首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human-derived promyelocytic leukemia cell line, HL-60, is known to differentiate into mature myeloid cells in the presence of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3). We investigated differentiation by monitoring 1,25(OH)2D3-exposed HL-60 cells for phagocytic activity, ability to reduce nitroblue tetrazolium, binding of the chemotaxin N-formyl-methionyl-leucyl-[3H]phenylalanine, development of nonspecific acid esterase activity, and morphological maturation of Wright-Giemsa-stained cells. 1,25(OH)2D3 concentrations as low as 10(-10) M caused significant development of phagocytosis, nitroblue tetrazolium reduction, and the emergence of differentiated myeloid cells that had morphological characteristics of both metamyelocytes and monocytes. These cells were conclusively identified as monocytes/macrophages based upon their adherence to the plastic flasks and their content of the macrophage-characteristic nonspecific acid esterase enzyme. The estimated ED50 for 1,25(OH)2D3-induced differentiation based upon nitroblue tetrazolium reduction and N-formyl-methionyl-leucyl-[3H]phenylalanine binding was 5.7 X 10(-9) M. HL-60 cells exhibited a complex growth response with various levels of 1,25(OH)2D3: less than or equal to 10(-10) M had no detectable effect, 10(-9) M stimulated growth, and greater than or equal to 10(-8) M sharply inhibited proliferation. We also detected and quantitated the specific receptor for 1,25(OH)2D3 in HL-60 and HL-60 Blast, a sub-clone resistant to the growth and differentiation effects of 1,25(OH)2D3. The receptor in both lines was characterized as a DNA-binding protein that migrated at 3.3S on high-salt sucrose gradients. Unequivocal identification was provided by selective dissociation of the 1,25(OH)2D3-receptor complex with the mercurial reagent, p-chloromercuribenzenesulfonic acid, and by a shift in its sedimentation position upon complexing with anti-receptor monoclonal antibody. On the basis of labeling of whole cells with 1,25(OH)2[3H]D3 in culture, we found that HL-60 contains approximately 4,000 1,25(OH)2D3 receptor molecules per cell, while the nonresponsive HL-60 Blast is endowed with approximately 8% of that number. The concentration of 1,25(OH)2D3 (5 X 10(-9) M) in complete culture medium, which facilitates the saturation of receptors in HL-60 cells, is virtually identical to the ED50 for the sterol's induction of differentiation. This correspondence, plus the resistance of the relatively receptor-poor HL-60 Blast, indicates that 1,25(OH)2D3-induced differentiation of HL-60 cells to monocytes/macrophages is occurring via receptor-mediated events.  相似文献   

2.
Acute promyelocytic leukemia is characterized by a block of myeloid differentiation. The incubation of cells with 1 micromol/l all-trans retinoic acid (ATRA) for 72 h induced differentiation of HL-60 cells and increased the number of CD11b positive cells. Morphological and functional changes were accompanied by a loss of proliferative capacity. Differentiation caused by preincubation of leukemic cells HL-60 with ATRA is accompanied by loss of clonogenicity (control cells: 870 colonies/10(3) cells, cells preincubated with ATRA: 150 colonies/10(3) cells). D0 for undifferentiated cells was 2.35 Gy, for ATRA differentiated cells 2.46 Gy. Statistical comparison of clonogenity curves indicated that in the whole range 0.5-10 Gy the curves are not significantly different, however, in the range 0.5-3 Gy ATRA differentiated cells were significantly more radioresistant than non-differentiated cells. When HL-60 cells preincubated with 1 micromol/l ATRA were irradiated by a sublethal dose of 6 Gy, more marked increase of apoptotic cells number was observed 24 h after irradiation and the surviving cells were mainly in the G1 phase of the cell cycle, while only irradiated cells were accumulated in G(2) phase. Our results imply that preincubation of cells with ATRA accelerates apoptosis occurrence (24 h) after irradiation by high sublethal dose of 6 Gy. Forty-eight hours after 6 Gy irradiation, late apoptotic cells were found in the group of ATRA pretreated cells, as determined by APO2.7 positivity. This test showed an increased effect (considering cell death induction) in comparison to ATRA or irradiation itself.  相似文献   

