首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated Factor XIII (FXIIIa) is a transglutaminase that catalyzes the formation of gamma-glutamyl-varepsilon-lysine crosslinks in the fibrin network. To better understand the source of FXIIIa substrate specificity, Q-containing substrates based on beta-casein, K9-peptide, and alpha(2)-antiplasmin were characterized. alpha(2)AP (1-15, Q2, Q4) and alpha(2)AP (1-15, Q2, Q4N, K12R) are highly promising peptide models since they exhibited k(cat)/K(m) values comparable to intact beta-casein. In the absence of a lysine-like donor, FXIIIa could promote deamidation of a reactive Q to an E and solution NMR served as an effective strategy for monitoring this reaction. A tendency toward deamidation allowed greater investigations of the alpha(2)-antiplasmin based peptides. FXIIIa preferentially selects the Q2 residue for carrying out crosslinking processes. The E3 and Q4 provide supporting roles in binding. When a crosslinking reaction occurs at Q2, the Q4 position is sterically blocked from reactivity. By contrast, deamidation of Q2 to E2 allows, for the first time, observation of reactivity at Q4. The K12 position provides an additional favorable site of interaction with the FXIIIa surface. The sensitivity of alpha(2)AP (1-15, Q2, Q4) to amino acid changes at Q2, Q4, and K12 suggests the importance of individual FXIIIa subsites that are controlled by chemical environment and sterics.  相似文献   

2.
Severina E  Nunez L  Baker S  Matsuka YV 《Biochemistry》2006,45(6):1870-1880
In the present study we investigated the role of factor XIIIa reactive Gln and Lys sites of staphylococcal FnbA receptor in cross-linking reaction with alpha chains of fibrin. For this purpose we produced two recombinant FnbA mutants in which either a single Gln103 site (1Q FnbA) or all identified reactive Gln103, 105, 783, 830 and Lys157, 503, 620, 762 sites (4Q4K FnbA) were substituted with Ala residues. The results of FXIIIa-catalyzed incorporation of dansylcadaverine and dansylated peptide patterned on the NH2-terminal segment of fibronectin revealed that the reactivity of Gln substrate sites was drastically reduced in 1Q FnbA and 4Q4K FnbA mutants, while the reactivity of Lys substrate sites was only moderately decreased in 4Q4K FnbA. When it was tested in the FXIIIa-mediated fibrin cross-linking reaction, the 1Q FnbA mutant exhibited about 70-85% reduction in reactivity compared to that of the wild-type FnbA. These results demonstrate that FnbA participates in cross-linking to alpha chains of fibrin predominantly via its Gln103 reactive site. Several minor sites, including residues replaced in 4Q4K FnbA mutant, contributed to an additional 15-30% of the total fibrin cross-linking reactivity of FnbA. Comparison of amino acid sequences that follow the major reactive Gln site in FnbA and several known substrate proteins revealed that FXIIIa displays a preference for the glutamine residue in an xQAxBxPx sequence, where Q represents reactive glutamine, x is any amino acid residue, A is a polar residue, B is either valine or leucine, and P is proline.  相似文献   

3.
Crosslinking of small heat-shock proteins (sHsps) by tissue transglutaminase (tTG) is enhanced by stress and under pathological conditions. We here used hexapeptide probes to determine the amine donor (K) and acceptor (Q) sites for tTG in Hsp20. Mass spectrometric peptide mass fingerprinting and peptide fragmentation established that Q31 and the C-terminal K162 are involved in inter- and intramolecular crosslinking (transamidation). Q31 is a conserved glutamine in sHsps where the neighboring residue determines its reactivity. Moreover, we detected highly efficient simultaneous deamidation of Q66, which suggests that tTG-catalyzed transamidation and deamidation is specific for different glutamine residues.  相似文献   

