首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thioredoxin reductase (TRR), a member of the pyridine nucleotide-disulfide oxidoreductase family of flavoenzymes, undergoes two sequential thiol-disulfide interchange reactions with thioredoxin during catalysis. In order to assess the catalytic role of each nascent thiol of the active site disulfide of thioredoxin reductase, the 2 cysteines (Cys-136 and Cys-139) forming this disulfide have been individually changed to serines by site-directed mutageneses of the cloned trxB gene of Escherichia coli. Spectral analyses of TRR(Ser-136,Cys-139) as a function of pH and ionic strength have revealed two pKa values associated with the epsilon 456, one of which increases from 7.0 to 8.3 as the ionic strength is increased, and a second at 4.4 which is seen only at high ionic strength. epsilon 458 of wild type TRR(Cys-136,Cys-139) and epsilon 453 of TRR(Cys-136,Ser-139) are pH-independent. A charge transfer complex (epsilon 530 = 1300 M-1 cm-1), unique to TRR(Ser-136,Cys-139), has been observed under conditions of high ammonium cation concentration (apparent Kd = 54 microM) at pH 7.6. These results suggest the assignment of Cys-139 as the FAD-interacting thiol in the reduction of thioredoxin by NADPH via thioredoxin reductase. If, as with other members of this enzyme family, the two distinct catalytic functions are each carried out by a different nascent thiol, then Cys-136 would perform the initial thiol-disulfide interchange with thioredoxin. Steady state kinetic analyses of the proteins have revealed turnover numbers of 10 and 50% of the value of the wild type enzyme for TRR(Ser-136,Cys-139) and TRR(Cys-136,Ser-139), respectively, and no changes in the apparent Km values of TR(S2) or NADPH. The finding of activity in the mutants indicates that the remaining thiol can carry out interchange with the disulfide of thioredoxin, and the resulting mixed disulfide can be reduced by NADPH via the flavin.  相似文献   

2.
Characterization of Candida albicans dihydrofolate reductase   总被引:3,自引:0,他引:3  
Dihydrofolate reductase from Candida albicans was purified 31,000-fold and characterized. In addition, the C. albicans dihydrofolate reductase gene was cloned into a plasmid vector and expressed in Escherichia coli, and the enzyme was purified from this source. Both preparations showed a single protein-staining band with a molecular weight of about 25,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzymes were stable and had an isoelectric point of pH 7.1 on gel isoelectric focusing. Kinetic characterization showed that the enzymes from each source had similar turnover numbers (about 11,000 min-1) and Km values for NADPH and dihydrofolate of 3-4 microM. Like other eukaryotic dihydrofolate reductases, the C. albicans enzyme exhibited weak binding affinity for the antibacterial agent trimethoprim (Ki = 4 microM), but further characterization showed that the inhibitor binding profile of the yeast and mammalian enzymes differed. Methotrexate was a tight binding inhibitor of human but not C. albicans dihydrofolate reductase; the latter had a relatively high methotrexate Ki of 150 pM. The yeast and vertebrate enzymes also differed in their interactions with KCl and urea. These two agents activate vertebrate dihydrofolate reductases but inhibited the C. albicans enzyme. The sequence of the first 36 amino-terminal amino acids of the yeast enzyme was also determined. This portion of the C. albicans enzyme was more similar to human than to E. coli dihydrofolate reductases (50% and 30% identity, respectively). Some key amino acid residues in the C. albicans sequence, such as E-30 (human enzyme numbering), were "vertebrate-like" whereas others, such as I-31, were not. These results indicate that there are physical and kinetic differences between the eukaryotic mammalian and yeast enzymes.  相似文献   

3.
The human NGF gene was isolated and inserted downstream from murine leukemia virus LTR in a plasmid having dihydrofolate reductase cDNA. The expression plasmid was introduced into CHO cells. Selection of the transformants for the resistance to methotrexate gave a CHO cell line which produced human NGF at a level of 4 mg/L in the culture medium. The recombinant human NGF was purified to near homogeneity from the culture supernatant. The NH2-terminal amino acid sequence, the COOH-terminal amino acid (Ala), and the amino acid composition of the human NGF were identical to those deduced from the nucleotide sequence of the human NGF gene. The recombinant human NGF was composed of 120 amino acid residues. Three disulfide linkages were determined to be Cys15-Cys80, Cys-58-Cys108, and Cys68-Cys110; the locations were identical to those in the mouse 2.5S NGF molecule. The specific biological activity of the recombinant human NGF was comparable with that of authentic mouse 2.5S NGF as determined by stimulation of neurite outgrowth from PC12 cells.  相似文献   