3.
Polyomavirus small t antigen (ST) impedes late features of retinoic acid (RA)-induced HL-60 myeloid differentiation as well as growth arrest, causing apoptosis instead. HL-60 cells were stably transfected with ST. ST slowed the cell cycle, retarding G2/M in particular. Treated with RA, the ST transfectants continued to proliferate and underwent apoptosis. ST also impeded the normally RA-induced hypophosphorylation of the retinoblastoma tumor suppressor protein consistent with failure of the cells to arrest growth. The RA-treated transfectants expressed CD11b, an early cell surface differentiation marker, but inducible oxidative metabolism, a later and more mature functional differentiation marker, was largely inhibited. Instead, the cells underwent apoptosis. ST affected significant known components of RA signaling that result in G0 growth arrest and differentiation in wild-type HL-60. ST increased the basal amount of activated ERK2, which normally increases when wild-type cells are treated with RA. ST caused increased RARalpha expression, which is normally down regulated in RA-treated wild-type cells. The effects of ST on RA-induced myeloid differentiation did not extend to monocytic differentiation and G0 arrest induced by 1,25-dihydroxy vitamin D3, whose receptor is also a member of the steroid-thyroid hormone superfamily. In this case, ST abolished the usually induced G0 arrest and retarded, but did not block, differentiation without inducing apoptosis, thus uncoupling growth arrest and differentiation. In sum, the data show that ST disrupted the normal RA-induced program of G0 arrest and differentiation, causing the cells to abort differentiation and undergo apoptosis.  相似文献   

4.
Retinoic acid (RA) is known to cause the myeloid differentiation of HL-60 human myeloblastic leukemia cells in a process requiring MEK-dependent ERK2 activation. This RA-induced ERK2 activation appears after approximately 4 h and persists until the cells are differentiated and G0 arrested (Yen et al, 1998). This motivates the question of whether RA also activated RAF as part of a typical RAF/MEK/MAPK cascade. Retinoic acid is shown here to also increase the phosphorylation of RAF, but in an unusual way. Surprisingly, increased RAF phosphorylation is first detectable after 12 to 24 hours by phosphorylation-induced retardation of polyacrylamide gel electrophoretic mobility. The RA-induced increased RAF phosphorylation is still apparent after 72 hours of treatment when most cells are differentiated and G0 arrested. There is a progressive dose-response relationship with 10(-8), 10(-7), and 10(-6) M RA. The RA-induced RAF phosphorylation corresponds to increased in vitro kinase activity. Inhibition of MEK with a PD98059 dose which inhibits ERK2 phosphorylation and subsequent cell differentiation also inhibits RAF phosphorylation. RA-induced MEK-dependent RAF phosphorylation is not due to changes in the amount of cellular MEK. The induced RAF phosphorylation, as well as anteceding ERK2 activation, depends on ligand-induced activation of both an RARalpha receptor and an RXR receptor. This and the slow kinetics of activation suggest a need for prior RA-induced gene expression. In summary, RA induces a MEK-dependent prolonged RAF activation, whose slow onset occurs after ERK2 activation but still well before cell cycle arrest and cell differentiation. The RA-induced increased RAF phosphorylation thus differs from typical mitogenic growth factor signaling, features that may contribute to cell cycle arrest and differentiation instead of division as the cellular outcome.  相似文献   