4.
Tissue transglutaminase (tTG) is up-regulated in Alzheimer's disease brain and localizes to neurofibrillary tangles with the tau protein. Tau is an in vitro tTG substrate, being cross-linked and/or polyaminated. Further, the Gln and Lys residues in tau that are modified by tTG in vitro are located primarily within or adjacent to the microtubule-binding domains. Considering these and other previous findings, this study was carried out to determine if tau is modified in situ by tTG in human neuroblastoma SH-SY5Y cells, and whether tTG-catalyzed tau polyamination modulates the function and/or metabolism of tau in vitro. For these studies, SH-SY5Y cells stably overexpressing tTG were used. tTG coimmunoprecipitated with tau, and elevating intracellular calcium levels with maitotoxin resulted in a 52 +/- 4% increase in the amount of tTG that coimmunoprecipitated with tau. The increase in association of tTG with tau after treatment with maitotoxin corresponded to a coimmunolocalization of tTG, tTG activity, and tau in the cells. Further, tau was modified by tTG in situ in response to maitotoxin treatment. In vitro polyaminated tau was significantly less susceptible to micro-calpain proteolysis; however, tTG-mediated polyamination of tau did not significantly alter the microtubule-binding capacity of tau. Thus, tau interacts with and is modified by tTG in situ, and modification of tau by tTG alters its metabolism. These data indicate that tau is likely to be modified physiologically and pathophysiologically by tTG, and tTG may play a role in Alzheimer's disease.  相似文献   

5.
Understanding substrate specificity and identification of natural targets of transglutaminase 2 (TG2), the ubiquitous multifunctional cross-linking enzyme, which forms isopeptide bonds between protein-linked glutamine and lysine residues, is crucial in the elucidation of its physiological role. As a novel means of specificity analysis, we adapted the phage display technique to select glutamine-donor substrates from a random heptapeptide library via binding to recombinant TG2 and elution with a synthetic amine-donor substrate. Twenty-six Gln-containing sequences from the second and third biopanning rounds were susceptible for TG2-mediated incorporation of 5-(biotinamido)penthylamine, and the peptides GQQQTPY, GLQQASV, and WQTPMNS were modified most efficiently. A consensus around glutamines was established as pQX(P,T,S)l, which is consistent with identified substrates listed in the TRANSDAB database. Database searches showed that several proteins contain peptides similar to the phage-selected sequences, and the N-terminal glutamine-rich domain of SWI1/SNF1-related chromatin remodeling proteins was chosen for detailed analysis. MALDI/TOF and tandem mass spectrometry-based studies of a representative part of the domain, SGYGQQGQTPYYNQQSPHPQQQQPPYS (SnQ1), revealed that Q(6), Q(8), and Q(22) are modified by TG2. Kinetic parameters of SnQ1 transamidation (K(M)(app) = 250 microM, k(cat) = 18.3 sec(-1), and k(cat)/K(M)(app) = 73,200) classify it as an efficient TG2 substrate. Circular dichroism spectra indicated that SnQ1 has a random coil conformation, supporting its accessibility in the full-length parental protein. Added together, here we report a novel use of the phage display technology with great potential in transglutaminase research.  相似文献   

6.
Transglutaminases (TGases) are enzymes which catalyze cross-link formation between glutamine residues and lysine residues in substrate proteins. We have previously reported that one of the TGases, blood coagulation factor XIIIa (FXIIIa), is capable of mediating adhesion of various cells. In this paper, we report for the first time that tissue-type transglutaminase (TGc) also has cell adhesion activity. TGc-coated plastic surface promoted adhesion and spreading of cells in a TGc concentration-dependent manner. However, there are some obvious differences between cell adhesion mediated by TGc and FXIIIa. As was reported previously, the adhesion to FXIIIa is dependent on its TGase activity. In contrast, the TGc-mediated cell adhesion is independent of its TGase activity: 1) The modification of the active center cysteine with iodoacetamide blocked the enzyme activity without any effect on cell adhesion; 2) the addition of Mg2+ did not induce the enzyme activity, but it was as effective as Ca2+ for cell adhesion; 3) the addition of NH4+ inhibited the enzyme activity but did not affect the cell adhesion significantly. The integrins involved in these cell adhesions are quite different. In the case of FXIIIa, alpha vbeta3 and alpha5beta1 integrins are involved and consequently the RGD peptide substantially inhibited the adhesion. On the other hand, the cell adhesion to TGc is mediated by alpha4beta1 integrin but not alpha5beta1; a CS-1 peptide, which represents the binding site of fibronectin to alpha4beta1 integrin, completely inhibited the cell adhesion to TGc. It is possible that TGc and FXIIIa may mediate cell adhesion under different physiological and pathological situations.  相似文献   