4.
Glutathione synthetase from Escherichia coli B showed amino acid sequence homology with mammalian and bacterial dihydrofolate reductases over 40 residues, although these two enzymes are different in their reaction mechanisms and ligand requirements. The effects of ligands of dihydrofolate reductase on the reaction of E. coli B glutathione synthetase were examined to find resemblances in catalytic function to dihydrofolate reductase. The E. coli B enzyme was potently inhibited by 7,8-dihydrofolate, methotrexate, and trimethoprim. Methotrexate was studied in detail and proved to bind to an ATP binding site of the E. coli B enzyme with K1 value of 0.1 mM. The homologous portion of the amino acid sequence in dihydrofolate reductases, which corresponds to the portion coded by exon 3 of mammalian dihydrofolate reductase genes, provided a binding site of the adenosine diphosphate moiety of NADPH in the crystal structure of dihydrofolate reductase. These analyses would indicate that the homologous portion of the amino acid sequence of the E. coli B enzyme provides the ATP binding site. This report gives experimental evidence that amino acid sequences related by sequence homology conserve functional similarity even in enzymes which differ in their catalytic mechanisms.  相似文献   

5.
Halobacterium volcanii mutants that are resistant to the dihydrofolate reductase inhibitor trimethoprim contain DNA sequence amplifications. This paper describes the cloning and nucleic acid sequencing of the amplified DNA sequence of the H. volcanii mutant WR215. This sequence contains an open reading frame that codes for an amino acid sequence that is homologous to the amino acid sequences of dihydrofolate reductases from different sources. As a result of the gene amplification, the trimethoprim-resistant mutant overproduces dihydrofolate reductase. This enzyme was purified to homogeneity using ammonium sulfate-mediated chromatographies. It is shown that the enzyme comprises 5% of the cell protein. The amino acid sequence of the first 15 amino acids of the enzyme fits the coding sequence of the gene. Preliminary biochemical characterization shows that the enzyme is unstable at salt concentrations lower than 2 M and that its activity increases with increase in the KCl or NaCl concentrations.  相似文献   

6.
The glutathione reductase gene, gor, was cloned from the plant pathogen Xanthomonas campestris pv. phaseoli. Its gene expression and enzyme characteristics were found to be different from those of previously studied homologues. Northern blot hybridization, promoter-lacZ fusion, and enzyme assay experiments revealed that its expression, unlike in Escherichia coli, is OxyR-independent and constitutive upon oxidative stress conditions. The deduced amino acid sequence shows a unique NADPH binding motif where the most highly conserved arginine residue, which is critical for NADPH binding, is replaced by glutamine. Interestingly, a search of the available Gor amino acid sequences from various sources, including other Xanthomonas species, revealed that this replacement is specific to the genus Xanthomonas. Recombinant Gor enzyme was purified and characterized, and was found to have a novel ability to use both, NADPH and NADH, as electron donor. A gor knockout mutant was constructed and shown to have increased expression of the organic peroxide-inducible regulator gene, ohrR.  相似文献   

7.
Aldose reductase is an NADPH-dependent oxidoreductase that catalyzes the reduction of a broad range of aldehydes, including glucose. Since aldose reductase has been strongly implicated in the development of the chronic complications of diabetes mellitus, much effort has been devoted to understanding the structure and mechanism of this enzyme, and many aldose reductase inhibitors have been developed as potential drugs for the treatment of these complications. We describe here the 2.75 A crystal structure of recombinant human aldose reductase (Cys-298 to Ser mutant) complexed with NADPH. This mutant displays unusual kinetic behavior characterized by high Km/high Vmax substrate kinetics and reduced sensitivity to certain aldose reductase inhibitors. The crystal structure revealed that the enzyme is a beta/alpha-barrel with the coenzyme-binding domain located at the carboxyl-terminal end of the parallel strands of the barrel. The enzyme undergoes a large conformational change upon binding NADPH which involves the reorientation of loop 7 to a position which appears to lock the coenzyme into place. NADPH is bound to aldose reductase in an unusual manner, more similar to FAD- rather than NAD(P)-dependent oxidoreductases. No disulfide bridges were observed in the crystal structure.  相似文献   

