首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recognition and removal of damaged bases in the genome is the province of a highly specialized assemblage of enzymes known as DNA glycosylases. In recent years, structural and mechanistic studies have rapidly moved forward such that in some cases, the high-resolution structures of all stable complexes along the reaction pathway are available. In parallel, advances in isotopic labeling of DNA have allowed the determination of a transition state structure of a DNA repair glycosylase using kinetic isotope effect methods. The use of stable substrate analogs and fluorescent probes have provided methods for real time measurement of the critical step of damaged base flipping. Taken together, these synergistic structural and chemical approaches have elevated our understanding of DNA repair enzymology to the level previously attained in only a select few enzymatic systems. This review summarizes recent studies of the paradigm enzyme, uracil DNA glycosylase, and discusses future areas for investigation in this field.  相似文献   

2.
DNA repair synthesis can be specifically measured in osmotically opened, confluent cultured human fibroblasts after exposure to DNA damaging agents such that both induction and mediation of DNA repair synthesis can take place in this cell-free system. Alternatively, by utilizing osmotically shocked, log phase cells and altering the DNA precursors, pH and ionic strength, replicative DNA synthesis can be specifically monitored. Autoradiographic studies show that virtually all of the nuclei from the lysates of the confluent, UV-iradiated cells are lightly labeled in the fashion characteristic of DNA repair. By contrast, only a fraction of nuclei is labeled in a population of unperturbed, opened log phase cells and the labeling is heavy and characteristic of replicative synthesis. Furthermore, equilibrium density gradient sedimentation shows that DNA synthesis in lysates of log-phase cells is semiconservative, whereas that with UV-irradiated cells is repair synthesis. This open cell system has been used to study the enzymology of DNA repair. Thus, dideoxythymidine triphosphate, a specific inhibitor of DNA polymerases beta and gamma, does not inhibit either replicative or repair synthesis. By contrast, aphidicolin, a specific inhibitor of DNA polymerase alpha, inhibits DNA repair and replicative synthesis in both intact and permeabilized cells. Finally, phage T4 UV-exonuclease stimulates repair synthesis, but only when phage T4 UV-endonuclease is also added to the UV-irradiated nuclei.  相似文献   

3.
Retroviral DNA integration creates a discontinuity in the host cell chromatin and repair of this damage is required to complete the integration process. As integration and repair are essential for both viral replication and cell survival, it is possible that specific interactions with the host DNA repair systems might provide new cellular targets for human immunodeficiency virus therapy. Various genetic, pharmacological, and biochemical studies have provided strong evidence that postintegration DNA repair depends on components of the nonhomologous end-joining (NHEJ) pathway (DNA-PK (DNA-dependent protein kinase), Ku, Xrcc4, DNA ligase IV) and DNA damage-sensing pathways (Atr (Atm and Rad related), gamma-H2AX). Furthermore, deficiencies in NHEJ components result in susceptibility to apoptotic cell death following retroviral infection. Here, we review these findings and discuss other ways that retroviral DNA intermediates may interact with the host DNA damage signaling and repair pathways.  相似文献   

4.
The past two years have seen a substantial increase in knowledge regarding the enzymology of DNA excision repair. These data support a growing body of information which suggests that transcribed nucleotide sequences are preferentially subject to excision repair. It is possible that these mechanisms, or related ones, are relevant to the molecular evolution of sequences that appear not to evolve according to models which do not take into account regional sequence differences in the extent of DNA repair.  相似文献   

5.
Changes in DNA repair during aging   总被引:7,自引:1,他引:6  
DNA is a precious molecule. It encodes vital information about cellular content and function. There are only two copies of each chromosome in the cell, and once the sequence is lost no replacement is possible. The irreplaceable nature of the DNA sets it apart from other cellular molecules, and makes it a critical target for age-related deterioration. To prevent DNA damage cells have evolved elaborate DNA repair machinery. Paradoxically, DNA repair can itself be subject to age-related changes and deterioration. In this review we will discuss the changes in efficiency of mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER) and double-strand break (DSB) repair systems during aging, and potential changes in DSB repair pathway usage that occur with age. Mutations in DNA repair genes and premature aging phenotypes they cause have been reviewed extensively elsewhere, therefore the focus of this review is on the comparison of DNA repair mechanisms in young versus old.  相似文献   

6.
7.
Our potential for dissecting the complex processes involved in eukaryotic DNA replication has been dramatically increased with the recent development of cell-free systems that recreate many of these processes in vitro. Initial results from these systems have drawn together work on the cell cycle, the enzymology of replication, and the structure of the nucleus.  相似文献   