7.
Sabo TM  Brasher PB  Maurer MC 《Biochemistry》2007,46(35):10089-10101
Factor XIII can be activated proteolytically by thrombin cleavage of the activation peptide or non-proteolytically by exposure to 50 mM Ca2+. The resultant transglutaminase cross-links Q and K residues within the noncovalently associated fibrin clot. Hydrogen deuterium exchange coupled with MALDI-TOF MS demonstrated that FXIII activation protects regions within the beta sandwich (98-104) and the beta barrel 1 (526-546) from deuterium, while exposing the potential Q substrate recognition site (220-230) to deuteration (Turner, B. T., Jr., and Maurer, M. C. (2002) Biochemistry 41, 7947-7954). Chemical modification indicated the availability of several residues upon activation including K73, K221, C314, and C409 (Turner, B. T., Jr., Sabo, T. M., Wilding, D., and Maurer, M. C. (2004) Biochemistry 43, 9755-9765). In the current work, activations of FXIII by IIa and by Ca2+ as well as FXIIIa inhibition by the K9 DON peptide (with the Q isostere 6-diazo-5-oxo-norleucine) and iodoacetamide were further examined. New findings unique for FXIIIaIIa included alkylation of C238 and C327, acetylation of K68, and increased proteolysis of 207-214. By contrast, FXIIIaCa led to increased proteolysis of 73-85 and 104-125 and to a loss of K129 acetylation. The FXIIIa inhibitors K9 DON and iodoacetamide both promoted even greater protection from deuteration for the beta sandwich (98-104) and beta barrel 1 (526-546). Interestingly, only K9 DON was able to block modification of catalytic core C409 near the dimer interface. The solution based approaches reveal that activation and inhibition lead to local and long range effects to FXIII(a) and that many are influenced by Ca2+ binding. Important glimpses are being provided on FXIIIa allostery and the presence of putative FXIIIa exosites.  相似文献   

8.
We investigated the epoxidase activity of a class mu glutathione S-transferase (cGSTM1-1), using 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) as substrate. Trp209 on the C-terminal tail, Arg107 on the alpha4 helix, Asp161 and Gln165 on the alpha6 helix of cGSTM1-1 were selected for mutagenesis and kinetic studies. A hydrophobic side-chain at residue 209 is needed for the epoxidase activity of cGSTM1-1. Replacing Trp209 with histidine, isoleucine or proline resulted in a fivefold to 28-fold decrease in the k(cat)(app) of the enzyme, while a modest 25 % decrease in the k(cat)(app) was observed for the W209F mutant. The rGSTM1-1 enzyme has serine at the correponding position. The k(cat)(app) of the S209W mutant is 2. 5-fold higher than that of the wild-type rGSTM1-1. A charged residue is needed at position 107 of cGSTM1-1. The K(m)(app)(GSH) of the R107L mutant is 38-fold lower than that of the wild-type enzyme. On the contrary, the R107E mutant has a K(m)(app)(GSH) and a k(cat)(app) that are 11-fold and 35 % lower than those of the wild-type cGSTM1-1. The substitutions of Gln165 with Glu or Leu have minimal effect on the affinity of the mutants towards GSH or EPNP. However, a discernible reduction in k(cat)(app) was observed. Asp161 is involved in maintaining the structural integrity of the enzyme. The K(m)(app)(GSH) of the D161L mutant is 616-fold higher than that of the wild-type enzyme. In the hydrogen/deuterium exchange experiments, this mutant has the highest level of deuteration among all the proteins tested.We also elucidated the structure of cGSTM1-1 co-crystallized with the glutathionyl-conjugated 1, 2-epoxy-3-(p-nitrophenoxy)propane (EPNP) at 2.8 A resolution. The product found in the active site was 1-hydroxy-2-(S-glutathionyl)-3-(p-nitrophenoxy)propane, instead of the conventional 2-hydroxy isomer. The EPNP moiety orients towards Arg107 and Gln165 in dimer AB, and protrudes into a hydrophobic region formed by the loop connecting beta1 and alpha1 and part of the C-terminal tail in dimer CD. The phenoxyl ring forms strong ring stacking with the Trp209 side-chain in dimer CD. We hypothesize that these two conformations represent the EPNP moiety close to the initial and final stages of the reaction mechanism, respectively.  相似文献   

