首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rod outer segments of toad retina contain a guanylate cyclase activity of about 3 +/- 1 nmol of cGMP formed/min per mg protein. In darkness this value is largely independent of the Ca2+ concentration, although it is enhanced by light upon lowering the Ca2+ concentration from 10(-5) to 10(-8) M. The activating effect of light on cyclase at low Ca2+ concentrations is enlarged upon increasing the light intensity. With a flash of light bleaching 7 X 10(-2) percent of rhodopsin, cyclase activity increased by a factor of 30 when Ca2+ levels dropped from 10(-5) to 10(-8) M. In view of recent observations that shortly after a flash of light the calcium activity inside the photoreceptor cell decreases, it seems likely that Ca2+ plays a regulatory role on cGMP metabolism in visual excitation.  相似文献   

2.
K L Puckett  S M Goldin 《Biochemistry》1986,25(7):1739-1746
Parallel lines of evidence have suggested that light initiates changes in both cGMP metabolism and calcium levels in rod outer segments (ROS). We report that cGMP stimulates release of a pool of Ca2+ actively accumulated within purified ROS disks. Disks were purified and actively loaded with 45Ca2+ by an associated ATP-dependent calcium uptake activity as previously described [Puckett, K.L., Aronson, E.T., & Goldin, S.M. (1985) Biochemistry 24, 390-400]. Spikes of 45Ca2+ released from disks were observed in a rapid superfusion system. The Ca2+ release was specifically stimulated by physiological levels of cGMP (Kapp approximately 20 microM; Hill coefficient = 1.7). 8-Bromo-cGMP could also activate the release mechanism, but cAMP was ineffective. At cGMP levels of greater than or equal to 100 microM, approximately 20% of the loaded Ca2+ was released. The Ca2+ release rate at saturating cGMP levels reached a maximum within the 10-s time resolution of the assay system. In contrast to other recent reports of cGMP activation of ROS ion conductances, the majority of the release activity terminated in a spontaneous manner, suggestive of an intrinsic inactivation process. The amount of Ca2+ released and the release kinetics were similar to the presence or absence of an unbleached pool of rhodopsin. Cyclic nucleotides did not stimulate release from disks passively equilibrated with 45Ca2+, i.e., in the absence of ATP but otherwise under identical conditions. Preincubation of the disks with cGMP also reduced the level of ATP-dependent Ca2+ uptake (approximately 30%); this apparent inhibition may be due to activation of the release mechanism, rather than direct modulation of the uptake activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Cyclic GMP is the second messenger in phototransduction and regulates the photoreceptor current. In the present work, we tried to understand the regulation mechanism of cytoplasmic cGMP levels in frog photoreceptors by measuring the photoreceptor current using a truncated rod outer segment (tROS) preparation. Since exogenously applied substance diffuses into tROS from the truncated end, we could examine the biochemical reactions relating to the cGMP metabolism by manipulating the cytoplasmic chemical condition. In tROS, exogenously applied GTP produced a dark current whose amplitude was half-maximal at approximately 0.4 mM GTP. The conductance for this current was suppressed by light in a fashion similar to when it is activated by cGMP. In addition, no current was produced in the absence of Mg2+, which is known to be necessary for the guanylate cyclase activity. These results indicate that guanylate cyclase was present in tROS and synthesized cGMP from exogenously applied GTP. The enzyme activity was distributed throughout the rod outer segment. The amount of synthesized cGMP increased as the cytoplasmic Ca2+ concentration of tROS decreased, which indicated the activation of guanylate cyclase at low Ca2+ concentrations. Half-maximal effect of Ca2+ was observed at approximately 100 nM. tROS contained the proteins involved in the phototransduction mechanism and therefore, we could examine the regulation of the light response waveform by Ca2+. At low Ca2+ concentrations, the time course of the light response was speeded up probably because cGMP recovery was facilitated by activation of the cyclase. Then, if the cytoplasmic Ca2+ concentration of a photoreceptor decreases during light stimulation, the Ca2+ decrease may explain the acceleration of the light response during light adaptation. In tROS, however, we did observe an acceleration during repetitive light flashes when the cytoplasmic Ca2+ concentration increased during the stimulation. This result suggests the presence of an additional light-dependent mechanism that is responsible for the acceleration of the light response during light adaptation.  相似文献   

