首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through exploring potential analogies between cotton seed trichomes (or cotton fiber) and arabidopsis shoot trichomes we discovered that CesAs from either the primary or secondary wall phylogenetic clades can support secondary wall thickening. CesA genes that typically support primary wall synthesis, AtCesA1,2,3,5, and 6, underpin expansion and secondary wall thickening of arabidopsis shoot trichomes. In contrast, apparent orthologs of CesA genes that support secondary wall synthesis in arabidopsis xylem, AtCesA4,7, and 8, are up-regulated for cotton fiber secondary wall deposition. These conclusions arose from: (a) analyzing the expression of CesA genes in arabidopsis shoot trichomes; (b) observing birefringent secondary walls in arabidopsis shoot trichomes with mutations in AtCesA4, 7, or 8; (c) assaying up-regulated genes during different stages of cotton fiber development; and (d) comparing genes that were co-expressed with primary or secondary wall CesAs in arabidopsis with genes up-regulated in arabidopsis trichomes, arabidopsis secondary xylem, or cotton fiber during primary or secondary wall deposition. Cumulatively, the data show that: (a) the xylem of arabidopsis provides the best model for secondary wall cellulose synthesis in cotton fiber; and (b) CesA genes within a "cell wall toolbox" are used in diverse ways for the construction of particular specialized cell walls.  相似文献   

2.
J M Westafer  R M Brown 《Cytobios》1976,15(58-59):111-138
The ultrastructure of the cotton fibres was examined after developing successful fixation methods. Fibre cells were fixed at different stages of development. In cells which were elongating and producing primary cell walls, the Golgi apparatus appeared to be directly involved in secretion and synthesis of primary wall components. In cells which were synthesizing thick secondary cell walls, evidence suggested a major role for the endoplasmic reticulum and plasma memebrane in the synthesis and secretion of secondary wall materials. The possibility of a shift from a Golgi apparatus pathway for primary wall synthesis to an endoplasmic reticulum pathway for secondary wall synthesis is discussed. Plasma membrane micro-invaginations are present only during secondary wall synthesis and may represent sites of cellulose assembly. A model for primary wall biogenesis via the Golgi apparatus is presented, and the potential of the cotton fibre as a model system for studying cellulose biogenesis in higher plants is discussed.  相似文献   

3.
4.
5.
Auxin Metabolism in Developing Cotton Hairs   总被引:13,自引:0,他引:13  
Growth parameters and auxin metabolism of developing cotton(Gossypium hirsutum L., cv. Sankar 5) fibre were studied inplants grown in the field. Fibre length and dry weight wereplotted against boll age and fitted to the best-fit curves bycomputer curvilinear regression analysis. Based on this analysis,fibre development was divided into four phases: (i) initiation,(ii) elongation, (iii) secondary thickening, and (iv) maturation.Changes in IAA oxidase and peroxidase activity showed that IAAcatabolism was low during the elongation phase, while duringthe phase of secondary thickening it was very high (four-foldincrease). It is suggested that the level of IAA may regulatethe termination of primary wall extension and the initiationof cellulose deposition in cotton fibre.  相似文献   

6.
The cotton fiber transcriptome   总被引:10,自引:0,他引:10  
  相似文献   

7.
The synthesis of crystalline cellulose microfibrils in plants is a highly coordinated process that occurs at the interface of the cortex, plasma membrane, and cell wall. There is evidence that cellulose biogenesis is facilitated by the interaction of several proteins, but the details are just beginning to be understood. In particular, sucrose synthase, microtubules, and actin have been proposed to possibly associate with cellulose synthases (microfibril terminal complexes) in the plasma membrane. Differentiating tracheary elements of Zinnia elegans L. were used as a model system to determine the localization of sucrose synthase and actin in relation to the plasma membrane and its underlying microtubules during the deposition of patterned, cellulose-rich secondary walls. Cortical actin occurs with similar density both between and under secondary wall thickenings. In contrast, sucrose synthase is highly enriched near the plasma membrane and the microtubules under the secondary wall thickenings. Both actin and sucrose synthase lie closer to the plasma membrane than the microtubules. These results show that the preferential localization of sucrose synthase at sites of high-rate cellulose synthesis can be generalized beyond cotton fibers, and they establish a spatial context for further work on a multi-protein complex that may facilitate secondary wall cellulose synthesis.  相似文献   