9.
We previously reported that MOLT-3 human lymphocyte-like leukemia cells adhere to tissue-type transglutaminase (tTG) through the integrin alpha(4)beta(1). We now report that G-361 human melanoma cells also adhere to tTG, although they do not express alpha(4)beta(1). G-361 cells utilize two additional integrins, alpha(9)beta(1) and alpha(5)beta(1) to adhere to tTG. Furthermore, blood coagulation factor XIII (FXIII), another member of the transglutaminase family that is highly homologous to tTG, and propolypeptide of von Willebrand factor (pp-vWF) also promoted cell adhesion through alpha(9)beta(1) or alpha(4)beta(1) in G-361 or MOLT-3 cells, respectively. In the case of pp-vWF, alpha(9)beta(1) and alpha(4)beta(1) both bind to the same site, comprised of 15 amino acid residues and designated T2-15. Moreover, SW480 human colon cancer cells stably transfected to express alpha(9)beta(1), but not mock transfectants, adhered to tTG, FXIII, pp-vWF, and T2-15/bovine serum albumin conjugate. These data identify tTG, FXIII, and pp-vWF as shared ligands for the integrins alpha(9)beta(1) and alpha(4)beta(1). This report is the first to unambiguously show that these two integrins share the same cell adhesion site within one protein and provides strong support for classifying alpha(9)beta(1-) and alpha(4)-integrins as functionally related members of an integrin subfamily.  相似文献   

10.
The retaining glycosyltransferase, alpha-1,3-galactosyltransferase (alpha3GT), is mutationally inactivated in humans, leading to the presence of circulating antibodies against its product, the alpha-Gal epitope. alpha3GT catalyzes galactose transfer from UDP-Gal to beta-linked galactosides, such as lactose, and in the absence of an acceptor substrate, to water at a lower rate. We have used site-directed mutagenesis to investigate the roles in catalysis and specificity of residues in alpha3GT that form H-bonds as well as other interactions with substrates. Mutation of the conserved Glu(317) to Gln weakens lactose binding and reduces the k(cat) for galactosyltransfer to lactose and water by 2400 and 120, respectively. The structure is not perturbed by this substitution, but the orientation of the bound lactose molecule is changed. The magnitude of these changes does not support a previous proposal that Glu(317) is the catalytic nucleophile in a double displacement mechanism and suggests it acts in acceptor substrate binding and in stabilizing a cationic transition state for cleavage of the bond between UDP and C1 of the galactose. Cleavage of this bond also linked to a conformational change in the C-terminal region of alpha3GT that is coupled with UDP binding. Mutagenesis indicates that His(280), which is projected to interact with the 2-OH of the galactose moiety of UDP-Gal, is a key residue in the stringent donor substrate specificity through its role in stabilizing the bound UDP-Gal in a suitable conformation for catalysis. Mutation of Gln(247), which forms multiple interactions with acceptor substrates, to Glu reduces the catalytic rate of galactose transfer to lactose but not to water. This mutation is predicted to perturb the orientation or environment of the bound acceptor substrate. The results highlight the importance of H-bonds between enzyme and substrates in this glycosyltransferase, in arranging substrates in appropriate conformations and orientation for efficient catalysis. These factors are manifested in increases in catalytic rate rather than substrate affinity.  相似文献   