8.
Studies on the enzymology of apurinic/apyrimidinic (AP) endonucleases from procaryotic and eucaryotic organisms are reviewed. Emphasis will be placed on the enzymes from Escherichia coli from which a considerable portion of our knowledge has been derived. Recent studies on similar enzymes from eucaryotes will be discussed as well. In addition, we will discuss the chemical and physical properties of AP sites and review studies on peptides and acridine derivatives which incise DNA at AP sites.  相似文献   

9.
10.
Exposure of living cells to intracellular or external mutagens results in DNA damage. Accumulation of DNA damage can lead to serious consequences because of the deleterious mutation rate resulting in genomic instability, cellular senescence, and cell death. To counteract genotoxic stress, cells have developed several strategies to detect defects in DNA structure. The eukaryotic genomic DNA is packaged through histone and nonhistone proteins into a highly condensed structure termed chromatin. Therefore the cellular enzymatic machineries responsible for DNA replication, recombination, and repair must circumvent this natural barrier in order to gain access to the DNA. Several studies have demonstrated that histone/chromatin modifications such as acetylation, methylation, and phosphorylation play crucial roles in DNA repair processes. This review will summarize the recent data that suggest a regulatory role of the epigenetic code in DNA repair processes. We will mainly focus on different covalent reversible modifications of histones as an initial step in early response to DNA damage and subsequent DNA repair. Special focus on a potential epigenetic histone code for these processes will be given in the last section. We also discuss new technologies and strategies to elucidate the putative epigenetic code for each of the DNA repair processes discussed.  相似文献   

11.
12.
In Escherichia coli, errors in newly-replicated DNA, such as the incorporation of a nucleotide with a mis-paired base or an accidental insertion or deletion of nucleotides, are corrected by a methyl-directed mismatch repair (MMR) pathway. While the enzymology of MMR has long been established, many fundamental aspects of its mechanisms remain elusive, such as the structures, compositions, and orientations of complexes of MutS, MutL, and MutH as they initiate repair. Using atomic force microscopy, we—for the first time—record the structures and locations of individual complexes of MutS, MutL and MutH bound to DNA molecules during the initial stages of mismatch repair. This technique reveals a number of striking and unexpected structures, such as the growth and disassembly of large multimeric complexes at mismatched sites, complexes of MutS and MutL anchoring latent MutH onto hemi-methylated d(GATC) sites or bound themselves at nicks in the DNA, and complexes directly bridging mismatched and hemi-methylated d(GATC) sites by looping the DNA. The observations from these single-molecule studies provide new opportunities to resolve some of the long-standing controversies in the field and underscore the dynamic heterogeneity and versatility of MutSLH complexes in the repair process.  相似文献   

13.
Earlier data showed that cultured cells are more hyperthermia sensitive in S phase of the cell cycle. In part this sensitivity may be related to the disruption of DNA repair/processing activity in S phase. It is well known that many components of DNA repair systems are in fact involved in DNA replication/processing. For this study we set out to evaluate a wide range of DNA repair mutants to determine their thermal responses compared to the wild-type cells. Mutants of nucleotide excision repair (NER), homologous recombination repair (HR) and nonhomologous endjoining (NHEJ) were studied. In all cases the mutants were more thermally sensitive than the wild-type counterparts. In addition, studies on thermal tolerance (TT) showed that mutants did not have a smaller TT response than the wild type thus ruling out TT as a cause in the increased sensitivity. Cell cycle analysis showed no significant difference amongst mutant and wild-type cell line pairs and thus effects of differing cell cycle distribution was also ruled out. It is speculated that it may be the involvement of the mutated pathways in DNA replication/progressing that make mutated cells more sensitive than the wild types.  相似文献   

14.
Eukaryotic cells repair ultraviolet light (UV)- and chemical carcinogen-induced DNA strand-distorting damage through the nucleotide excision repair (NER) pathway. Concurrent activation of the DNA damage checkpoints is also required to arrest the cell cycle and allow time for NER action. Recent studies uncovered critical roles for ubiquitin-mediated post-translational modifications in controlling both NER and checkpoint functions. In this review, we will discuss recent progress in delineating the roles of cullin-RING E3 ubiquitin ligases in orchestrating the cellular DNA damage response through ubiquitination of NER factors, histones, and checkpoint effectors.  相似文献   

