首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of [gamma-32P]ATP with a molar excess of the membrane-bound form of mitochondrial ATPase (F1) results in binding of the bulk of the radioactive nucleotide in high affinity catalytic sites (Ka = 10(12) M-1). Subsequent initiation of respiration by addition of succinate or NADH is accompanied by a profound decrease in the affinity for ATP. About one-third of the bound radioactive ATP appears to dissociate, that is, the [gamma-32P]ATP becomes accessible to hexokinase. The NADH-stimulated dissociation of [gamma-32P]ATP is energy-dependent since the stimulation is inhibited by uncouplers of oxidative phosphorylation and is prevented by respiratory chain inhibitors. The rate of the energy-dependent dissociation of ATP that occurs in the presence of NADH, ADP, and Pi is commensurate with the measured initial rate of ATP synthesis in NADH-supported oxidative phosphorylation catalyzed by the same submitochondrial particles. Thus, the rate of dissociation of ATP from the high affinity catalytic site of submitochondrial particles meets the criterion of kinetic competency under the conditions of oxidative phosphorylation. These experiments provide evidence in support of the argument that energy conserved during the oxidation of substrates by the respiratory chain can be utilized to reduce the very tight binding of product ATP in high affinity catalytic sites and to promote dissociation of the nucleotide.  相似文献   

2.
Under steady state photophosphorylating conditions, each ATP synthase complex from spinach thylakoids contains, at a catalytic site, about one tightly bound ATP molecule that is rapidly labeled from medium 32Pi. The level of this bound [32P]ATP is markedly reduced upon de-energization of the spinach thylakoids. The reduction is biphasic, a rapid phase in which the [32P] ATP/synthase complex drops about 2-fold within 10 s, followed by a slow phase, kobs = 0.01/min. A decrease in the concentration of medium 32Pi to well below its apparent Km for photophosphorylation is required to decrease the amount of tightly bound ATP/synthase found just after de-energization and before the rapid phase of bound ATP disappearance. The [32P]ATP that remains bound after the rapid phase appears to be mostly at a catalytic site as demonstrated by a continued exchange of the oxygens of the bound ATP with water oxygens. This bound [32P]ATP does not exchange with medium Pi and is not removed by the presence of unlabeled ATP. The levels of tightly bound ADP and ATP arising from medium ADP were measured by a novel method based on use of [beta-32P]ADP. After photophosphorylation and within minutes after the rapid phase of bound ATP loss, the measured ratio of bound ADP to ATP was about 1.4 and the sum of bound ADP plus ATP was about 1/synthase. This ratio is smaller than that found about 1 h after de-energization. Hence, while ATP bound at catalytic sites disappears, bound ADP appears. The results suggest that during and after de-energization the bound ATP disappears from the catalytic site by hydrolysis to bound ADP and Pi with subsequent preferential release of Pi. These and related observations can be accommodated by the binding change mechanism for ATP synthase with participation of alternating catalytic sites and are consistent with a deactivated state arising from occupancy of one catalytic site on the synthase complex by an inhibitory ADP without presence of Pi.  相似文献   

3.
A previous communication (Fagian, M. M., Pereira da Silva, L. and Vercesi, A. E. (1986) Biochim. Biophys. Acta 852, 262-268) indicated that intramitochondrial calcium inhibits oxidative phosphorylation by decreasing the availability of adenine nucleotides to both the ADP/ATP translocase and the F0F1-ATP synthase complex. In this work we analyzed the interactions of calcium-nucleotide and magnesium-nucleotide complexes with the ATP synthase during catalysis of ATP in equilibrium with [32P]Pi exchange and net synthesis of ATP by submitochondrial particles. Concerning the ATP in equilibrium with [32P]Pi exchange reaction, calcium was ineffective as divalent cation when assayed alone. Furthermore, the addition of calcium increased the magnesium concentration required for half-maximal activation of the exchange, without changing Vmax. With respect to net ATP synthesis, the inhibition by calcium was shown to be due to formation of the CaADP- complex, which competes with MgADP- for the active site of the F0F1-ATP synthase. Moreover, ATP hydrolysis was competitively inhibited by CaATP2-, showing that calcium is able to interact with the enzyme in both forward and backward reactions in the same manner. That high calcium concentrations are required for significant inhibition of ATP synthesis indicates that this inhibition is relevant under conditions in which cytosolic calcium concentrations rise to pathological levels. Therefore, this mechanism may be responsible, in part, for the decrease in cellular ATP content that has been observed to occur when calcium accumulates in the cytosol.  相似文献   