11.
Activated factor XIII (FXIIIa) catalyzes the formation of γ-glutamyl-ε-lysyl cross-links within the fibrin blood clot network. Although several cross-linking targets have been identified, the characteristic features that define FXIIIa substrate specificity are not well understood. To learn more about how FXIIIa selects its targets, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS)-based assay was developed that could directly follow the consumption of a glutamine-containing substrate and the formation of a cross-linked product with glycine ethylester. This FXIIIa kinetic assay is no longer reliant on a secondary coupled reaction, on substrate labeling, or on detecting only the final deacylation portion of the transglutaminase reaction. With the MALDI–TOF MS assay, glutamine-containing peptides derived from α2-antiplasmin, Staphylococcus aureus fibronectin binding protein A, and thrombin-activatable fibrinolysis inhibitor were examined directly. Results suggest that the FXIIIa active site surface responds to changes in substrate residues following the reactive glutamine. The P−1 substrate position is sensitive to charge character, and the P−2 and P−3 substrate positions are sensitive to the broad FXIIIa substrate specificity pockets. The more distant P−8 to P−11 region serves as a secondary substrate anchoring point. New knowledge on FXIIIa specificity may be used to design better substrates or inhibitors of this transglutaminase.  相似文献   

12.
Transglutaminase-mediated site-specific and covalent immobilization of an enzyme to chemically modified agarose was explored. Using Escherichia coli alkaline phosphatase (AP) as a model, two designed specific peptide tags containing a reactive lysine (Lys) residue with different length Gly-Ser linkers for microbial transglutaminase (MTG) were genetically attached to N- or C-termini. For solid support, agarose gel beads were chemically modified with beta-casein to display reactive glutamine (Gln) residues on the support surface. Recombinant APs were enzymatically and covalently immobilized to casein-grafted agarose beads. Immobilization by MTG markedly depended on either the position or the length of the peptide tags incorporated to AP, suggesting steric constraint upon enzymatic immobilization. Enzymatically immobilized AP showed comparable catalytic turnover (k(cat)) to the soluble counterpart and comparable operational stability with chemically immobilized AP. These results indicate that attachment of a suitable specific peptide tag to the right position of a target protein is crucial for MTG-mediated formulation of highly active immobilized proteins.  相似文献   

13.
Nitric oxide (NO) and related molecules play important roles in vascular biology. NO modifies proteins through nitrosylation of free cysteine residues, and such modifications are important in mediating NO's biologic activity. Tissue transglutaminase (tTG) is a sulfhydryl rich protein that is expressed by endothelial cells and secreted into the extracellular matrix (ECM) where it is bound to fibronectin. Tissue TG exhibits a Ca(2+)-dependent transglutaminase activity (TGase) that cross-links proteins involved in wound healing, tissue remodeling, and ECM stabilization. Since tTG is in proximity to sites of NO production, has 18 free cysteine residues, and utilizes a cysteine for catalysis, we investigated the factors that regulated NO binding and tTG activity. We report that TGase activity is regulated by NO through a unique Ca(2+)-dependent mechanism. Tissue TG can be poly-S-nitrosylated by the NO carrier, S-nitrosocysteine (CysNO). In the absence of Ca(2+), up to eight cysteines were nitrosylated without modifying TGase activity. In the presence of Ca(2+), up to 15 cysteines were found to be nitrosylated and this modification resulted in an inhibition of TGase activity. The addition of Ca(2+) to nitrosylated tTG was able to trigger the release of NO groups (i.e. denitrosylation). tTG nitrosylated in the absence of Ca(2+) was 6-fold more susceptible to inhibition by Mg-GTP. When endothelial cells in culture were incubated with tTG and stimulated to produce NO, the exogenous tTG was S-nitrosylated. Furthermore, S-nitrosylated tTG inhibited platelet aggregation induced by ADP. In conclusion, we provide evidence that Ca(2+) regulates the S-nitrosylation and denitrosylation of tTG and thereby TGase activity. These data suggest a novel allosteric role for Ca(2+) in regulating the inhibition of tTG by NO and a novel function for tTG in dispensing NO bioactivity.  相似文献   