8.
Oligonucleotide-directed, site-specific mutagenesis was used to convert phenylalanine-31 of human recombinant dihydrofolate reductase (DHFR) to leucine. This substitution was of interest in view of earlier chemical modification studies (Kumar et al., 1981) and structural studies based on X-ray crystallographic data (Matthews et al., 1985a,b) which had implicated the corresponding residue in chicken liver DHFR, Tyr-31, in the binding of dihydrofolate. Furthermore, this particular substitution allowed testing of the significance of protein sequence differences between mammalian and bacterial reductases at this position with regard to the species selectivity of trimethoprim. Both wild-type (WT) and mutant (F31L) enzymes were expressed and purified by using a heterologous expression system previously described (Prendergast et al., 1988). Values of the inhibition constants (Ki values) for trimethoprim were 1.00 and 1.08 microM for WT and F31L, respectively. Thus, the presence of phenylalanine at position 31 in human dihydrofolate reductase does not contribute to the species selectivity of trimethoprim. The Km values for nicotinamide adenine dinucleotide phosphate (reduced) (NADPH) and dihydrofolate were elevated 10.8-fold and 9.4-fold, respectively, for the mutant enzyme, whereas the Vmax increased only 1.8-fold. Equilibrium dissociation constants (KD values) were obtained for the binding of NADPH and dihydrofolate in binary complexes with each enzyme. The KD for NADPH is similar in both WT and F31L, whereas the KD for dihydrofolate is 43-fold lower in F31L. Values for dihydrofolate association rate constants (kon) with enzyme and enzyme-NADPH complexes were measured by stopped-flow techniques.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
D J Murphy  S J Benkovic 《Biochemistry》1989,28(7):3025-3031
The strictly conserved residue leucine-54 of Escherichia coli dihydrofolate reductase forms part of the hydrophobic wall which binds the p-aminobenzoyl side chain of dihydrofolate. In addition to the previously reported glycine-54 mutant, isoleucine-54 and asparagine-54 substitutions have been constructed and characterized with regard to their effects on binding and catalysis. NADP+ and NADPH binding is virtually unaffected with the exception of a 15-fold decrease in NADPH dissociation from the Gly-54 mutant. The synergistic effect of NADPH on tetrahydrofolate dissociation seen in the wild-type enzyme is lost in the isoleucine-54 mutant: little acceleration is seen in tetrahydrofolate dissociation when cofactor is bound, and there is no discrimination between reduced and oxidized cofactor. The dissociation constants for dihydrofolate and methotrexate increase in the order Leu less than Ile less than Asn less than Gly, varying by a maximum factor of 1700 for dihydrofolate and 6300 for methotrexate. Despite these large changes in binding affinity, the hydride transfer rate of 950 s-1 in the wild-type enzyme is decreased by a constant factor of ca. 30 (2 kcal/mol) regardless of the mutant. Thus, the contributions of residue 54 to binding and catalysis appear to have been separated.  相似文献   

10.
We have determined the nucleotide sequence of a 1075-base-pair HindIII fragment of the T4 phage genome. This fragment contains the structural gene (frd) for dihydrofolate reductase and part of the gene (td) encoding thymidylate synthase. The fragment contains a 579-base-pair open reading frame, encoding a 193-residue polypeptide with a calculated mass of 21,603 Da, in agreement with our reported subunit molecular mass of 23,000. The deduced amino acid sequence shows partial homology with other dihydrofolate reductases, with most of the identities lying in regions known to be involved in substrate binding and catalysis. The 3' end of the coding strand overlaps the coding region for thymidylate synthase; the sequence - ATGA -includes an opal terminator for the frd gene and an initiating triplet for the td gene. The deduced amino acid sequence from this initiating ATG is identical, for the first 20 residues, with the NH2-terminal 20 residues reported for the td protein (M. Belfort , A. Moelleken , G. F. Maley , and F. Maley (1983) J. Biol. Chem. 258, 2045-2051). The sequenced HindIII fragment was transferred into a high expression plasmid vector for large scale production of homogeneous T4 dihydrofolate reductase. The experimentally determined sequence of 20 residues at the NH2-terminus of this protein is identical with that deduced from the nucleotide sequence for T4 dihydrofolate reductase.  相似文献   