4.
J J Sines  D D Hackney 《Biochemistry》1986,25(20):6144-6149
The synthesis of ATP from highly enriched [18O]Pi by submitochondrial particles driven by succinate oxidation produces distributions of 18O-labeled ATP species that deviate from the distributions predicted by a simple model for the exchange. Control experiments indicate no change in isotopic distribution when [18O]ATP is synthesized from [18O]ADP by adenylate kinase, which is bound to the submitochondrial particles. The observed deviations are in the opposite direction from that produced by heterogeneity due to multiple pathways for ATP synthesis. Two types of complex models can account for the observed deviations. One model has nonequivalence of the Pi oxygens during the exchange reaction, due to incomplete randomization of the Pi oxygens during the reversible cycles of hydrolysis and synthesis of bound ATP. The other model assumes that, during each turnover, a slow transition must occur between a high-exchange and a low-exchange pathway.  相似文献   

5.
These studies provide further information regarding the mechanism of the light/dark-mediated regulation of pyruvate,Pi dikinase in leaves. It is shown that a catalysis-linked phosphorylation of pyruvate,Pi dikinase can be demonstrated following incubation of the enzyme with [32P]phosphoenolpyruvate or [beta-32P]ATP plus Pi, that the enzyme-bound phosphate is located on a histidine residue, and that this phosphate is retained during ADP-mediated inactivation. Further evidence is provided that phosphorylation of this histidine is a prerequisite for ADP-mediated inactivation through phosphorylation of a threonine residue from the beta-phosphate of ADP. It is demonstrated that diethylpyrocarbonate (which forms a derivative with histidine residues) prevents [32P]phosphoenolpyruvate-dependent labeling (catalytic labeling) and [beta-32P]ADP-dependent labeling (inactivation labeling) of the enzyme. In addition, it is demonstrated that oxalate, an analog of pyruvate, competitively inhibits ADP-dependent inactivation with respect to ADP. The significance of these results is discussed with regard to the mechanism of regulation of pyruvate,Pi dikinase in vivo.  相似文献   

6.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

7.
Recent results suggest consideration of a new concept for oxidative phosphorylation in which a prime function of energy is to bring about release of ATP formed at the catalytic site by reversal of hydrolysis. Data with submitochondrial particles include properties of an uncoupler insensitive Pi=HOH exchange, a rapid reversible formation of bound ATP in presence of uncouplers, and predictable patterns of 32-Pi incorporation into ATP in rapid mixing experiments. ADP is confirmed as the primary Pi acceptor in mitochondrial ATP synthesis, but with chloroplasts ADP is also rapidly labeled. Other findings with pyrophosphatase and with transport ATPase harmonize with the new concept. Measurements of the reversal of ATP cleavage and binding by myosin suggest that oxygen exchanges result from reversible cleavage of ATP to ADP and Pi at the catalytic site and that the principal free energy change in ATP cleavage occurs in ATP binding. Reversal of conformational changes accompanying ATP binding and cleavage is proposed to drive the actin filament in contraction. Thus energy transductions linked to ATP in both mitochondria and muscle may occur primarily through protein conformational change.  相似文献   

8.
The kinetics of oxidative phosphorylation catalyzed by bovine heart submitochondrial particles was studied in a range of MgATP and MgADP concentrations from 0.3 to 10 mM. It is shown that, at a low uncoupler concentration (0.9 microM of tetrachlorotrifluoromethylbenzimidazole, the lag period of the reaction increases from 12 s to 2-3 min, and KM for Pi increases severalfold; the value of Vmax remains practically unchanged. Increasing the [MgATP]/[MgADP] concentration ratio, with their total concentration being unchanged, leads to similar changes in the kinetics of oxidative phosphorylation. The value of delta pH generated on the membrane of AS particles at delta microH+ = 60 delta pH was measured using 9-aminoacridine. It was found that the electrochemical potential of H+ ions shows the same thermodynamic shift in the reaction of energy-dependent Pi -ATP exchange throughout the [MgATP]/[MgADP] concentration range studied, from 0.1 to 10: the synthesis on the ATP molecule is provided by the transmembrane transfer of two H+ ions. It was shown that the binding of ATP and/or ADP in the allosteric site, whose saturation is necessary for the functioning of ATP synthase, occurs with equal constants, 1-2 mM. It is concluded that the lag period in the synthesis of ATP indicates the monomolecular transition ATP hydrolase-->ATP sysnthase, which comes about by the action of transmembrane potential. The binding of MgADP or MgATP renders the enzyme structure "more coupled" or "less coupled", respectively. Structural distinctions manifest themselves in a kinetically different behavior of mitochondrial ATP synthase at [MgATP] > [MgADP] and [MgATP] < [MgADP] and do not suggest futile leakage of H+ through the membrane.  相似文献   