14.
Cholesterol oxidase catalyzes the oxidation of cholesterol to cholest-5-en-3-one and its subsequent isomerization into cholest-4-en-3-one. Two active-site residues, His447 and Glu361, are important for catalyzing the oxidation and isomerization reactions, respectively. Double-mutants were constructed to test the interplay between these residues in catalysis. We observed that the k(cat) of oxidation for the H447Q/E361Q mutant was 3-fold less than that for H447Q and that the k(cat) of oxidation for the H447E/E361Q mutant was 10-fold slower than that for H447E. Because both doubles-mutants do not have a carboxylate at position 361, they do not catalyze isomerization of the reaction intermediate cholest-5-en-3-one to cholest-4-en-3-one. These results suggest that Glu361 can compensate for the loss of histidine at position 447 by acting as a general base catalyst for oxidation of cholesterol. Importantly, the construction of the double-mutant H447E/E361Q yields an enzyme that is 31,000-fold slower than wild type in k(cat) for oxidation. The H447E/E361Q mutant is folded like native enzyme and still associates with model membranes. Thus, this mutant may be used to study the effects of membrane binding in the absence of catalytic activity. It is demonstrated that in assays with caveolae membrane fractions, the wild-type enzyme uncouples platelet-derived growth factor receptor beta (PDGFRbeta) autophosphorylation from tyrosine phosphorylation of neighboring proteins, and the H447E/E361Q mutant does not. Thus maintenance of membrane structure by cholesterol is important for PDGFRbeta-mediated signaling. The cholesterol oxidase mutant probe described will be generally useful for investigating the role of membrane structure in signal transduction pathways in addition to the PDGFRbeta-dependent pathway tested.  相似文献   

15.
Bruckner RC  Winans J  Jorns MS 《Biochemistry》2011,50(22):4949-4962
N-Methyltryptophan oxidase (MTOX) contains covalently bound FAD. N-Methyltryptophan binds in a cavity above the re face of the flavin ring. Lys259 is located above the opposite, si face. Replacement of Lys259 with Gln, Ala, or Met blocks (>95%) covalent flavin incorporation in vivo. The mutant apoproteins can be reconstituted with FAD. Apparent turnover rates (k(cat,app)) of the reconstituted enzymes are ~2500-fold slower than those of wild-type MTOX. Wild-type MTOX forms a charge-transfer E(ox)·S complex with the redox-active anionic form of NMT. The E(ox)·S complex formed with Lys259Gln does not exhibit a charge-transfer band and is converted to a reduced enzyme·imine complex (EH(2)·P) at a rate 60-fold slower than that of wild-type MTOX. The mutant EH(2)·P complex contains the imine zwitterion and exhibits a charge-transfer band, a feature not observed with the wild-type EH(2)·P complex. Reaction of reduced Lys259Gln with oxygen is 2500-fold slower than that of reduced wild-type MTOX. The latter reaction is unaffected by the presence of bound product. Dissociation of the wild-type EH(2)·P complex is 80-fold slower than k(cat). The mutant EH(2)·P complex dissociates 15-fold faster than k(cat,app). Consequently, EH(2)·P and free EH(2) are the species that react with oxygen during turnover of the wild-type and mutant enzyme, respectively. The results show that (i) Lys259 is the site of oxygen activation in MTOX and also plays a role in holoenzyme biosynthesis and N-methyltryptophan oxidation and (ii) MTOX contains separate active sites for N-methyltryptophan oxidation and oxygen reduction on opposite faces of the flavin ring.  相似文献   