4.
The stimulation of luteinizing hormone (LH) release and cyclic GMP (cGMP) production in rat anterior pituitary cells by gonadotropin-releasing hormone (GnRH) are receptor mediated and calcium dependent, and have been shown to be accompanied by increased phospholipid turnover and arachidonic acid release. The incorporation of 32Pi into the total phospholipid fraction of pituitary gonadotrophs was significantly elevated by 10(-8) M GnRH, with specific increases in the labeling of phosphatidylinositol and phosphatidic acid (PA). Since PA acts as a calcium ionophore in several cell types, its effects upon calcium-mediated gonadotroph responses were compared with those elicited by GnRH. In rat pituitary gonadotrophs prepared by centrifugal elutriation, PA stimulated LH release and cGMP production by 9-fold and 5-fold, respectively. The stimulation of LH release by 30 microM PA was biphasic in its dependence on extracellular calcium concentration, rising from zero in the absence of calcium to a maximum of 10-fold at 0.5 mM Ca2+ and declining at higher calcium concentrations. In dose-response experiments, PA was 3-fold more potent at 0.5 mM Ca2+ than at 1.2 mM Ca2+. The cGMP response to PA in cultured gonadotrophs was also calcium dependent, and was progressively enhanced by increasing Ca2+ concentrations up to 1.5 mM. The ability of PA to stimulate both LH release and cGMP formation in a calcium-dependent manner suggests that endogenous PA formed in response to GnRH receptor activation could function as a Ca2+ ionophore in pituitary gonadotrophs, and may participate in the stimulation of gonadotroph responses by GnRH and its agonist analogs.  相似文献   

5.
By the use of digitonin permeabilized presynaptic nerve terminals (synaptosomes), we have found that intrasynaptic mitochondria, when studied "in situ," i.e., surrounded by their cytosolic environment, are able to buffer calcium in a range of calcium concentrations close to those usually present in the cytosol of resting synaptosomes. Adenine nucleotides and polyamines, which are usually lost during isolation of mitochondria, greatly improve the calcium-sequestering activity of mitochondria in permeabilized synaptosomes. The hypothesis that the mitochondria contributes to calcium homeostasis at low resting cytosolic free calcium concentration ([Ca2+]i) in synaptosomes has been tested; it has been found that in fact this is the case. Intrasynaptic mitochondria actively accumulates calcium at [Ca2+]i around 10(-7) M, and this activity is necessary for the regulation of [Ca2+]i. When compared with other membrane-limited calcium pools, it was found that depending on external concentration the calcium pool mobilized from mitochondria is similar or even greater than the IP3- or caffeine-sensitive calcium pools. In summary, the results presented argue in favor of a more prominent role of mitochondria in regulating [Ca2+]i in presynaptic nerve terminals, a role that should be reconsidered for other cellular types in light of the present evidence.  相似文献   

6.
Cyclic GMP has been implicated in controlling the light-regulated conductance of rod photoreceptors of the vertebrate retina. However, there is little direct evidence correlating changes in cGMP concentration with the light-regulated permeability mechanism in living cells. A preparation of intact frog rod outer segments suspended in a Ringer's medium containing low Ca2+ has been used to demonstrate that initial changes in total cellular cGMP concentration parallel changes in the light-regulated membrane current over a wide range of light intensities. At light intensities bleaching from 160 to 5.6 X 10(6) rhodopsin molecules/rod/s, decreases in the response latency for the cGMP kinetics parallel decreases in the latent period of the electrical response. Further, changes in the rate of the cGMP decrease parallel the rate of membrane current suppression as the light intensity is varied. Up to 10(5) cGMP molecules are hydrolyzed per photolyzed rhodopsin, consistent with in vitro studies showing that each bleached rhodopsin can activate over 100 phosphodiesterase molecules. Addition of the Ca2+ ionophore, A23187, does not affect the initial kinetics of the cGMP decrease or of the electrical response, excluding a direct role for Ca2+ in the initial events of phototransduction. These results are consistent with cGMP being the intracellular messenger that links rhodopsin isomerization with changes in membrane permeability upon illumination. It is unlikely, however, that light-induced changes in total cGMP concentration are the sole regulators of membrane current. This is suggested by several observations: at bright light intensities, the subsecond light-induced cGMP decrease is essentially complete prior to complete suppression of membrane current; maximal light-induced decreases in cGMP concentration occur at all light intensities tested, whereas the extent of membrane current suppression varies over the same range of light intensities; changing the external Ca2+ concentration from 1 mM to 10 nM in the dark causes an increase in membrane current that is significantly more rapid than corresponding changes in cGMP concentration. Thus, light-induced changes in total cellular cGMP concentration correlate with some, but not all, aspects of the visual excitation process in vertebrate photoreceptors.  相似文献   