5.
The active form of vitamin D(3), 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], modulates proliferation and induces differentiation of many cancer cells. A new class of analogs of vitamin D(3) has been synthesized, having two side-chains attached to carbon-20 (Gemini) and deuterium substituted on one side-chain. We have examined six of these analogs for their ability to inhibit growth of myeloid leukemia (HL-60), prostate (LNCaP, PC-3, DU145), lung (H520), colon (HT-29), and breast (MCF-7) cancer cell lines. Dose-response clonogenic studies showed that all six analogs had greater antiproliferative activities against cancer cells than 1,25(OH)(2)D(3). Although they had similar potency, the most active of these analogs was BXL-01-0120. BXL-01-0120 was 529-fold more potent than 1,25(OH)(2)D(3) in causing 50% clonal growth inhibition (ED(50)) of HL-60 cells. Pulse-exposure studies demonstrated that exposure to BXL-01-120 (10(-9)M, 48h) resulted in 85% clonal inhibition of HL-60 growth. BXL-01-0120 (10(-11)M, 4 days) induced the differentiation marker, CD11b. Also, morphologically differentiation was more prominent compared to 1,25(OH)(2)D(3). Annexin V assay showed that BXL-01-0120 (10(-10)M, 4 days) induced significantly (p<0.05) more apoptosis than 1,25(OH)(2)D(3). In summary, these analogs have a unique structure resulting in extremely potent inhibition of clonal proliferation of various types of cancer cells, especially HL-60 cells.  相似文献   

6.
8-Chloroadenosine, an active dephosphorylated metabolite of the antineoplastic agent 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP), induces growth inhibition in multiple carcinomas. Here we report that 8-chloroadenosine inhibits growth in human promyelocytic leukemia HL-60 cells by a G(0)/G(1) phase arrest and terminates cell differentiation along the granulocytic lineage. The mechanism of 8-chloroadenosine-induced G(0)/G(1) arrest is independent of apoptosis. The expressions of cyclin D1 and c-myc in HL-60 are suppressed by 8-chloroadenosine, whereas the cyclin-dependent kinases inhibitor p21(WAF1/CIP1) is up-regulated. 8-Chloroadenosine has less effect on the expressions of cyclin-dependent kinase (cdk)2 and cdk4, G(1) phase cyclin-dependent kinases, and only moderately induces the expression of transforming growth factor beta1 (TGFbeta1) and the mitotic inhibitor p27(KIP1). Telomerase activity is reduced in extracts of 8-chloroadenosine treated HL-60 cells, but 8-chloroadenosine does not directly inhibit the catalytic activity of telomerase in vitro. Therefore, anti-proliferation of HL-60 cells by 8-chloroadenosine involves coordination of cyclin D1 suppression, reduction of telomerase activity, and up-regulation of p21(WAF1/CIP1) that arrest cell-cycle progression at G(0)/G(1) phase and terminate cell differentiation.  相似文献   

7.
HL-60 cells were treated by isoverbascoside with different time and different concentrations in vitro. The differentiation of HL-60 cells was evaluated by light and electron microscopy to observe morphological changes, by chemiluminence to detect phagocytosis and by tumorigenesis in nude mice to determine malignancy. The cytotoxical effect of isoverbascoside on HL-60 cells was examined by trypan blue excluding staining and electron microscopy. The influence of isoverbascoside on cell cycle was measured by flow cytometry. Granular differentiation of HL-60 cells was induced by isoverbascoside at 20-25 mumol/L within 1-3 days as the results of morphological changes, enhancement of phagocytosis and decreasing of tumorigenesis. Strong cytotoxicity was evidenced in HL-60 cells treated by isoverbascoside at 30-35 mumol/L. HL-60 cells treated by isoverbascoside at 20 mumol/L were delayed at G1 phase at 12 hours and G2/M phase at 72 hours.  相似文献   