16.
17.
To study the flexibility of the substrate-binding site and in particular of Gln262, we have performed adiabatic conformational search and molecular dynamics simulations on the crystal structure of the catalytic domain of wild-type protein-tyrosine phosphatase (PTP) 1B, a mutant PTP1B(R47V,D48N,M258C,G259Q), and a model of the catalytically active form of PTPalpha. For each molecule two cases were modeled: the Michaelis-Menten complex with the substrate analogue p-nitrophenyl phosphate (p-PNPP) bound to the active site and the cysteine-phosphor complex, each corresponding to the first and second step of the phosphate hydrolysis. Analyses of the trajectories revealed that in the cysteine-phosphor complex of PTP1B, Gln262 oscillates freely between the bound phosphate group and Gly259 frequently forming, as observed in the crystal structure, a hydrogen bond with the backbone oxygen of Gly259. In contrast, the movement of Gln262 is restricted in PTPalpha and the mutant due to interactions with Gln259 reducing the frequency of the oscillation of Gln262 and thereby delaying the positioning of this residue for the second step in the catalysis, as reflected experimentally by a reduction in k(cat). Additionally, in the simulation with the Michaelis-Menten complexes, we found that a glutamine in position 259 induces steric hindrance by pushing the Gln262 side chain further toward the substrate and thereby negatively affecting K(m) as indicated by kinetic studies. Detailed analysis of the water structure around Gln262 and the active site Cys215 reveals that the probability of finding a water molecule correctly positioned for catalysis is much larger in PTP1B than in PTP1B(R47V,D48N,M258C,G259Q) and PTPalpha, in accordance with experiments.  相似文献   

18.
Tissue transglutaminase (tTG) likely plays a role in numerous processes in the nervous system. tTG posttranslationally modifies proteins by transamidation of specific polypeptide bound glutamines (Glns). This reaction results in the incorporation of polyamines into substrate proteins or the formation of protein crosslinks, modifications that likely have significant effects on neural function. Huntington's disease is a genetic disorder caused by an expansion of the polyglutamine domain in the huntingtin protein. Because a polypeptide bound Gln is the determining factor for a tTG substrate, and mutant huntingtin aggregates have been found in Huntington's disease brain, it has been hypothesized that tTG may contribute to the pathogenesis of Huntington's disease. In vitro, polyglutamine constructs and huntingtin are substrates of tTG. Further, the levels of tTG and TG activity are elevated in Huntington's disease brain and immunohistochemical studies have demonstrated that there is an increase in tTG reactivity in affected neurons in Huntington's disease. These findings suggest that tTG may play a role in Huntington's disease. However in situ, neither wild type nor mutant huntingtin is modified by tTG. Further, immunocytochemical analysis revealed that tTG is totally excluded from the huntingtin aggregates, and modulation of the expression level of tTG had no effect on the frequency of the aggregates in the cells. Therefore, tTG is not required for the formation of huntingtin aggregates, and likely does not play a role in this process in Huntington's disease brain. However, tTG interacts with truncated huntingtin, and selectively polyaminates proteins that are associated with mutant truncated huntingtin. Given the fact that the levels of polyamines in cells is in the millimolar range and the crosslinking and polyaminating reactions catalyzed by tTG are competing reactions, intracellularly polyamination is likely to be the predominant reaction. Polyamination of proteins is likely to effect their function, and therefore it can be hypothesized that tTG may play a role in the pathogenesis of Huntington's disease by modifying specific proteins and altering their function and/or localization. Further research is required to define the specific role of tTG in Huntington's disease.  相似文献   