7.
The effects of sodium azide on guanylate cyclase activity of homogenates of rat renal cortex and on the guanosine 3':5'-monophosphate (cGMP) content of cortical slices were examined and compared to those of carbamylcholine and NaF. In complete Krebs-Ringer bicarbonate buffer containing 10 mM theophylline, tissue cGMP content was increased 5- to 6-fold by 0.05 mM carbamylcholine or 10 mM NaN3, and 3-fold by 10 mM NaF. Increases in cGMP were maximal in response to these concentrations of the agonists and occurred within 2 min. Exclusion of Ca2+ from the incubation media reduced basal cGMP by 50% in 20 min and abolished responses to carbamylcholine and NaF, while exclusion of Mg2+ was without effect. Analogous reductions in cGMP were observed in complete buffer containing 1 mM tetracaine, an agent which blocks movement of Ca2+ across and binding to biologic membranes. By contrast, exclusion of Ca2+ or addition of tetracaine did not alter relative cGMP responses to NaN3 (6-fold increase over basal), although levels were reduced in slices exposed to these buffers for 20 min. When slices were incubated without Ca2+ or with tetracaine for only 2 min prior to addition of agonists, basal cGMP did not decline. Under these conditions, both absolute and relative increases in cGMP in response to NaN3 were comparable to those of slices incubated throughout in complete buffer, while carbamylcholine and NaF effects on cGMP were abolished. NaN3 increased guanylate cyclase activity of whole homogenates (10- to 20-fold), and of the 100,000 X g soluble (20-fold) and particulate (4-fold) fractions of cortex. Prior incubation of slices with NaN3 in the presence or absence of Ca2+ or with Ca2+ plus tetracaine also markedly enhanced enzyme activity in homogenates and subcellular fractions subsequently prepared from these slices. In the presence of 3 mM excess MnCl2, NaN3 raised the apparent Km for MnGTP of soluble guanylate cyclase from 0.11 mM to 0.20 mM, and reduced enzyme dependence on Mn2+. Thus, when Mg2+ was employed as the sole divalent cation in the enzyme reaction mixture basal and NaN3-responsive activities were 7% and 30% of those seen with optimal concentrations of Mn2+, respectively. Under a variety of assay conditions where responses to NaN3 were readily detectable, alterations in guanylate cyclase activities could not be demonstrated in response to carbamylcholine or NaF. By contrast Ca2+ increased the guanylate cyclase activity 6- to 7-fold over basal under conditions of reduced Mn2+ (0.75 mM Mn2+/1 mM GTP). This latter effect of Ca2+ was shared by Mg2+ and not blocked by tetracaine. Carbamylcholine, NaF, Ca2+, and NaN3 all failed to alter cGMP phosphodiesterase activity in cortex. Thus, while carbamylcholine and NaF enhance renal cortical cGMP accumulation through actions which are dependent upon the presence of extracellular Ca2+, NaN3 stimulates cGMP generation in this tissue through an apparently distinct Ca2+-independent mechanism.  相似文献   

8.
In Dictyostelium discoideum extracellular cAMP stimulates guanylyl cyclase and phospholipase C; the latter enzyme produces Ins(1,4,5)P3 which releases Ca2+ from internal stores. The following data indicate that intracellular Ca2+ ions inhibit guanylyl cyclase activity. 1) In vitro, Ca2+ inhibits guanylyl cyclase with IC50 = 41 nM Ca2+ and Hill-coefficient of 2.1. 2) Extracellular Ca2+ does not affect basal cGMP levels of intact cells. In electro-permeabilized cells, however, cGMP levels are reduced by 85% within 45 s after addition of 10(-6) M Ca2+ to the medium; halfmaximal reduction occurs at 200 nM extracellular Ca2+. 3) Receptor-stimulated activation of guanylyl cyclase in electro-permeabilized cells is also inhibited by extracellular Ca2+ with half-maximal effect at 200 nM Ca2+. 4) In several mutants an inverse correlation exists between receptor-stimulated Ins(1,4,5)P3 production and cGMP formation. We conclude that receptor-stimulated cytosolic Ca2+ elevation is a negative regulator of receptor-stimulated guanylyl cyclase.  相似文献   

