idea that residues equivalent in the primordial catalytic GH-H/GH31 (beta/alpha)(8)-barrel may not be found in the present-day GH-H and GH31 structures at strictly equivalent positions, shows remote sequence homologies covering beta3, beta4, beta7 and beta8 of the GH-H and GH31 (beta/alpha)(8)-barrels. Structure comparison of GH13 alpha-amylase and GH31 alpha-xylosidase guided alignment of GH-H and GH31 members for construction of evolutionary trees. The closest sequence relationship displayed by GH31 is to GH77 of clan GH-H.  相似文献   

7.
The hydrolases and transferases that constitute the alpha-amylase family are multidomain proteins, but each has a catalytic domain in the form of a (beta/alpha)(8)-barrel, with the active site being at the C-terminal end of the barrel beta-strands. Although the enzymes are believed to share the same catalytic acids and a common mechanism of action, they have been assigned to three separate families - 13, 70 and 77 - in the classification scheme for glycoside hydrolases and transferases that is based on amino acid sequence similarities. Each enzyme has one glutamic acid and two aspartic acid residues necessary for activity, while most enzymes of the family also contain two histidine residues critical for transition state stabilisation. These five residues occur in four short sequences conserved throughout the family, and within such sequences some key amino acid residues are related to enzyme specificity. A table is given showing motifs distinctive for each specificity as extracted from 316 sequences, which should aid in identifying the enzyme from primary structure information. Where appropriate, existing problems with identification of some enzymes of the family are pointed out. For enzymes of known three-dimensional structure, action is discussed in terms of molecular architecture. The sequence-specificity and structure-specificity relationships described may provide useful pointers for rational protein engineering.  相似文献   

8.
The crystal structure of beta-amylase from Bacillus cereus var. mycoides was determined by the multiple isomorphous replacement method. The structure was refined to a final R-factor of 0.186 for 102,807 independent reflections with F/sigma(F) > or = 2.0 at 2.2 A resolution with root-mean-square deviations from ideality in bond lengths, and bond angles of 0.014 A and 3.00 degrees, respectively. The asymmetric unit comprises four molecules exhibiting a dimer-of-dimers structure. The enzyme, however, acts as a monomer in solution. The beta-amylase molecule folds into three domains; the first one is the N-terminal catalytic domain with a (beta/alpha)8 barrel, the second one is the excursion part from the first one, and the third one is the C-terminal domain with two almost anti-parallel beta-sheets. The active site cleft, including two putative catalytic residues (Glu172 and Glu367), is located on the carboxyl side of the central beta-sheet in the (beta/alpha)8 barrel, as in most amylases. The active site structure of the enzyme resembles that of soybean beta-amylase with slight differences. One calcium ion is bound per molecule far from the active site. The C-terminal domain has a fold similar to the raw starch binding domains of cyclodextrin glycosyltransferase and glucoamylase.  相似文献   

9.
The alpha-amylase family (glycoside hydrolase family 13; GH 13) contains enzymes with approximately 30 specificities. Six types of enzyme from the family can possess a C-terminal starch-binding domain (SBD): alpha-amylase, maltotetraohydrolase, maltopentaohydrolase, maltogenic alpha-amylase, acarviose transferase, and cyclodextrin glucanotransferase (CGTase). Such enzymes are multidomain proteins and those that contain an SBD consist of four or five domains, the former enzymes being mainly hydrolases and the latter mainly transglycosidases. The individual domains are labelled A [the catalytic (beta/alpha)8-barrel], B, C, D and E (SBD), but D is lacking from the four-domain enzymes. Evolutionary trees were constructed for domains A, B, C and E and compared with the 'complete-sequence tree'. The trees for domains A and B and the complete-sequence tree were very similar and contain two main groups of enzymes, an amylase group and a CGTase group. The tree for domain C changed substantially, the separation between the amylase and CGTase groups being shortened, and a new border line being suggested to include the Klebsiella and Nostoc CGTases (both four-domain proteins) with the four-domain amylases. In the 'SBD tree' the border between hydrolases (mainly alpha-amylases) and transglycosidases (principally CGTases) was not readily defined, because maltogenic alpha-amylase, acarviose transferase, and the archaeal CGTase clustered together at a distance from the main CGTase cluster. Moreover the four-domain CGTases were rooted in the amylase group, reflecting sequence relationships for the SBD. It appears that with respect to the SBD, evolution in GH 13 shows a transition in the segment of the proteins C-terminal to the catalytic (beta/alpha)8-barrel(domain A).  相似文献   