11.
In the x-ray structure of the human dihydrofolate reductase, phenylalanine 31 and phenylalanine 34 have been shown to be involved in hydrophobic interactions with bound substrates and inhibitors. Using oligonucleotide-directed mutagenesis and a bacterial expression system producing the wild-type and mutant human dihydrofolate reductases at levels of 10% of the bacterial protein, we have constructed, expressed, and purified a serine 31 (S31) mutant and a serine 34 (S34) mutant. Fluorescence titration experiments indicated that S31 bound the substrate H2folate 10-fold tighter and the coenzyme NADPH 2-fold tighter than the wild-type human dihydrofolate reductase. The serine 31 mutation had little effect on the steady-state kinetic properties of the enzyme but produced a 100-fold increase in the dissociation constant (Kd) for the inhibitor methotrexate. The serine 34 mutant had much greater alterations in its properties than S31; specifically, S34 had a 3-fold reduction in the Km for NADPH, a 24-fold increase in the Km for H2folate, a 3-fold reduction in the overall reaction rate kcat, and an 80,000-fold increase in the Kd for methotrexate. In addition, the pH dependence of the steady-state kinetic parameters of S34 were different from that of the wild-type enzyme. These results suggest that phenylalanine 31 and phenylalanine 34 make very different contributions to ligand binding and catalysis in the human dihydrofolate reductase.  相似文献   

12.
The active sites of all bacterial and vertebrate dihydrofolate reductases that have been examined have a tryptophan residue near the binding sites for NADPH and dihydrofolate. In cases where the three-dimensional structure has been determined by X-ray crystallography, this conserved tryptophan residue makes hydrophobic and van der Waals interactions with the nicotinamide moiety of bound NADPH, and its indole nitrogen interacts with the C4 oxygen of bound folate through a bridge provided by a bound water molecule. We have addressed the question of why even the very conservative replacement of this tryptophan by phenylalanine does not seem to occur naturally. Human dihydrofolate reductase with this replacement of tryptophan by phenylalanine has increased rate constants for dissociation of substrates and products and a considerably decreased rate of hydride transfer. These cause some changes in steady-state kinetic behavior, including substantial increases in Michaelis constants for NADPH and dihydrofolate, but there is also a 3-fold increase in kcat. The branched mechanistic pathway for this enzyme has been completely defined and is sufficiently different from that of wild-type enzyme to cause changes in some transient-state kinetics. The most critical changes resulting from the amino acid substitution appear to be a 50% decrease in stability and a decrease in efficiency from 69% to 21% under intracellular conditions.  相似文献   

13.
The type IIIb dihydrofolate reductase, a novel plasmid-encoded enzyme recently identified in Shigella sonnei, has been shown to have some similar biochemical properties to the type IIIa dihydrofolate reductase which was first identified in New Zealand in 1979. However, the type IIIb enzyme has a Ki for trimethoprim of 0.4 microM, and a pI of 5.35 (as compared to 19 nM and 6.1 for the type IIIa); both these results suggest that it is a different enzyme from the prototype type IIIa. The type IIIb dihydrofolate reductase was purified by methotrexate agarose affinity chromatography, yielding a pure protein as determined by HPLC. Automatic amino acid analysis of the purified enzyme showed it to be distinct from all other known plasmid-encoded dihydrofolate reductases and quite different from the type IIIa enzyme. The purified enzyme was examined by SDS-PAGE, which revealed that the type IIIb dihydrofolate reductase was a monomeric protein of Mr 17,200.  相似文献   