9.
It has been believed that retinal guanylyl cyclase (retGC), a key enzyme in the cGMP recovery to the dark state, is solely activated by guanylyl cyclase-activating proteins (GCAPs) in a Ca2+-sensitive manner. However, a question has arisen as to whether the observed GCAP stimulation of retGC is sufficient to account for the cGMP recovery because the stimulated activity measured in vitro is less than the light/GTP-activated cGMP phosphodiesterase activity. Here we report that the retGC activation by GCAPs is larger than previously reported and that a preincubation with adenine nucleotide is essential for the large activation. Under certain conditions, ATP is two times more effective than adenylyl imidodiphosphate (AMP-PNP), a hydrolysis-resistant ATP analog; however, this study mainly used AMP-PNP to focus on the role of adenine nucleotide binding to retGC. When photoreceptor outer segment homogenates are preincubated with AMP-PNP (EC50 = 0.65 +/- 0.20 mM), GCAP2 enhanced the retGC activity 10-13 times over the control rate. Without AMP-PNP, GCAP2 stimulated the control activity only 3-4-fold as in previous reports. The large activation is due to a GCAP2-dependent increase in Vmax without an alteration of retGC affinity for GCAP2 (EC50 = 47.9 +/- 2.7 nM). GCAP1 stimulated retGC activity in a similar fashion but with lower affinity (EC50 = 308 nM). In the AMP-PNP preincubation, low Ca2+ concentrations are not required, and retGC exists as a monomeric form. This large activation is accomplished through enhanced action of GCAPs as shown by Ca2+ inhibition of the activity (IC50 = 178 nM). We propose that retGC is activated by a two-step mechanism: a conformational change by ATP binding to its kinase homology domain under high Ca2+ concentrations that allows large enhancement of GCAP activation under low Ca2+ concentrations.  相似文献   

10.
Substances known to alter cyclic nucleotide levels in cells were applied to the isolated toad retina and effects on rod electrical and adaptive behavior were studied. The retina was continually superfused in control ringer’s or ringer’s containing one or a combination of drugs, and rod activity was recorded intracellularly. Superfusion with cGMP, Bu(2)GMP, isobutylmethylxanthine (IBMX; a phosphodiesterase inhibitor), or PGF(2α) (a prostaglandin) caused effects in rods that closely match those observed when extracellular Ca(2+) levels were lowered. For example, short exposures (up to 6 min) of the retina to these substances caused depolarization of the membrane potential, increase in response amplitudes, and some changes in waveform; but under dark-adapted or partially light-adapted conditions receptor sensitivity was virtually unaffected. That is, the position of the V-log I curve on the intensity axis was determined by the prevailing light level, not by drug level. These drugs, like lowered extracellular Ca(2+), also decreased the period of receptor saturation after a bright-adapting flash, resulting in an acceleration of the onset of membrane and sensitivity recovery during dark adaptation.

Long-term (6-15 min) exposure of a dark-adapted retina to 5 mM IBMX or a combination of IBMX and cGMP caused a loss of response amplitude and a desensitization of the rods that was similar to that observed in rods after a long-term low Ca(2+) (10(-9)M) treatment. Application of high (3.2 mM) Ca(2+) to the retina blocked the effects of applied Bu(2)cGMP. PGE(1) superfusion mimicked the effects of increasing extracellular Ca(2+). The results show that increased cGMP and lowered Ca(2+) produce similar alterations in the electrical activity of rods. These findings suggest that Ca(2+) and cGMP are interrelated messengers. We speculate that low Ca(2+) may lead to increased intracellular cGMP, and/or that applied cGMP, and/or that applied cGMP may lower cytosol Ca(2+), perhaps by stimulating Ca(2+)- ATPase pumps in the outer segment.