10.
An overview presentation is made on the current global status of fungal beta3-amylases, their characteristics and applications in various industries. Among the few available report on beta-amylase producing fungal strains, many showed a preference for a cultivation temperature of 28 degrees C, acidic pH and soluble starch as an inducer of enzyme synthesis. In some fungal strains, alpha-amylase and alpha-glucosidases were found to be present as major contaminating enzymes. Although the existence of a few starch digesting and raw starch adsorbing fungal strains were reported, detailed study on molecular biology of corresponding fungal genes was not available.  相似文献   

11.
Microbial amylolytic enzymes   总被引:28,自引:0,他引:28  
Starch-degrading, amylolytic enzymes are widely distributed among microbes. Several activities are required to hydrolyze starch to its glucose units. These enzymes include alpha-amylase, beta-amylase, glucoamylase, alpha-glucosidase, pullulan-degrading enzymes, exoacting enzymes yielding alpha-type endproducts, and cyclodextrin glycosyltransferase. Properties of these enzymes vary and are somewhat linked to the environmental circumstances of the producing organisms. Features of the enzymes, their action patterns, physicochemical properties, occurrence, genetics, and results obtained from cloning of the genes are described. Among all the amylolytic enzymes, the genetics of alpha-amylase in Bacillus subtilis are best known. Alpha-Amylase production in B. subtilis is regulated by several genetic elements, many of which have synergistic effects. Genes encoding enzymes from all the amylolytic enzyme groups dealt with here have been cloned, and the sequences have been found to contain some highly conserved regions thought to be essential for their action and/or structure. Glucoamylase appears usually in several forms, which seem to be the results of a variety of mechanisms, including heterogeneous glycosylation, limited proteolysis, multiple modes of mRNA splicing, and the presence of several structural genes.  相似文献   

12.
A multiple alignment of five (beta/alpha)8-barrel enzymes has been derived from their structure. The eight beta-strands and eight alpha-helices of the (beta/alpha)8-barrel are correctly aligned and the equivalenced residues in these regions fulfil similar structural roles. Each beta-strand has a central core of usually four residues, two residues contribute side-chains to the barrel core and the other two residues are involved in beta-strand/alpha-helix contacts. However, the fold imposes no constraints on the volumes of the residues at either a local or global level: the volume of the beta-barrel core varies between 1088 A3 in glycolate oxidase and 1571 A3 in taka-amylase. Sequence motifs derived from the multiple alignment were scanned against a database of 124 protein sequences, including 17 (beta/alpha)8-barrel enzymes. The results were evaluated in terms of the discrimination of (beta/alpha)8-barrel sequences and the quality of the alignments obtained. One motif was able to identify the top 12% of high scoring sequences as forming (beta/alpha)8-barrels with 50% accuracy and the bottom 50% of sequences as not being (beta/alpha)8-barrel proteins with 100% accuracy. However, in most instances the alignments were poor. The reasons for this are discussed with reference to the (beta/alpha)8-barrel proteins and the sequence motif method in general.  相似文献   

13.
Functional groups of glucoamylase and alpha-amylase from Asp. awamori, alpha-amylase from Asp. oryzae and alpha- and beta-amylases from barley malt are identified. Kinetic curves of the activity dependency on pH, values of ionization heats and photooxidative inactivation draw to the conclusion that carboxyl-imidazole system enters into the active site of the enzymes. A hypothetic mechanism of hydrolysis of alpha-1,4-glucoside bond in starch molecule by alpha- and beta-amylases and of alpha-1,4- and alpha-1,6-glucoside bonds by glucoamylase is given. A theory of induced correspondence of enzyme and substrate satisfactorily explains the specificity of the enzyme action and the cause of complete starch convertion into glucose under glucoamylase action and of terminal starch hydrolysis by alpha- and beta-amylases.  相似文献   