14.
Sequence analysis of bovine lens aldose reductase   总被引:2,自引:0,他引:2  
The covalent structure of bovine lens aldose reductase (alditol-NADP+ oxidoreductase, EC 1.1.1.21) was determined by sequence analysis of peptides generated by specific and chemical cleavage of the homogeneous apoenzyme. Peptides, purified by reverse-phase high performance liquid chromatography were subjected to compositional analysis and sequencing by gas-phase automated Edman degradation. Aldose reductase was found to contain 315 amino acid residues. The enzyme is blocked at the amino terminus, and mass spectrometry was employed to identify the blocking acetyl group and to sequence the amino-terminal tryptic peptide. The aldose reductase was shown to contain no carbohydrate despite the fact that the enzyme contains the consensus sequence -Asn-Lys-Thr- for N-linked glycosylation. Comparative sequence analysis and application of algorithms for prediction of secondary structure and nucleotide binding domains are consistent with the view that aldose reductase is a double-domain protein with a beta-alpha-beta secondary structural organization. The NADPH binding site appears to be associated with the amino-terminal half of the enzyme. Modeling studies based on the tertiary structures of dihydrofolate and glutathione reductases indicate that the NADPH binding site begins at Lys-11 and continues with a beta-alpha-beta fold characteristic of nucleotide binding proteins.  相似文献   

15.
The trimethoprim-resistant dihydrofolate reductase associated with the R plasmid R388 was isolated from strains that over-produce the enzyme. It was purified to apparent homogeneity by affinity chromatography and two consecutive gel filtration steps under native and denaturing conditions. The purified enzyme is composed of four identical subunits with molecular weights of 8300. A 1100 bp long DNA segment which confers resistance to trimethoprim was sequenced. The structural gene was identified on the plasmid DNA by comparing the amino acid composition of the deduced proteins with that of the purified enzyme. The gene is 234 bp long and codes for 78 amino acids. No homology can be found between the deduced amino acid sequence of the R388 dihydrofolate reductase and those of other prokaryotic or eukaryotic dihydrofolate reductases. However, it differs in only 17 positions from the enzyme associated with the trimethoprim-resistance plasmid R67.  相似文献   

16.
J T Chen  K Taira  C P Tu  S J Benkovic 《Biochemistry》1987,26(13):4093-4100
The role of Phe-31 of Escherichia coli dihydrofolate reductase in binding and catalysis was probed by amino acid substitution. Phe-31, a strictly conserved residue located in a hydrophobic pocket and interacting with the pteroyl moiety of dihydrofolate (H2F), was replaced by Tyr and Val. The kinetic behavior of the mutant enzymes in general is similar to that of the wild type. The rate-limiting step for both mutant enzymes is the release of tetrahydrofolate (H4F) from the E X NADPH X H4F ternary complex as determined for the wild type. The 2-fold increase in V for the two mutant enzymes arises from faster dissociation of H4F from the enzyme-product complex. The quantitative effect of these mutations is to decrease the rate of hydride transfer, although not to the extent that this step becomes partially rate limiting, but to accelerate the dissociation rates of tetrahydrofolate from product complexes so that the opposing effects are nearly compensating.  相似文献   

17.
A cDNA clone (SSC801) putatively encoding sepiapterin reductase (SR) was obtained from the expressed sequence tag clones of Dictyostelium discoideum. The cDNA sequence of 878 nucleotides constituted an ORF of 265 amino acid residues but was missing a few N-terminal residues. The deduced amino acid sequence showed 29.8% identity with mouse SR sequence and a molecular mass of 29,969 Da. The coding sequence was cloned in E. coli expression vector and overexpressed. The purified His-tag recombinant enzyme was confirmed to have the genuine activity of SR to produce tetrahydrobiopterin from 6-pyruvoyltetrahydropterin in a coupled assay with 6-pyruvoyltetrahydropterin synthase as well as dihydrobiopterin from sepiapterin. However, dictyopterin was not observed in our assay condition. The enzyme was also inhibited by N-acetylserotonin and to a lesser extent by melatonin. Km values for NADPH and sepiapterin were 51.8+/-2.7 microM and 40+/-2 microM, respectively. Vmax was determined as 0.14 micromol/min/mg of protein.  相似文献   