8.
The human promyelocytic leukemia cell line HL-60 undergoes macrophage-like differentiation after exposure to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the biologically active metabolite of vitamin D3. In the current study, we demonstrate that 1,25(OH)2D3 also regulates 25-hydroxyvitamin D3 [25(OH)D3] metabolism in HL-60 cells. The presence of 1,25(OH)2D3 in the culture medium of HL-60 cells stimulated the conversion of 7-10% of the substrate [25(OH)D3] to a more polar metabolite, which was identified as 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] from the elution positions on sequential HPLC systems and the sensitivity to periodate treatment. The HL-60 subclone HL-60 blast, which is unresponsive to 1,25(OH)2D3 in terms of differentiation, also responded to 1,25(OH)2D3 treatment with the production of 24,25(OH)2D3. Maximal stimulation of 24,25(OH)2D3-synthesis (approximately 7 pmol/5 X 10(6) cells) in HL-60 cells was noted with a 12-h exposure to 10(-9) M 1,25(OH)2D3. The ability of vitamin D3 metabolites other than 1,25(OH)2D3 to induce the synthesis of 24,25(OH)2D3 in HL-60 cells was, with the exception of 1 alpha-hydroxyvitamin D3, in correlation with their reported affinities for the specific 1,25(OH)2D3 receptor which is present in HL-60 cells. Treatment of HL-60 cells with phorbol diesters abolished the 1,25(OH)2D3 responsiveness, while treatment with dimethylsulfoxide and interferon gamma did not markedly alter the 25(OH)D3 metabolism of HL-60 cells. Small amounts (approximately 1% of substrate) of two 25(OH)D3 metabolites, which comigrated with 5(E)- and 5(Z)-19-nor-10-keto-25-hydroxyvitamin D3 on two HPLC solvent systems, were synthesized by HL-60 cells, independently from 1,25(OH)2D3 treatment or stage of cell differentiation. Our results indicate that 1,25(OH)2D3 influences 25(OH)D3 metabolism of HL-60 cells independently from its effects on cell differentiation.  相似文献   

9.
In the original HL-60 cells (HL-60-S) and an HL-60 subline (HL-60-R) respectively susceptible and resistant to induction of differentiation by retinoic acid or dimethyl sulfoxide, 5-aza-2'-deoxycytidine inhibited growth equally but induced differentiation to a greater extent in HL-60-S. Flow cytometry showed that 5-aza-2'-deoxycytidine produced in both HL-60 lines an increased proportion of cells in G2+M rather than G0/G1 as with retinoic acid. 5-aza-2'-deoxycytidine may have a differentiation-inducing effect in HL-60 provided cells have the competence to differentiate, indicating the importance of an alternate mechanism of action.  相似文献   

10.
羊栖菜多糖诱导HL-60细胞凋亡的研究   总被引:7,自引:0,他引:7  
用MTT法观察羊栖莱多糖(SFPS)在体外抗人白血病HL-60细胞增殖作用;扫描电镜、透射电镜、DNA电泳和流式细胞仪检测HL-60细胞凋亡。结果表明SFPS对HL-60细胞具有显著生长抑制作用,并呈量效和时效关系,药物作用24,36,48,72h的IC50分别为390,362,402,421mg/L;药物浓度为300mg/L和500mg/L作用HL-60细胞后,琼脂糖凝胶电泳显示有凋亡细胞特有的DNA梯状条带,细胞微绒毛减少、染色质固缩、边集,凋亡小体形成;DNA直方图出现亚G1峰。在一定浓度范围内,SFPS诱导细胞凋亡的作用呈现浓度和时间依赖性,同时G2/M期细胞比例增多。因此,SFPS抗肿瘤作用与诱导细胞凋亡和G2/M期细胞阻滞有关。  相似文献   

11.
用MTT法观察羊栖菜多糖(SFPS)在体外抗人白血病HL-60细胞增殖作用;扫描电镜、透射电镜、DNA电泳和流式细胞仪检测HL-60细胞凋亡。结果表明SFPS对HL-60细胞具有显著生长抑制作用,并呈量效和时效关系,药物作用24,36,48,72h的IC_(50)分别为390,362,402,421mg/L;药物浓度为300mg/L和500mg/L作用HL-60细胞后,琼脂糖凝胶电泳显示有凋亡细胞特有的DNA梯状条带,细胞微绒毛减少、染色质固缩、过集,凋亡小体形成;DNA直方图出现亚G_1峰。在一定浓度范围内,SFPS诱导细胞凋亡的作用呈现浓度和时间依赖性,同时G_2/M期细胞比例增多。因此,SFPS抗肿瘤作用与诱导细胞凋亡和G_2/M期细胞阻滞有关。  相似文献   