15.
Brooks PJ 《Mutation research》2002,509(1-2):93-108
As one part of a distinguished scientific career, Dr. Bryn Bridges focused his attention on the issue of DNA damage and repair in stationary phase bacteria. His work in this area led to his interest in DNA repair and mutagenesis in another non-dividing cell population, the neurons in the mammalian nervous system. He has specifically taken an interest in the magnocellular neurons of the central nervous system, and the possibility that somatic mutations may be occurring in these neurons. As part of this special issue dedicated to Bryn Bridges upon his retirement, I will discuss the various DNA repair pathways known to be active in the nervous system. The importance of DNA repair to the nervous system is most graphically illustrated by the neurological abnormalities observed in patients with hereditary diseases associated with defects in DNA repair. I will consider the mechanisms underlying the neurological abnormalities observed in patients with four of these diseases: xeroderma pigmentosum (XP), Cockayne's syndrome (CS), ataxia telangectasia (AT) and AT-like disorder (ATLD). I will also propose a mechanism for one of the observations indicating that somatic mutation can occur in the magnocellular neurons of the aging rat brain. Finally, as a parallel to Bridges inquiry into how much DNA synthesis is going on in stationary phase bacteria, I will address the question of how much DNA synthesis in going on in neurons, and the implications of the answer to this question for recent studies of neurogenesis in adult mammals.  相似文献   

16.
The enzymology of DNA repair is currently under active investigation. The purpose of the present study was to examine the involvement of a number of enzymes (DNA polymerase alpha and beta, DNA topoisomerase II and ribonucleotide reductase) in the repair of chemically induced DNA damage in a mammalian cell system. This was done by studying the effects of inhibitors of these enzymes on the levels of 2-acetylaminofluorene (2-AAF)-DNA adducts and on the induction of UDS in primary cultures of rat hepatocytes exposed to the carcinogen in vitro. The results obtained with aphidicolin (an inhibitor of DNA polymerase alpha) show that the binding of 2-AAF to cellular DNA was significantly higher in samples exposed to this compound. Moreover, induction of UDS by 2-AAF was completely blocked in the presence of this compound. Dideoxythymidine, a DNA polymerase beta inhibitor, led to complex results. It produced a reduced DNA-specific activity due to [3H]2-AAF adduct formation as well as a diminished but still detectable UDS response in the presence of 2-AAF. Inhibitors of DNA topoisomerase II (nalidixic acid) and ribonucleotide reductase (hydroxyurea) did not cause any statistically significant change in the accumulation of 2-AAF adducts nor did they affect the induction of UDS. The data clearly suggest that DNA polymerase alpha participates in the repair of 2-AAF adducts in hepatocytes. In addition, neither DNA topoisomerase II activity, nor limitations in the precursor nucleotide pools appear to be critical factors in this process.  相似文献   

17.
DNA damage checkpoint is one of the surveillance systems to maintain genomic integrity. Checkpoint systems sense the DNA damage and execute cell cycle arrest through inhibiting the activity of cell cycle regulators. This pathway is essential for the maintenance of genome stability and prevention of tumor development. Recent studies have showed that the cellular responses towards DNA damage, such as cell cycle arrest, DNA repair, chromatin remodeling, and apoptosis are well coordinated. Here we describe the molecular mechanisms of checkpoint activation in response to DNA damage and the correlation between checkpoint gene mutation and genomic instability.  相似文献   

18.
19.
We present DR-GAS1, a unique, consolidated and comprehensive DNA repair genetic association studies database of human DNA repair system. It presents information on repair genes, assorted mechanisms of DNA repair, linkage disequilibrium, haplotype blocks, nsSNPs, phosphorylation sites, associated diseases, and pathways involved in repair systems. DNA repair is an intricate process which plays an essential role in maintaining the integrity of the genome by eradicating the damaging effect of internal and external changes in the genome. Hence, it is crucial to extensively understand the intact process of DNA repair, genes involved, non-synonymous SNPs which perhaps affect the function, phosphorylated residues and other related genetic parameters. All the corresponding entries for DNA repair genes, such as proteins, OMIM IDs, literature references and pathways are cross-referenced to their respective primary databases. DNA repair genes and their associated parameters are either represented in tabular or in graphical form through images elucidated by computational and statistical analyses. It is believed that the database will assist molecular biologists, biotechnologists, therapeutic developers and other scientific community to encounter biologically meaningful information, and meticulous contribution of genetic level information towards treacherous diseases in human DNA repair systems. DR-GAS is freely available for academic and research purposes at: http://www.bioinfoindia.org/drgas.  相似文献   

20.
Isolated nuclei from adult rat liver have been used as a model system to define several characteristics of the unscheduled DNA synthesis supported by DNA polymerase beta. Many of these characteristics have been found to reflect some catalytic properties (pH optimum, divalent cations requirement, dependence on all four deoxyribonucleoside triphosphates, apparent Km for dTTP) as well as sensitivity to various agents (differential inhibitors of eukaryotic DNA polymerases, phosphate, DNA intercalating drugs, chemical or thermal denaturation) commonly regarded as typical of DNA polymerase beta itself. Given the new picture of the enzymology of DNA repair synthesis which has recently emerged, none of the above characteristics seem to be suitable candidates as diagnostic tools of a repair polymerization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号