9.
R L Cross  P D Boyer 《Biochemistry》1975,14(2):392-398
Evidence is presented that extends and amplifies the concept that in oxidative phosphorylation energy input serves to bring about release of ATP formed at a catalytic site by reversal of hydrolysis. The evidence with beef heart submitochondrial particles includes additional demonstration of uncoupler insensitive Pi leads to HOH exhchange, demonstration that this exchange is sensitive to the specific phosphorylation inhibitor, oligomycin, and demonstration that the small burst of uncoupler-insensitive ATP, rapidly labeled after addition of a tracer of 32Pi, behaves in a manner consistent with its participation as a membrane-bound intermediate in the Pi leads to HOH exchange. In addition, data are presented showing that addition of hexokinase plus glucose to submitochondrial particles in presence of ADP and Pi considerably lowers the Pi leads to HOH exchange but that further addition of cyanide or 2,4-dinitrophenol or both has little additional effect. Such data are compatible with no energy requirement for formation of bound ATP. However, with a large excess of hexokinase, the rate of the Pi leads to HOH exchange is further depressed. This could reflect some use of energy to promote formation of ATP at the catalytic site or to maintain the integrity of the phosphorylation system. Relationships of these findings to related information in the field are discussed.  相似文献   

10.
Bicarbonate, an activating anion of ATP hydrolysis, inhibited ATP synthesis coupled to succinate oxidation in beef heart submitochondrial particles but diminished the lag time and increased the steady-state velocity of the (32)Pi-ATP exchange reaction. The latter effects exclude the possibility that bicarbonate is inducing an intrinsic uncoupling between ATP hydrolysis and proton translocation at the level of F(1)F(o) ATPase. The inhibition of ATP synthesis was competitive with respect to ADP at low fixed [Pi], mixed at high [Pi] and non-competitive towards Pi at any fixed [ADP]. From these results we can conclude that (i) bicarbonate does not bind to a Pi site in the mitochondrial F(1); (ii) it competes with the binding of ADP to a low-affinity site, likely the low-affinity non-catalytic nucleotide binding site. It is postulated that bicarbonate stimulates ATP hydrolysis and inhibits ATP synthesis by modulating the relative affinities of the catalytic site for ATP and ADP.  相似文献   

11.
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase appears to be the only enzyme catalyzing the formation and hydrolysis of Fru-2,6-P2. The enzyme as we isolate it, contains a trace of tightly bound Fru-6-P. In this condition, it exhibited an ATPase activity comparable to its kinase activity. Inorganic phosphate stimulated all of its activities, by increasing the affinity for all substrates and increasing the Vmax of ATP and Fru-2,6-P2 hydrolysis. The enzyme catalyzed ADP/ATP and Fru-6-P/Fru-2,6-P2 exchanges at rates comparable to net reaction rates. It was phosphorylated by both [gamma-32P]ATP and [2-32P] Fru-2,6-P2, and the label from either donor was chased by either unlabeled donor, showing that the bound phosphate is hydrolyzed if not transferred to an acceptor ligand. The rate of labeling of the enzyme by [2-32P]Fru-2,6-P2 was 2 orders of magnitude greater than the maximal velocity of the bisphosphatase and therefore sufficiently fast to be a step in the hydrolysis. Both inorganic phosphate and Fru-6-P increased the rate and steady state of enzyme phosphorylation by ATP. Fru-2,6-P2 inhibited the ATPase and kinase reactions and Fru-6-P inhibited the Fru-2,6 bisphosphatase reaction while ATP and ADP had no effect. Removal of the trace of Fru-6-P by Glu-6-P isomerase and Glu-6-P dehydrogenase reduced enzyme phosphorylation by ATP to very low levels, greatly inhibited the ATPase, and rendered it insensitive to Pi, but did not affect ADP/ATP exchange. (alpha + beta)Methylfructofuranoside-6-P did not increase the rate or steady state labeling by ATP. These results suggest that labeling of the enzyme by ATP involved the production of [2-32P]Fru-2,6-P2 from the trace Fru-6-P. The 6-phosphofructo-2-kinase, fructose 2,6-bisphosphatase, and ATP/ADP exchange were all inhibited by diethylpyrocarbonate, suggesting the involvement of histidine residues in all three reactions. These results can be most readily explained in terms of two catalytic sites, a kinase site whose phosphorylation by ATP is negligible (or whose E-P is labile) and a Fru-2,6 bisphosphatase site which is readily phosphorylated by Fru-2,6-P2.  相似文献   