12.
1,25-(OH)_2D_3对HL-60细胞具有促分化作用。本文报道了1,25-(OH)_2D_3在促进HL-60细胞分化前后胞液Ca~(2+)浓度、磷酸化酶a和微粒体Ca~(2+)-ATP酶活性的改变。结果表明,1,25-(OH)_2D_3加入HL-60细胞培养液后72小时,细胞NBT染色阳性率高于70%,形态向正常分化的细胞转化。同对,胞液Ca~(2+)浓度和微粒体Ca~(2+)-ATP酶活性明显降低,而磷酸化酶a活性显著升高。结果提示,在1,25-(OH)2_D_3作用下,HL-60细胞不仅杀菌功能增强,细胞内胞液Ca~(2+)浓度趋向正常,与钙恒稳有关的酶活性也同样发生改变。即1,25-(OH)_2D_3对HL-60细胞的诱导作用伴有钙恒稳的改变。这些变化与DMSO的作用相同。  相似文献   

13.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D3-26,23-lactone (1alpha,25-lactone) analogues on human promyelocytic leukemia cell (HL-60) differentiation using the evaluation system of the vitamin D nuclear receptor (VDR)/vitamin D-responsive element (DRE)-mediated genomic action stimulated by 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and its analogues. We found that the 1alpha,25-lactone analogues (23S)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9647), and (23R)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9648) bound much more strongly to the VDR than the natural (23S, 25R)-1alpha,25(OH)2D3-26,23-lactone, but did not induce cell differentiation even at high concentrations (10(-6) M). Intriguingly, the differentiation of HL-60 cells induced by 1alpha,25(OH)2D3 was inhibited by either TEI-9647 or TEI-9648 but not by the natural lactone. In contrast, retinoic acid or 12-O-tetradecanoylphorbol-13-acetate-induced HL-60 cell differentiation was not blocked by TEI-9647 or TEI-9648. In separate studies, TEI-9647 (10(-7) M) was found to be an effective antagonist of both 1alpha,25(OH)2D3 (10(-8) M) mediated induction of p21(WAF1, CIP1) in HL-60 cells and activation of the luciferase reporter assay in COS-7 cells transfected with cDNA containing the DRE of the rat 25(OH)D3-24-hydroxylase gene and cDNA of the human VDR. Collectively the results strongly suggest that our novel 1alpha,25-lactone analogues, TEI-9647 and TEI-9648, are specific antagonists of 1alpha, 25(OH)2D3 action, specifically VDR/DRE-mediated genomic action. As such, they represent the first examples of antagonists, which act on the nuclear VDR.  相似文献   

14.
15.
The present study was undertaken to examine the effect of L-ascorbic acid (LAA) on the growth of HL-60 promyelocytic leukemia cells, besides induction of apoptosis. LAA (> or = 10(-4) M) was found to markedly inhibit the proliferation of HL-60 in liquid culture and clonogenicity in semisolid culture. Moreover, LAA-treated HL-60 showed activity to produce chemiluminescence and expressed CD 66b cell surface antigens, indicating that LAA induces the differentiation of HL-60 mainly into granulocytes. The results are supported by morphological changes of LAA-treated HL-60 into segmented neutrophils. Therefore, the inhibitory effect of LAA on the growth of HL-60 cells seems to arise from the induction of differentiation. To assess the potential role of LAA, cells were exposed to oxygen radical scavengers in the absence or presence of LAA. Catalase abolished and superoxide dismutase promoted LAA-induced differentiation of HL-60. Thus, H2O2 produced as a result of LAA treatment seems to play a major role in induction of HL-60 differentiation.  相似文献   