14.
The (beta/alpha)(8)-barrel is the most common fold in structurally characterized enzymes. Whether the functionally diverse enzymes that share this fold are the products of either divergent or convergent evolution (or both) is an unresolved question that will probably be answered as the sequence databases continue to expand. Recent work has examined natural, designed, and directed evolution of function in several superfamilies of (beta/alpha)(8)-barrel containing enzymes.  相似文献   

15.
The crystals of beta-amylase from Bacillus cereus belong to space group P21 with the following cell dimensions: a = 57.70 A, b = 92.87 A, c = 65.93 A, and beta =101.95 degrees. The structures of free and maltose-bound beta-amylases were determined by X-ray crystallography at 2.1 and 2.5 A with R-factors of 0.170 and 0.164, respectively. The final model of the maltose-bound form comprises 516 amino acid residues, four maltose molecules, 275 water molecules, one Ca2+, one acetate, and one sulfate ion. The enzyme consists of a core (beta/alpha)8-barrel domain (residues 5-434) and a C-terminal starch-binding domain (residues 435-613). Besides the active site in the core where two maltose molecules are bound in tandem, two novel maltose-binding sites were found in the core L4 region and in the C-terminal domain. The structure of the core domain is similar to that of soybean beta-amylase except for the L4 maltose-binding site, whereas the C-terminal domain has the same secondary structure as domain E of cyclodextrin glucosyltransferase. These two maltose-binding sites are 32-36 A apart from the active site. These results indicate that the ability of B. cereus beta-amylase to digest raw starch can be attributed to the additional two maltose-binding sites.  相似文献   

16.
Extracts of germinated barley (Hordeum vulgare L.) seeds of 41 different genotypes were analyzed for their activities of alpha-amylase, beta-amylase, alpha-glucosidase, and debranching enzyme and for their abilities to hydrolyze boiled soluble starch, nonboiled soluble starch, and starch granules extracted from barley seeds with water. Linear correlation analysis, used to quantitate the interactions between the seven parameters, revealed that boiled soluble starch was not a good substrate for predicting activities of enzymes functioning in in vivo starch hydrolysis as the extracts' abilities to hydrolyze boiled soluble starch was not correlated with their abilities to hydrolyze native starch granules. Activities of alpha-amylase and alpha-glucosidase were positively and significantly correlated with the seed extracts' abilities to hydrolyze all three starches. beta-Amylase was only significantly correlated with hydrolysis of boiled soluble starch. No significant correlations existed between debranching enzyme activity and hydrolysis of any of the three starches. Interactions between the four enzymes as they functioned together to hydrolyze the three types of starch were evaluated by path coefficient analysis. alpha-Amylase contributed to hydrolyses of all three starches primarily by its direct effect (noninteractive component). This direct contribution increased as the substrate progressed from the completely artificial boiled soluble starch, to the most physiologically significant substrate, native starch granules. alpha-Glucosidase contributed to the hydrolysis of boiled soluble starch primarily by its direct effect (noninteractive) yet contributed to starch granule hydrolysis primarily via its interaction with alpha-amylase (indirect effect). The contribution of beta-amylase to hydrolysis of boiled soluble starch was direct and it did not contribute significantly to hydrolysis of native starch granules.  相似文献   