12.
P Fromme  P Gr?ber 《FEBS letters》1990,269(1):247-251
ATP-hydrolysis was measured with thylakoid membranes during continuous illumination. The concentrations of free and enzyme-bound ATP, ADP and Pi were measured using either cold ATP, [gamma-32P]ATP or [14C]ATP. The concentration of free ATP was constant, free ADP and enzyme-bound ATP were below the detection limit. Nevertheless, [gamma-32P]ATP was bound, hydrolyzed and 32Pi was released. The ADP was not released from the enzyme but cold Pi was bound from the medium, cold ATP was resynthesized and released. A quantitative analysis gave the following rate constants: ATP-binding kATP = 2 . 10(5) M-1 s-1, ADP-release: kADP less than 10(-2)s-1, Pi-release: kPi = 0.1 s-1. These rate constants are considerably smaller than under deenergized conditions. The rate constant for the release of ATP can be estimated to be at least 0.2 s-1 under energized conditions. Obviously, energization of the membrane, i.e. protonation of the enzyme leads mainly to a decrease of the rate of ATP-binding, to an increase of the rate of ATP release and to a decrease of the rate of ADP-release.  相似文献   

13.
J M Zhou  Z X Xue  Z Y Du  T Melese  P D Boyer 《Biochemistry》1988,27(14):5129-5135
Whether the tightly bound ADP that can cause a pronounced inhibition of ATP hydrolysis by the chloroplast ATP synthase and F1 ATPase (CF1) is bound at catalytic sites or at noncatalytic regulatory sites or both has been uncertain. We have used photolabeling by 2-azido-ATP and 2-azido-ADP to ascertain the location, with Mg2+ activation, of tightly bound ADP (a) that inhibits the hydrolysis of ATP by chloroplast ATP synthase, (b) that can result in an inhibited form of CF1 that slowly regains activity during ATP hydrolysis, and (c) that arises when low concentrations of ADP markedly inhibit the hydrolysis of GTP by CF1. The data show that in all instances the inhibition is associated with ADP binding without inorganic phosphate (Pi) at catalytic sites. After photophosphorylation of ADP or 2-azido-ADP with [32P]Pi, similar amounts of the corresponding triphosphates are present on washed thylakoid membranes. Trials with appropriately labeled substrates show that a small portion of the tightly bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling by an ADP moiety at a catalytic site. We also report the occurrence of a 1-2-min delay in the onset of the Mg2+-induced inhibition after addition of CF1 to solutions containing Mg2+ and ATP, and that this delay is not associated with the filling of noncatalytic sites. A rapid burst of Pi formation is followed by a much lower, constant steady-state rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
J H Wang  J Cesana  J C Wu 《Biochemistry》1987,26(17):5527-5533
Bovine heart F1-adenosinetriphosphatase (F1) was labeled specifically and precisely with 7-chloro-4-nitro-2,1,3-[14C]benzoxadiazole ([14C]NBD-Cl). The stereospecifically labeled F1 (O-beta'-[14C]-NBD-F1) was partially reactivated by LiCl treatment, which could cause rearrangement of the beta subunits to form O-beta', beta'-[14C]NBD-F1. Both labeled enzymes were used to combine with F1-deficient submitochondrial particles (ASU) to form the reconstituted particles O-beta'-NBD-F1-ASU and O-beta', beta'-NBD-F1-ASU, respectively. A comparison of the observed steady-state rates of catalytic ATP hydrolysis and oxidative phosphorylation by these specifically labeled submitochondrial particles (SMP) with those of the unlabeled control samples suggests that oxidative phosphorylation involves more active sites of F1 than catalytic ATP hydrolysis. A comparison of the observed ATPase activity of uncoupled labeled SMP and the activity for ATP-driven reverse electron transport in coupled labeled SMP with the corresponding values of the unlabeled control samples shows that the observed fractional inhibition ATP hydrolysis is the same for both the coupled SMP and uncoupled SMP and is determined only by the state of stereospecific labeling of F1. The effect of preincubation under simulated oxidative phosphorylation conditions on the ATPase activity of the unperturbed, specifically NBD-labeled submitochondrial particles was also examined. The data show that respiration-generated proton flux does not cause the beta subunits in bovine heart proton-ATPase to continue switching places with each other during oxidative phosphorylation. Samples of NBD-F1 with specific labels on its nonhydrolytic beta' subunits but none on its hydrolytic beta' subunit were prepared by a three-cycle process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The electrical and chemical components of the electrochemical proton gradient of submitochondrial particles can be monitored simultaneously by continuously recording optical signals from the probes oxonol-VI and 9-aminoacridine. Either respiration or ATP hydrolysis causes a red shift in the absorption spectrum of oxonol-VI indicative of a membrane potential and a decrease of the fluorescence of 9-aminoacridine indicative of a pH gradient. The magnitude of the membrane potential and pH gradient formed by respiring submitochondrial particles can be modulated by the thermodynamic phosphorylation potential (deltaGp) of the adenine nucleotide system. deltaGp is the Gibbs free energy of ATP synthesis and is defined by the relationship deltaGp = -deltaG'o + RTln([ATP]/[ADP][Pi] where deltaG'o is the standard free energy of ATP hydrolysis. Increasing values of deltaGp cause an increase in the steady state magnitudes of both the membrane potential and pH gradient. Thermodynamic phosphorylation potential titration experiments indicate that the electrochemical proton gradient normally maintained by respiring submitochondrial particles has an energy equivalent to 10.5 to 10.9 kcal/mol.  相似文献   