16.
Plasminogen activator activity in differentiating leukemia cells   总被引:1,自引:0,他引:1  
Plasminogen activator (PA) activity of human promyelocytic leukemia cell line HL-60 was assayed by following the conversion of plasminogen to plasmin and the plasmin-mediated hydrolysis of 14C-labeled globin. When HL-60 cells were induced to differentiate into macrophages by 12-O-tetradecanoyl-phorbol-13-acetate (TPA), cell-associated PA activity and secretion of PA into the conditioned medium increased profoundly. PA activity increased earlier and as a result of lower concentrations of TPA than the ability of the cells to adhere. Exposure to 10(-6)M dexamethasone did not prevent TPA-induced adherence and produced a slight inhibition of cellular PA activity. These findings imply that TPA-induced differentiation of HL-60 cells to macrophage-like cells is associated with induction of PA activity.  相似文献   

17.
The putative role of Ca2+ and calmodulin in regulating cell proliferation and differentiation was tested in HL-60 human promyelocytic leukemia cells. The dependence of retinoic acid (RA)-induced terminal myeloid differentiation of HL-60 promyelocytic leukemia cells on calmodulin levels and calcium ion flux was ascertained. RA-treated and untreated control cells were stained for cellular DNA with a Hoechst dye. Populations of G1/0, S and G2+M phase cells were isolated by fluorescence activated cell sorting (FACS). Cytosolic calmodulin levels were then measured as a function of cell cycle phase for RA-treated and untreated cells using a radioimmunoassay. RA-treated cells were measured at early times, corresponding to the precommitment state, and late times, when significant cell differentiation had occurred. Cellular calmodulin levels increased with progression through the cell cycle. In contrast, no difference in calmodulin levels was observed between RA-untreated or -treated cells in the same cell cycle phases at early or late times. RA-induced HL-60 terminal myeloid differentiation was thus apparently not regulated by cellular cytosolic calmodulin levels. These conclusions were supported by the effects of calmodulin antagonists and calcium flux inhibitors. The calmodulin antagonists trifluoperazine and compound 48/80 both retarded cell growth in a concentration-dependent manner. But at concentrations where cellular effect was evidenced by slight growth inhibition, neither antagonist inhibited RA-induced cell differentiation or G1/0 growth arrest. The same was true of the gated calcium channel inhibitors, verapamil and nitrendipene, and the passive calcium flux inhibitor, CoC12. RA-induced HL-60 cell differentiation and arrest in G0 was thus apparently not strongly dependent on cellular calmodulin levels or calcium flux. This is in strong contrast to murine erythroleukemia cells. The results argue against a central regulatory role for calmodulin or calcium flux in control of HL-60 growth arrest or differentiation.  相似文献   

18.
1,25-Dihydroxyvitamin D3 induces the human promyelocyte leukemia cell line, HL-60, to differentiate into macrophages/monocytes via a steroid-receptor mechanism. This system is a relevant one for an investigation of the molecular mechanism of 1,25-dihydroxyvitamin D3. We have now examined the effect of 1,25-dihydroxyvitamin D3 on the induction of 1,25-dihydroxyvitamin D3- and 25-hydroxyvitamin D3-24-hydroxylase activities in HL-60 cells. The hydroxylase activities were measured by a periodate-based assay, which was validated by comparison with well-established HPLC analysis. HPLC analysis also suggested that 1,25-dihydroxyvitamin D3 induces a 23-hydroxylase in addition to the 24-hydroxylase. 1,25-Dihydroxyvitamin D3- and 25-hydroxyvitamin D3-24-hydroxylase activities were stimulated as early as 4 h after the addition of 10(-7) M 1,25-dihydroxyvitamin D3 and became maximal by 24 h. 1,25-Dihydroxyvitamin D3 stimulated both activities in a dose-dependent manner up to 10(-6) M. The Km of 24-hydroxylase for 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 were 2 x 10(-8) M and 5.2 x 10(-7) M, respectively. Cycloheximide (5 microM) inhibited 1,25-dihydroxyvitamin D3-mediated stimulation of 24-hydroxylase activity. Other differentiation inducers, such as retinoic acid and phorbol ester, did not induce either activity. 1,25-Dihydroxyvitamin D3-24-hydroxylase in HL-60 mitochondria was solubilized with 0.6% cholate and reconstituted with NADPH, beef adrenal ferredoxin, and beef adrenal ferredoxin reductase, each component being essential for 24-hydroxylase activity. These results strongly suggest that the 24-hydroxylase in HL-60 cells is a three-component cytochrome P450-dependent mixed-function oxidase.  相似文献   