18.
Circular-dichroism spectra (200--450 nm) were recorded for Lactobacillus casei MTX/R dihydrofolate reductase and its complexes with substrates, inhibitors and coenzymes. These spectra are compared with those reported by others for dihydrofolate reductase from other sources. The binding of NADP+ or NADPH is associated with the perturbation of one or more aromatic amino acid residues, and there is marked enhancement of the negative c.d. band at 340 nm arising from the dihydronicotinamide chromophore of NADPH. The substrates folate and dihydrofolate give rise to substantial extrinsic c.d. bands on binding, which show a number of specific differences between enzymes from different sources. The binary complexes between the enzyme and the inhibitors methotrexate or trimethoprim also show strong c.d. bands, and these are qualitatively very similar for all dihydrofolate reductases studied so far. The ternary complexes between enzyme, NADPH and trimethoprim or methotrexate are very different from the sum of the spectra of the binary complexes. Trimethoprim leads to the disappearance of the 340 nm c.d. band of bound NADPH, whereas in the methotrexate--NADPH--enzyme ternary complex a "couplet" c.d. spectrum is observed at long wavelengths. Analysis of this latter feature suggests that it arises from a direct interaction between the dihydronicotinamide and pteridine rings in the ternary complex.  相似文献   

19.
The hemoprotein component of Salmonella typhimurium sulfite reductase (NADPH) (EC 1.8.1.2) was purified to homogeneity from cysJ266, a mutant strain lacking sulfite reductase flavoprotein. The siroheme- and Fe4S4-containing enzyme was isolated as a monomeric 63-kDa polypeptide and consisted of a mixture of unligated enzyme and a complex with sulfite. Following reduction with 5'-deazaflavin-EDTA and reoxidation, the complex was converted to the uncomplexed, high spin ferri-siroheme state seen previously with Escherichia coli sulfite reductase hemoprotein preparations. The S. typhimurium hemoprotein exhibited catalytic and physical properties identical to the hemoprotein prepared by urea dissociation of E. coli sulfite reductase holoenzyme and was fully competent in reconstituting NADPH-sulfite reductase activity when combined with excess purified sulfite reductase flavoprotein. The DNA sequences of cysI and cysH from S. typhimurium and E. coli B were determined and, together with previously reported data, confirmed the organization of this region as promoter-cysJ-cysI-cysH with all three genes oriented in the same direction from the promoter. Molecular weights deduced for the cysI-encoded sulfite reductase hemoprotein and for the cysH-encoded 3'-phosphoadenosine 5'-phosphosulfate sulfotransferase were approximately 64,000 and 28,000, respectively. Comparison of the deduced amino acid sequence of sulfite reductase hemoprotein with that of spinach nitrite reductase (Back, E., Burkhart, W., Moyer, M., Privalle, L., and Rothstein, S. (1988) Mol. Gen. Genet. 212, 20-26), which also contains siroheme and an Fe4S4 cluster, showed two groups of cysteine-containing sequences with the structures Cys-(X)3-Cys and Cys-(X)5-Cys, which are homologous in the two enzymes and are postulated to provide the ligands of the Fe4S4 cluster in both proteins. From these sequences and from crystallographic (McRee, D. E., Richardson, D. C., Richardson, J. S., and Siegel, L. M. (1986) J. Biol. Chem. 261, 10277-10281) and spectroscopic data in the literature, a model is proposed for the structure of the active center of these two enzymes.  相似文献   

20.
Dihydrofolate reductase, purified to homogeneity from amethopterin-resistant Lactobacillus casei, was immobilized by coupling to cyanogen bromide-activated Sepharose or carbodiimide-activated CH-Sepharose. Coupling yields were determined by amino acid analysis following the hydrolysis of the gel. Enzyme activity was measured by the conventional spectrophotometric procedure, thus permitting the facile characterization of the immobilized enzyme. The pH optimum of the immobilized enzyme was shifted to 5.8 compared with pH 5.5 for the soluble enzyme. The immobilized enzyme retained greater than 90%of the initial activity over a six-month period and could be reused as many as ten times without loss of activity. As observed with the soluble enzyme, the activity of immobilized enzyme, which was lost on denaturation with 4M guanidine hydrochloride, was recovered rapidly and completely by washing the gel with buffer. The K(m) (app) values for dihydrofolate and NADPH for the immobilized enzyme were increased 15-164-fold over the K(m) values measured for soluble dihydrofolate reductase. Scatchard analysis of the interaction of amethopterin with the immobilized enzyme yielded linear plots and a K(d) (app) value of 0.56 x10(-8)M, and revealed that all of the immobilized enzyme molecules were capable of binding the ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号