16.
Submitochondrial particles from beef heart, washed with dilute solutions of KCl so as to activate the latent, membrane-bound ATPase, F1, may be used to study single site catalysis by the enzyme. [gamma-32P]ATP, incubated with a molar excess of catalytic sites, a condition which favors binding of substrate in only a single catalytic site on the enzyme, is hydrolyzed via a four-step reaction mechanism. The mechanism includes binding in a high affinity catalytic site, Ka = 10(12)M-1, a hydrolytic step for which the equilibrium constant is near unity, and two product release steps in which Pi dissociates from catalytic sites about 10 times more rapidly than ADP. Catalysis by the membrane-bound ATPase also is characterized by a 10(6)-fold acceleration in the rate of net hydrolysis of [gamma-32P]ATP, bound in the high affinity catalytic site, that occurs when substrate is made available to additional catalytic sites on the enzyme. These aspects of the reaction mechanism of the ATPase of submitochondrial particles closely parallel the reaction mechanism determined for solubilized, homogeneous F1 (Grubmeyer, C., Cross, R. L., and Penefsky, H. S. (1982) J. Biol. Chem. 257, 12092-12100). The finding that removal of the enzyme from the membrane does not significantly alter the properties of single site catalysis lends support to models of ATP synthesis in oxidative phosphorylation, catalyzed by membrane-bound F1, that have been based on the study of the soluble enzyme.  相似文献   

17.
Cycle-purified microtubule protein from mammalian brain incorporated [32P]Pi upon incubation with [gamma-32P]GTP under the conditions used to promote assembly. This phosphorylation also occurred in the same proteins when phosphorylated with [gamma-32P]ATP and was only slightly stimulated by cAMP. GTP was a much less effective substrate than ATP. The transfer of phosphoryl groups from [gamma-32P]GTP to endogenous proteins followed a linear time-course and was stimulated by low concentrations of ATP and, more efficiently, by ADP. These data are in agreement with the predictions derived from a mechanism of phosphorylation by which [gamma-32P]GTP does not act as a phosphoryl donor for the protein kinase activity but, instead, only as a repository of high group transfer potential phosphoryl groups used to make [gamma-32P]ATP, from contaminating ADP, by means of the nucleoside diphosphate kinase activity. Using 100 mM fluoride, which suppressed protein phosphorylation without inhibiting the nucleoside diphosphate kinase activity, formation of [gamma-32P]ATP was detected. Fluoride was also able to protect microtubules from a slow depolymerization which was found to occur during long-term incubation of microtubules. This indicates that the phosphorylation observed in the presence of GTP is sufficient to destabilize microtubules.  相似文献   