19.
The mechanisms by which ethanol inhibits hepatocyte proliferation have been a source of some considerable investigation. Our studies have suggested a possible role for tissue transglutaminase (tTG) in this process. Others have shown that tTG has two distinctly different functions: it catalyzes protein cross-linking, which can lead to apoptosis and enhancement of extracellular matrix stability, and it can function as a G protein (Galpha(h)). Under that circumstance, we speculated that the cross-linking activity would be decreased and that it would function to enhance hepatocyte proliferation in response to adrenergic stimulation. Ethanol treatment inhibited hepatocyte proliferation and led to enhanced tTG cross-linking activity, whereas treatment of hepatocytes with an alpha1 adrenergic agonist, phenylephrine, enhanced hepatocyte proliferation while decreasing tTG cross-linking. However, phenylephrine treatment of several hepatoma cell lines had no effect on cellular proliferation or tTG cross-linking activity, and of note, Northern blot analysis demonstrated that whereas primary hepatocytes had high levels of the alpha1beta adrenergic receptor (alpha1BAR) mRNA, the hepatoma cell lines did not have this mRNA. When the Hep G(2) cell line was stably transduced with an expression vector containing the alpha1BR cDNA, the cell line responded to phenylephrine treatment with enhanced proliferation and with decreased tTG cross-linking activity. Ethanol treatment of the alpha1BAR-transfected cells suppressed the phospholipase C-mediated signaling pathways, as detected in the phenylephrine-induced Ca(2+) response. These results suggest that phenylephrine stimulation of hepatocyte proliferation appears to be occurring through the alpha1BAR, which is known to be coupled with the tTG G protein moiety, Galpha(h), and that tTG appears to play a significant role in either enhancing or inhibiting hepatocyte proliferation, depending on its cellular location and on whether it functions as a cross-linking enzyme or a G protein.  相似文献   

20.
B Holtz  P Cuniasse  A Boulay  R Kannan  A Mucha  F Beau  P Basset  V Dive 《Biochemistry》1999,38(37):12174-12179
The influence of Gln215 in stromelysin-3 (MMP-11), a residue located in the S1' subsite, was determined by producing three single mutants of this position. As compared to wild-type stromelysin-3, the kinetic parameters K(M) and k(cat) for the degradation of the fluorogenic substrate Dns-Pro-Leu-Ala-Leu-Trp-Ala-Arg-NH(2) (Dns-Leu) by these mutants indicated that the Gln/Leu substitution led to a 4-fold decrease in catalytic efficiency, whereas the mutations Gln/Tyr and Gln/Arg increased this parameter by a factor 10. The cleavage of alpha1-protease inhibitor (alpha1-PI), a natural substrate of stromelysin-3, by these mutants was also determined. Their relative activities for the degradation of alpha1-PI correspond to those observed with the synthetic substrate Dns-Leu. The catalytic efficiency of wild-type stromelysin-3 and its mutants to cleave the P1' analogue of Dns-Leu, containing the unusual amino acid Cys(OMeBn) (Dns-Cys(OMeBn)), was also determined. The values of the specificity factor, calculated as the ratio (k(cat)/K(M))Dns-Cys(OMeBn))/(k(cat)/K(M))Dns-Leu, were observed to vary from 26 for the wild-type stromelysin-3 to 120 for the Gln/Leu mutant and 25 for the Gln/Arg mutant. The Gln/Tyr mutant did not cleave the substrate when its P1' position is substituted by the unusual amino acid Cys(OMeBn). Altogether these observations established that both the catalytic activity and the specificity of stromelysin-3 are dependent on the nature of the residue in position 215. Finally, the cleavage efficiency of the Dns substrates by three representative matrixins, namely, MMP-14 (215 = Leu), MMP-1 (215 = Arg), and MMP-7 (215 = Tyr), was determined. Interestingly, the trends observed for these enzymes were similar to those established for the three mutants of stromelysin-3, pointing out the influence of position 215 toward the selectivity in this family of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号