  相似文献   

11.
We show that microinjecting cyclic GMP (cGMP) into unfertilized sea urchin eggs activates them by stimulating a rise in the intracellular free calcium ion concentration ([Ca2+]i). The increase in [Ca2+]i is similar in both magnitude and duration to the transient that activates the egg at fertilization. It is due to mobilization of calcium from intracellular stores but is not prevented by the inositol trisphosphate (InsP3) antagonist heparin. Furthermore, cGMP does not stimulate the eggs Na+/H+ antiport when the [Ca2+]i transient is blocked by the calcium chelator bis-(O-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA), suggesting that cGMP does not activate eggs by interacting with the their phosphoinositide signaling pathway. However, the [Ca2+]i increase and activation are prevented in eggs in which the InsP3-sensitive calcium stores have been emptied by the prior microinjection of the InsP3 analogue inositol 1,4,5-trisphosphorothioate. These data indicate that cGMP activates eggs by stimulating the release of calcium from an InsP3-sensitive calcium store via a novel, though unidentified, route independent of the InsP3 receptor.  相似文献   

12.
The present studies were performed in order to measure the effects of cyclic GMP (cGMP) on the regulation of free cytosolic calcium [( Ca2+]i) in the pancreatic acinar cell. In guinea pig dispersed pancreatic acini the findings demonstrated that the Ca2+ ionophore, Br A23187, caused a sustained increase in [Ca2+]i in the presence of 3 mM CaCl2 in the media and a transient 20 fold rise in cellular cGMP followed by a sustained 3-4 fold rise in cellular cGMP. Increasing cellular cGMP with nitroprusside, hydroxylamine or dibutyryl cGMP had no effect on resting [Ca2+]i. However, these agents attenuated the increase in [Ca2+]i resulting from Br A23187-induced Ca2+ influx. Nitroprusside also attenuated the carbachol-induced sustained rise in [Ca2+]i that resulted from Ca2+ influx. The nitroprusside effect on carbachol-stimulated acini occurred without decreasing Ca2+ influx across the plasma membrane or alteration in the mobilization of Ca2+ from the intracellular agonist-sensitive pool. Inhibition of the increase in cellular cGMP caused by Br A23187 by the guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), resulted in augmentation of the increase in [Ca2+]i. This augmentation was reversed with dibutyryl cGMP. These results indicated that cGMP regulated [Ca2+]i in the pancreatic acinar cell. The mechanism involves the removal of Ca2+ from the cytoplasm.  相似文献   

13.
cGMP mediates vertebrate phototransduction by directly gating cationic channels on the plasma membrane of the photoreceptor outer segment. This second messenger is produced by a guanylate cyclase and hydrolyzed by a light-activated cGMP-phosphodiesterase. Both of these enzyme activities are Ca2+ sensitive, the guanylate cyclase activity being inhibited and the light-activated phosphodiesterase being enhanced by Ca2+. Changes in these activities due to a light-induced decrease in intracellular Ca2+ are involved in the adaptation of photoreceptors to background light. We describe here experiments to characterize the guanylate cyclase activity and its modulation by Ca2+ using a truncated rod outer segment preparation, in order to evaluate the enzyme's role in light adaptation. The outer segment of a tiger salamander rod was drawn into a suction pipette to allow recording of membrane current, and the remainder of the cell was sheared off with a probe to allow internal dialysis. The cGMP-gated channels on the surface membrane were used to monitor conversion of GTP, supplied from the bath, into cGMP by the guanylate cyclase in the outer segment. At nominal 0 Ca2+, the cyclase activity had a Km of 250 microM MgGTP and a Vmax of 25 microM cGMP s-1 in the presence of 1.6 mM free Mg2+; in the presence of 0.5 mM free Mg2+, the Km was 310 microM MgGTP and the Vmax was 17 microM cGMP s-1. The stimulation by Mg2+ had an EC50 of 0.2 mM Mg2+ for MgGTP at 0.5 mM. Ca2+ inhibited the cyclase activity. In a K+ intracellular solution, with 0.5 mM free Mg2+ and 2.0 mM GTP, the cyclase activity was 13 microM cGMP s-1 at nominal 0 Ca2+; Ca2+ decreased this activity with a IC50 of approximately 90 nM and a Hill coefficient of approximately 2.0.  相似文献   