19.
Retinoids induce the promyelocytic cell line, HL-60, to differentiate along the granulocytic pathway in vitro. A number of water-soluble and nitrogen-containing retinoids were synthesized in our laboratory [retinoyl-glucose (RAGL), retinyl-glucose (ROGL), retinoyl-adenosine (RADS), retinoyl-adenine (RAD), retinoyl-beta-glucuronide (beta RAG), and retinoyl-alpha-glucuronide (alpha RAG)]. These retinoids (10(-5) to 10(-8) M), as well as retinoic acid (RA) and retinol (ROL), were tested for their ability to induce the differentiation of HL-60 cells in vitro and to affect cell growth and viability during a 24- to 72-h incubation period. Differentiation was assessed by measuring the percentage of cells expressing the Mac-1 antigen on their cell surfaces. RA and the conjugates of RA were all quite active in inducing HL-60 cell differentiation, whereas ROL and ROGL had much less activity at equimolar concentrations. beta RAG, alpha RAG, RADS, and RAD were less toxic, whereas the glucose conjugates of retinol and retinoic acid (ROGL and RAGL) were both considerably more toxic than either RA or ROL at equimolar concentrations. All retinoids affected cell growth in a dose-dependent fashion. At 24 h, free RA or ROL was not detected in the cells after incubation with any of the retinoid conjugates.  相似文献   

20.
We compared the effects of inhibitors of kinases ATM (KU55933) and ATR (VE-821) (incubated for 30 min before irradiation) on the radiosensitization of human promyelocyte leukaemia cells (HL-60), lacking functional protein p53. VE-821 reduces phosphorylation of check-point kinase 1 at serine 345, and KU55933 reduces phosphorylation of check-point kinase 2 on threonine 68 as assayed 4 h after irradiation by the dose of 6 Gy. Within 24 h after gamma-irradiation with a dose of 3 Gy, the cells accumulated in the G2 phase (67 %) and the number of cells in S phase decreased. KU55933 (10 μM) did not affect the accumulation of cells in G2 phase and did not affect the decrease in the number of cells in S phase after irradiation. VE-821 (2 and 10 μM) reduced the number of irradiated cells in the G2 phase to the level of non-irradiated cells and increased the number of irradiated cells in S phase, compared to irradiated cells not treated with inhibitors. In the 144 h interval after irradiation with 3 Gy, there was a considerable induction of apoptosis in the VE-821 group (10 μM). The repair of the radiation damage, as observed 72 h after irradiation, was more rapid in the group exposed solely to irradiation and in the group treated with KU55933 (80 and 77 % of cells, respectively, were free of DSBs), whereas in the group incubated with 10 μM VE-821, there were only 61 % of cells free of DSBs. The inhibition of kinase ATR with its specific inhibitor VE-821 resulted in a more pronounced radiosensitizing effect in HL-60 cells as compared to the inhibition of kinase ATM with the inhibitor KU55933. In contrast to KU55933, the VE-821 treatment prevented HL-60 cells from undergoing G2 cell cycle arrest. Taken together, we conclude that the ATR kinase inhibition offers a new possibility of radiosensitization of tumour cells lacking functional protein p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号