17.
A bacterial strain M6, isolated from soil and identified as Arthrobacter globiformis, produced a novel nonreducing oligosaccharide. The nonreducing oligosaccharide was produced from starch using a culture supernatant of the strain as enzyme preparation. The oligosaccharide was purified as a crystal preparation after alkaline treatment and deionization of the reaction mixture. The structure of the oligosaccharide was determined by methylation analysis, mass spectrometry, and (1)H and (13)C NMR spectroscopy, and it was demonstrated that the oligosaccharide had a cyclic structure consisting of four glucose residues joined by alternate alpha-(1-->4)- and alpha-(1-->6)-linkages. The cyclic tetrasaccharide, cyclo-{-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->}, was found to be a novel oligosaccharide, and was tentatively called cyclic maltosyl-maltose (CMM). CMM was not hydrolyzed by various amylases, such as alpha-amylase, beta-amylase, glucoamylase, isoamylase, pullulanase, maltogenic alpha-amylase, and alpha-glucosidase, but hydrolyzed by isomalto-dextranase to give rise to isomaltose. This is the first report of the cyclic tetrasaccharide, which has alternate alpha-(1-->4)- and alpha-(1-->6)-glucosidic linkages.  相似文献   

18.
Trichosporon pullulans IGC 3488 produced extracellular alpha-amylase and glucoamylase activities when grown in batches in a medium containing corn steep liquor and soluble starch or corn starch. alpha-Amylase, unlike glucoamylase activity, was secreted biphasically. For both amylases the maximum concentration was found in stationary phase cultures. The amylolytic enzymes, previously concentrated by ammonium sulfate precipitation, were separated into a glucoamylase fraction and an alpha-amylase fraction by Ultrogel AcA 54 gel filtration. Pullulanase activity was located in the glucoamylase fraction, whereas cyclodextrinase activity was restricted to the alpha-amylase fraction. Isoamylase and alpha-glucosidase were not detected. Electrophoretic analysis showed that alpha-amylase activity was due to a single protein. Glucoamylase, however, occurred in multiple forms. The four glucoamylases and the alpha-amylase were glycoproteins.  相似文献   

19.
Two reactions were studied with three varieties of starch granules from maize, wheat, and rice. In Reaction-I, the granules were reacted with 1 mM ADP-[(14)C]Glc and in Reaction-II, a portion of the granules from Reaction-I was reacted with 1 mM ADP-Glc. The starch granules were solubilized and reacted with the exo-acting glucoamylase and beta-amylase to an extent of 50% or less of the (14)C-label. The amounts of (14)C-labeled products from glucoamylase and beta-amylase were nearly equal for Reaction-I and Reaction-II. If the addition had been to the nonreducing ends of primers, Reaction-II would not have given any labeled products from the hydrolysis of glucoamylase and beta-amylase. These results indicate that the elongation of the starch chain is the addition of D-glucose to the reducing end by a de novo two-site insertion mechanism and not by the addition of D-glucose to the nonreducing end of a primer. This is in conformity with previous results in which starch granules were pulsed with ADP-[(14)C]Glc and chased with nonlabeled ADP-Glc, giving (14)C-labeled D-glucitol from the pulsed starch and a significant decrease in (14)C-labeled D-glucitol from the chased starch on reducing with NaBH(4) and hydrolyzing with glucoamylase [Carbohydr. Res.2002, 337, 1015-1022]. It also is in conformity with the inhibition of starch synthesis that occurs when putative primers are added to starch granule-ADP-Glc digests, indicating that the elongation is not by the nonreducing-end primer mechanism [Carbohydr. Res.2005, 340, 245-255].  相似文献   

20.
Enzymes with the (beta/alpha)(8)-barrel fold are involved in the catalysis of a wide variety of biochemical reactions. The active sites of these enzymes are located on the C-terminal face of the central beta-barrel. Conserved amino acid sequence, as well as secondary, tertiary and quaternary structure patterns are providing a rich body of data to support the premise of a common ancestry of many members of the (beta/alpha)(8)-barrel fold family of enzymes. Recent data indicate that there is at least one example of a bienzyme that functions as an ammonia channel, adding a new level of functional diversity to the (beta/alpha)(8)-barrel fold. These proteins have become ideal tools that can be used in conjunction with directed evolution techniques to engineer novel catalytic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号