14.
Identification of the signaling pathways that regulate cyclic nucleotide microdomains is essential to our understanding of cardiac physiology and pathophysiology. Although there is growing evidence that the plasma membrane Ca(2+)/calmodulin-dependent ATPase 4 (PMCA4) is a regulator of neuronal nitric-oxide synthase, the physiological consequence of this regulation is unclear. We therefore tested the hypothesis that PMCA4 has a key structural role in tethering neuronal nitric-oxide synthase to a highly compartmentalized domain in the cardiac cell membrane. This structural role has functional consequences on cAMP and cGMP signaling in a PMCA4-governed microdomain, which ultimately regulates cardiac contractility. In vivo contractility and calcium amplitude were increased in PMCA4 knock-out animals (PMCA4(-/-)) with no change in diastolic relaxation or the rate of calcium decay, showing that PMCA4 has a function distinct from beat-to-beat calcium transport. Surprisingly, in PMCA4(-/-), over 36% of membrane-associated neuronal nitric-oxide synthase (nNOS) protein and activity was delocalized to the cytosol with no change in total nNOS protein, resulting in a significant decrease in microdomain cGMP, which in turn led to a significant elevation in local cAMP levels through a decrease in PDE2 activity (measured by FRET-based sensors). This resulted in increased L-type calcium channel activity and ryanodine receptor phosphorylation and hence increased contractility. In the heart, in addition to subsarcolemmal calcium transport, PMCA4 acts as a structural molecule that maintains the spatial and functional integrity of the nNOS signaling complex in a defined microdomain. This has profound consequences for the regulation of local cyclic nucleotide and hence cardiac β-adrenergic signaling.  相似文献   

15.
Direct action of cGMP on the conductance of retinal rod plasma membrane   总被引:2,自引:0,他引:2  
In order to identify the intracellular transmitter in the phototransduction process in the retinal rod, the action of cGMP, 2',3'cGMP, cAMP, GMP and Ca2+ on the isolated inside-out patches of the plasma membrane of retinal rods of the frog (Rana temporaria) was studied. cGMP applied at the intracellular membrane surface markedly increased the conductance of patches. The action of cGMP took place in the absence of nucleoside triphosphates and, hence, was not mediated by protein phosphorylation. The dependence of cGMP-induced component of conductance on cGMP concentration was S-shaped, with half-saturation within 10-30 microM and a Hill coefficient of about 1.7-1.8. cAMP, 2',3'cGMP, GMP (1 mM) did not exhibit any action on the membrane. Ca2+ did not affect the patch conductance in the absence of cGMP. In the presence of cGMP, lowering Ca2+ concentration from 10(-3) to 10(-8) M decreased the cGMP-dependent component of conductance by 20-30%. The approximate value of the elementary event underlying the cGMP-induced conductance estimated from the magnitude of the variance of the cGMP-induced current is within 100-250 fS. We suppose that the cGMP-activated channels found by us provide the light-sensitive conductance of the rod plasma membrane in vivo and that cGMP is the intracellular transmitter acting in the phototransduction process.  相似文献   

16.
When retinas from dark-adapted C57BL/6 mice were incubated in the dark for 5 min at 37 degrees C in Earle's medium, they contained 80-120 pmol/mg protein of cGMP and about 13 pmol/mg protein of cAMP. When the incubation in darkness was in calcium-deficient Earle's medium with 3 mM EGTA, a 10-20 fold increase occurred in the cGMP level, peaking at 2-3 min, but no change occurred in cAMP. This elevated level fell in 3 min to normal dark levels on return to normal Earle's medium, but was still about three times that of control levels after 15 min in EGTA-containing solution. Bright light after 2 min of dark incubation of dark-adapted retinas resulted in a 40-50% fall in cGMP, and bright light sharply reduced the elevated dark cGMP level of retinas in calcium-deficient media with 3 mM EDTA. However, no depression of normal dark levels of cGMP has thus far been obtained by increasing external calcium levels, even in the presence of the ionophore A23187. All the above phenomena involving dark cGMP levels and calcium are similar in Earle's medium with 100 mM of K+ substituted for Na+. Congenic rodless (rd/rd) mouse retinas have less than 5% of control cGMP and show only traces of calcium sensitivity. Thus, the above phenomena in controls are likely to be largely occurring in rods. The data suggest a dependency of the dark cGMP level on the calcium level, but that the light-induced fall in cGMP may largely be calcium insensitive.  相似文献   

17.
The light-activated guanosine 3',5'-cyclic monophosphate (cyclic GMP) phosphodiesterase (PDE) of frog photoreceptor membranes has been assayed by measuring the evolution of protons that accompanies cyclic GMP hydrolysis. The validity of this assay has been confirmed by comparison with an isotope assay used in previous studies (Robinson et al. 1980. J. Gen. Physiol. 76: 631-645). The PDE activity elicited by either flash or continuous dim illumination is reduced if ATP is added to outer segment suspensions. This desensitization is most pronounced at low calcium levels. In 10(-9) M Ca++, with 0.5 mM ATP and 0.5 mM GTP present, PDE activity remains almost constant as dim illumination and rhodopsin bleaching continue. At intermediate Ca++ levels (10-7-10-5M) the activity slowly increases during illumination. Finally, in 10(-4) and PDE activity is more a reflection of the total number of rhodopsin molecules bleached than of the rate of the rhodopsin bleaching. At intermediate or low calcium levels a short-lived inhibitory process is revealed by observing a nonlinear summation of responses of the enzyme to closely spaced flashes of light. Each flash makes PDE activity less responsive to successive flashes, and a steady state is obtained in which activation and inactivation are balanced. It is suggested that calcium and ATP regulation of PDE play a role in the normal light adaption processes of frog photoreceptor membranes.  相似文献   