8.
The composition of the cell wall of the cotton fiber (Gossypium hirsutum L. Acala SJ-1) has been studied from the early stages of elongation (5 days postanthesis) through the period of secondary wall formation, using cell walls derived both from fibers developing on the plant and from fibers obtained from excised, cultured ovules. The cell wall of the elongating cotton fiber was shown to be a dynamic structure. Expressed as a weight per cent of the total cell wall, cellulose, neutral sugars (rhamnose, fucose, arabinose, mannose, galactose, and noncellulosic glucose), uronic acids, and total protein undergo marked changes in content during the elongation period. As a way of analyzing absolute changes in the walls with time, data have also been expressed as grams component per millimeter of fiber length. Expressed in this way for plant-grown fibers, the data show that the thickness of the cell wall is relatively constant until about 12 days postanthesis; after this time it markedly increases until secondary wall cellulose deposition is completed. Between 12 and 16 days postanthesis increases in all components contribute to total wall increase per millimeter fiber length. The deposition of secondary wall cellulose begins at about 16 days postanthesis (at least 5 days prior to the cessation of elongation) and continues until about 32 days postanthesis. At the time of the onset of secondary wall cellulose deposition, a sharp decline in protein and uronic acid content occurs. The content of some of the individual neutral sugars changes during development, the most prominent change being a large increase in noncellulosic glucose which occurs just prior to the onset of secondary wall cellulose deposition. Methylation analyses indicate that this glucose, at least in part, is 3-linked. In contrast to the neutral sugars, no significant changes in cell wall amino acid composition are observed during fiber development.  相似文献   

9.
Carbon partitioning to cellulose synthesis   总被引:39,自引:0,他引:39  
This article discusses the importance and implications of regulating carbon partitioning to cellulose synthesis, the characteristics of cells that serve as major sinks for cellulose deposition, and enzymes that participate in the conversion of supplied carbon to cellulose. Cotton fibers, which deposit almost pure cellulose into their secondary cell walls, are referred to as a primary model system. For sucrose synthase, we discuss its proposed role in channeling UDP-Glc to cellulose synthase during secondary wall deposition, its gene family, its manipulation in transgenic plants, and mechanisms that may regulate its association with sites of polysaccharide synthesis. For cellulose synthase, we discuss the organization of the gene family and how protein diversity could relate to control of carbon partitioning to cellulose synthesis. Other enzymes emphasized include UDP-Glc pyrophosphorylase and sucrose phosphate synthase. New data are included on phosphorylation of cotton fiber sucrose synthase, possible regulation by Ca2+ of sucrose synthase localization, electron microscopic immunolocalization of sucrose synthase in cotton fibers, and phylogenetic relationships between cellulose synthase proteins, including three new ones identified in differentiating tracheary elements of Zinnia elegans. We develop a model for metabolism related to cellulose synthesis that implicates the changing intracellular localization of sucrose synthase as a molecular switch between survival metabolism and growth and/or differentiation processes involving cellulose synthesis. Abbreviations: CesA, cellulose synthase; Csl, cellulose-like synthase (genes); DCB, dichlobenil; DPA, days after anthesis; SPS, sucrose phosphate synthase; SuSy, sucrose synthase; P-SuSy, particulate SuSy; S-SuSy, soluble SuSy  相似文献   

10.
Down-regulation of GhADF1 gene expression affects cotton fibre properties   总被引:1,自引:0,他引:1  
Cotton fibre is the most important natural fibres for textile industry. To date, the mechanism that governs the development of fibre traits is largely unknown. In this study, we have characterized the function of a member of the actin depolymerizing factor (ADF) family in Gossypium hirsutum by down-regulation of the gene (designated as GhADF1 ) expression in the transgenic cotton plants. We observed that both the fibre length and strength of the GhADF1 -underexpressing plants increased as compared to the wild-type fibre, and transgenic fibres contained more abundant F-actin filaments in the cortical region of the cells. Moreover, the secondary cell wall of the transgenic fibre appeared thicker and the cellulose content was higher than that of the control fibre. Our results suggest that organization of actin cytoskeleton regulated by actin-associated proteins such as GhADF1 plays a critical role in the processes of elongation and secondary cell wall formation during fibre development. Additionally, our study provided a candidate intrinsic gene for the improvement of fibre traits via genetic engineering.  相似文献   

11.
12.
13.
Cotton fiber is an excellent model system of cellulose biosynthesis; however, it has not been widely studied due to the lack of information about the cellulose synthase (CESA) family of genes in cotton. In this study, we initially identified six full-length CESA genes designated as GhCESA5–GhCESA10. Phylogenetic analysis and gene co-expression profiling revealed that CESA1, CESA2, CESA7, and CESA8 were the major isoforms for secondary cell wall biosynthesis, whereas CESA3, CESA5, CESA6, CESA9, and CESA10 should involve in primary cell wall formation for cotton fiber initiation and elongation. Using integrative analysis of gene expression patterns, CESA protein levels, and cellulose biosynthesis in vivo, we detected that CESA8 could play an enhancing role for rapid and massive cellulose accumulation in Gossypium hirsutum and Gossypium barbadense. We found that CESA2 displayed a major expression in non-fiber tissues and that CESA1, a housekeeping gene like, was predominantly expressed in all tissues. Further, a dynamic alteration was observed in cell wall composition and a significant discrepancy was observed between the cotton species during fiber elongation, suggesting that pectin accumulation and xyloglucan reduction might contribute to cell wall transition. In addition, we discussed that callose synthesis might be regulated in vivo for massive cellulose production during active secondary cell wall biosynthesis in cotton fibers.  相似文献   