18.
The F1-ATPase from Micrococcus lysodeikticus is isolated in the absence of exogenous nucleotides. After removing loosely bound nucleotides from the isolated enzyme by gel permeation chromatography, analysis for tightly bound nucleotides revealed in 14 experiments 0.4 +/- 0.1 mol ADP, 0.5 +/- 0.2 mol GDP, and 0.8 +/- 0.2 mol ATP per mol of F1. Incubation of the isolated enzyme with Mg2+ or Ca2+ did not alter the endogenous nucleotide composition of the enzyme, indicating that endogenous ATP is not bound to a catalytic site. Incubation of the enzyme with P(i) decreased the amount of tightly bound ADP and GDP but did not effect the ATP content. Hydrolysis of MgATP in the presence of sulfite raised the tightly bound ADP and lowered tightly bound GDP on the enzyme. In the reciprocal experiment, hydrolysis of MgGTP in the presence of sulfite raised tightly bound GDP and lowered tightly bound ADP. Turnover did not affect the content of tightly bound ATP on the enzyme. These results suggest that endogenous ADP and GDP are bound to exchangeable catalytic sites, whereas endogenous ATP is bound to noncatalytic sites which do not exchange. The presence of endogenous GDP on catalytic sites of isolated F1 suggests that the F0F1-ATP synthase of M. lysodeikticus might synthesize both GTP and ATP under physiological conditions. In support of this hypothesis, we have found that plasma membrane vesicles derived from M. lysodeikticus synthesize [32P]GTP from [32P]P(i) using malate as electron donor for oxidative phosphorylation.  相似文献   

19.
Oxidative phosphorylation catalyzed by bovine heart submitochondrial particles appears to exhibit negative cooperativity with respect to [ADP] and positive cooperativity in catalysis. Eadie-Hofstee plots (v/[S]versus v) of the kinetics of oxidative phosphorylation at the variable ADP concentration range of 1-1200 microM were curvilinear and could be analyzed for two apparent KmADP values differing by one order of magnitude, and two apparent Vmax values. The KmADP values with either NADH or succinate as the respiratory substrate were in the ranges of 10 and 100 microM, and the Vmax values in nmol of ATP formed X min-1 (mg of protein)-1 were, respectively, 500 and 1840 when NADH was the oxidizable substrate, and 550 and 100 when succinate was the energy source. Site-site cooperativity of the ATP synthase, which is a central feature of current theories for the mechanism of oxidative phosphorylation, has been well-documented for ATP hydrolysis by isolated F1-ATPase, but never before demonstrated for mitochondrial ATP synthesis.  相似文献   

20.
Eosin-5-maleimide is impermeable to the inner mitochondrial membrane, exhibiting essentially no reactivity with matrix glutathione or with beta-hydroxybutyrate dehydrogenase located on the matrix surface of the inner membrane. In intact mitochondria, eosin-5-maleimide is unreactive with the ADP/ATP antiporter even under conditions which promote maximal labeling by N-[3H]ethylmaleimide (i.e., ADP present). However, eosin-5-maleimide readily labels the ADP/ATP antiporter in "inverted" inner membrane vesicles even in the presence of N-ethylmaleimide. Labeling is prevented if the vesicles are prepared from mitochondria pretreated with carboxyatractyloside. In contrast to the ADP/ATP antiporter, essential sulfhydryl groups of the Pi/H+ symporter are accessible to eosin-5-maleimide in intact mitochondria with optimal inhibition of phosphate transport being observed at 25 degrees C. Eosin-5-maleimide also prevents labeling of the Pi/H+ symporter by N-[3H]ethylmaleimide. These results show that essential sulfhydryl groups of the ADP/ATP antiporter and the Pi/H+ symporter have differing reactivities and locations in functionally intact mitochondria. With respect to eosin-5-maleimide, sulfhydryl groups of the ADP/ATP carrier occur in two distinct classes, both of which are inaccessible in intact mitochondria. Only one class, depending on conditions, can be exposed in submitochondrial particles. In contrast, sulfhydryl group(s) of the Pi/H+ symporter behave as a single reactive class which is readily accessible in mitochondria at 25 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号