18.
In rod photoreceptor cells, the light response is triggered by an enzymatic cascade that causes cGMP levels to fall: excited rhodopsin (Rho*)----rod G-protein (transducin, Gt)----cGMP-phosphodiesterase (PDE). This results in the closure of plasma membrane channels that are gated by cGMP. PDE activation by Gt occurs when GDP bound to the alpha-subunit of Gt (Gt alpha) is exchanged with free GTP. The interaction of Gt alpha-GTP with the gamma-subunits of PDE releases their inhibitory action and causes cGMP hydrolysis. Inactivation is thought to be caused by subsequent hydrolysis of Gt alpha-GTP by an intrinsic Gt-GTPase activity. Here we report that there are two portions of Gt in frog rod outer segments (ROS) expressing different rates of GTP hydrolysis: 19.5 +/- 3 mmol of Gt/mol of Rho, equivalent to that amount which participates in PDE activation, hydrolyzing GTP at a rate of approximately 0.6 turnover/s ("fast") and the remaining Gt (80.5 +/- 3 mmol/mol Rho) hydrolyzing GTP at a rate of 0.058 +/- 0.009 turnover/s. Fast GTPase activity is abolished in the presence of cGMP. This effect occurs over the physiological range of cGMP concentration changes in ROS, half-saturating at approximately 2 microM and saturating at 5 microM cGMP. cGMP-dependent suppression of GTPase is specific for cGMP; cAMP in millimolar concentration does not affect GTPase, while the poorly hydrolyzable cGMP analogue, 8-bromo-cGMP, mimics the effect. GTPase regulation by cGMP is not affected by Ca2+ over the concentration range 5-500 nM, which spans the physiological changes in cytoplasmic Ca2+ in rod cells. We suggest that the fast cGMP-sensitive GTPase activity is a property of the Gt that activates PDE. In this model, cGMP serves not only as a messenger of excitation but also modulates GTPase activity, thereby mediating negative feedback regulation of the pathway via PDE turnoff: a light-dependent decrease in cGMP accelerates the hydrolysis of GTP bound to Gt, resulting in the rapid inactivation of PDE.  相似文献   

19.
Guanylyl cyclase (GC) plays a central role in the responses of vertebrate rod and cone photoreceptors to light. cGMP is an internal messenger molecule of vertebrate phototransduction. Light stimulates hydrolysis of cGMP, causing the closure of cGMP-dependent cation channels in the plasma membranes of photoreceptor outer segments. Light also lowers the concentration of intracellular free Ca(2+) and by doing so it stimulates resynthesis of cGMP by guanylyl cyclase. The guanylyl cyclases that couple Ca(2+) to cGMP synthesis in photoreceptors are members of a family of transmembrane guanylyl cyclases that includes atrial natriuretic peptide receptors and the heat-stable enterotoxin receptor. The photoreceptor membrane guanylyl cyclases, RetGC-1 and RetGC-2 (also referred to as GC-E and GC-F), are regulated intracellularly by two Ca(2+)-binding proteins, GCAP-1 and GCAP-2. GCAPs bind Ca(2+) at three functional EF-hand structures. Several lines of biochemical evidence suggest that guanylyl cyclase activator proteins (GCAPs) bind constitutively to an intracellular domain of RetGCs. In the absence of Ca(2+) GCAP stimulates and in the presence of Ca(2+) it inhibits cyclase activity. Proper functioning of RetGC and GCAP is necessary not only for normal photoresponses but also for photoreceptor viability since mutations in RetGC and in GCAP cause photoreceptor degeneration.  相似文献   

20.
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (+/-2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37 degrees C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 muM Ca2+ concentration (CaEGTA binding constant equals 4.4 - 10(5) at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6-9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8- and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6-10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号