14.
15.
Cell elongation and secondary wall deposition are two consecutive stages during cotton fiber development. The mechanisms controlling the progression of these two developmental phases remain largely unknown. Here,we report the functional characterization of the actin-bundling protein GhFIM2 in cotton fiber. Overexpression of GhFIM2 increased the abundance of actin bundles,which was accompanied with accelerated fiber growth at the fastelongating stage. Meanwhile,overexpression of GhFIM2 could propel the onset of secondary cell wall biogenesis. These results indicate that the dynamic rearrangement of actin higher structures involving GhFIM2 plays an important role in the development of cotton fiber cells.  相似文献   

16.
Cotton provides us the most important natural fibre. High fibre quality is the major goal of cotton breeding, and introducing genes conferring longer, finer and stronger fibre from Gossypium barbadense to Gossypium hirsutum is an important breeding strategy. We previously analysed the G. barbadense fibre development mechanism by gene expression profiling and found two homoeologous fibre‐specific α‐expansins from G. barbadense, GbEXPA2 and GbEXPATR. GbEXPA2 (from the DT genome) is a classical α‐expansin, while its homoeolog, GbEXPATR (AT genome), encodes a truncated protein lacking the normal C‐terminal polysaccharide‐binding domain of other α‐expansins and is specifically expressed in G. barbadense. Silencing EXPA in G. hirsutum induced shorter fibres with thicker cell walls. GbEXPA2 overexpression in G. hirsutum had no effect on mature fibre length, but produced fibres with a slightly thicker wall and increased crystalline cellulose content. Interestingly, GbEXPATR overexpression resulted in longer, finer and stronger fibres coupled with significantly thinner cell walls. The longer and thinner fibre was associated with lower expression of a number of secondary wall‐associated genes, especially chitinase‐like genes, and walls with lower cellulose levels but higher noncellulosic polysaccharides which advocated that a delay in the transition to secondary wall synthesis might be responsible for better fibre. In conclusion, we propose that α‐expansins play a critical role in fibre development by loosening the cell wall; furthermore, a truncated form, GbEXPATR, has a more dramatic effect through reorganizing secondary wall synthesis and metabolism and should be a candidate gene for developing G. hirsutum cultivars with superior fibre quality.  相似文献   

17.
Cotton fiber is an ideal model for studying plant cell elongation and cell wall biogenesis, but the genes that are critical for the regulation of fiber development are largely unknown. We report here the cloning and characterization of a receptor-like kinase gene (designated GhRLK1), expression of which is induced during the period of active secondary wall synthesis in the cotton fiber cells. We demonstrate that GhRLK1 is located in the plasma membrane and shows dual specificity as both a serine/threonine kinase and a tyrosine kinase. Our results suggest a possible role of GhRLK1 in the signal transduction pathway that is involved in the induction and maintenance of active secondary wall formation during fiber development.  相似文献   

18.
19.
Gene expression changes and early events in cotton fibre development   总被引:7,自引:0,他引:7  
Lee JJ  Woodward AW  Chen ZJ 《Annals of botany》2007,100(7):1391-1401
  相似文献   

20.
Two homologous cotton (Gossypium hirsutum L.) genes, GhCTL1 and GhCTL2, encode members of a new group of chitinase-like proteins (called the GhCTL group) that includes other proteins from two cotton species, Arabidopsis, rice, and pea. Members of the GhCTL group are assigned to family GH19 glycoside hydrolases along with numerous authentic chitinases (http://afmb.cnrs-mrs.fr/CAZY/index.html), but the proteins have novel consensus sequences in two regions that are essential for chitinase activity and that were previously thought to be conserved. Maximum parsimony phylogenetic analyses, as well as Neighbor-Joining distance analyses, of numerous chitinases confirmed that the GhCTL group is distinct. A molecular model of GhCTL2 (based on the three-dimensional structure of a barley chitinase) had changes in the catalytic site that are likely to abolish catalytic activity while retaining potential to bind chitin oligosaccharides. RNA blot analysis showed that members of the GhCTL group had preferential expression during secondary wall deposition in cotton lint fiber. Cotton transformed with a fusion of the GhCTL2 promoter to the beta -d-glucuronidase gene showed preferential reporter gene activity in numerous cells during secondary wall deposition. Together with evidence from other researchers that mutants in an Arabidopsis gene within the GhCTL group are cellulose-deficient with phenotypes indicative of altered primary cell walls, these data suggest that members of the GhCTL group of chitinase-like proteins are essential for cellulose synthesis in primary and secondary cell walls. However, the mechanism by which they act is more likely to involve binding of chitin oligosaccharides than catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号