首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The changes in protein phosphorylation associated with bovine tracheal smooth muscle contraction were studied by labeling intact muscle strips with [32P]PO4(3-) and analyzing the phosphoproteins by two-dimensional gel electrophoresis. Among 20 to 30 phosphoproteins resolvable with the two-dimensional electrophoresis system, the phosphorylation of 12 proteins was reproducibly affected by treatment with carbachol, in a time-dependent manner. Five of these proteins have been identified as 20-kDa myosin light chain, caldesmon, synemin, and two isoelectric variants of desmin. The other 7 are low molecular weight (Mr less than 40,000) cytosolic proteins. One cytosolic protein and myosin light chain are quickly but transiently phosphorylated by carbachol, the peak of myosin light chain phosphorylation being at about 1 min after agonist addition. In contrast, both variants of desmin, synemin, caldesmon, and 5 cytosolic proteins are phosphorylated at varying rates and remain phosphorylated for the duration of carbachol action. These "late" phosphorylation changes occur simultaneously with the dephosphorylation of one cytosolic protein. These carbachol-induced phosphorylation changes, like the contractile response, appear to be calcium-dependent. The addition of 12-deoxyphorbol 13-isobutyrate, a protein kinase C activator, causes a dose-dependent, sustained contraction of tracheal smooth muscle which develops more slowly than that induced by carbachol. This contractile response is associated with the same protein phosphorylation changes as those observed after prolonged carbachol treatment. In contrast, forskolin, an adenylate cyclase activator and a potent smooth muscle relaxant, induces the phosphorylation protein 3 and one variant of desmin. These observations strongly suggest that different phosphoproteins may be mediators of tension development and tension maintenance in agonist-induced contraction of tracheal smooth muscle.  相似文献   

2.
We previously generated an isoform-specific gene knockout mouse in which SM-B myosin is permanently replaced by SM-A myosin. In this study, we examined the effects of SM-B myosin loss on the contractile properties of vascular smooth muscle, specifically peripheral mesenteric vessels and aorta. The absence of SM-B myosin leads to decreased velocity of shortening and increased isometric force generation in mesenteric vessels. Surprisingly, the same changes occur in aorta, which contains little or no SM-B myosin in wild-type animals. Calponin and activated mitogen-activated protein kinase expression is increased and caldesmon expression is decreased in aorta, as well as in bladder. Light chain-17b isoform (LC17b) expression is increased in aorta. These results suggest that the presence or absence of SM-B myosin is a critical determinant of smooth muscle contraction and that its loss leads to additional changes in thin filament regulatory proteins. aorta; mesenteric vessels; calponin; caldesmon  相似文献   

3.
Abstract. Calponin and SM 22 are two proteins related in sequence that are particularly abundant in smooth muscle cells. Here, the distribution patterns of calponin and SM 22 were compared with that of other smooth muscle contractile and cytoskeletal components in the avian embryo using immunofluorescence microscopy and immunoblotting. Like myosin-light-chain kinase and heavy caldesmon, both calponin and SM 22 were more or less exclusively found in smooth muscle cells, during embryonic development and in the adult. Labelling of other cell types including striated muscle was not observed. In contrast, tropomyosin, smooth muscle α-actin, filamin and desmin could also be detected in many other cell types in addition to smooth muscles, at least during part of embryonic life. Calponin and SM 22 appeared almost synchronously during the differentiation of all smooth muscle cell populations, though with a slight time difference in the case of the aorta. The appearance of calponin, SM22 and heavy caldesmon was generally delayed in relation to desmin, tropomyosin, smooth muscle α-actin, myosin-light-chain kinase and filamin and a marked increase in abundance of these proteins was observed in the late embryo and in the adult. From these observations we can conclude that both calponin and SM 22 belong to a group of late differentiation determinants in smooth muscle and may constitute convenient and reliable markers to follow the differentiation of most, if not all, smooth muscle cell populations.  相似文献   

4.
Vimentin intermediate filaments undergo spatial reorganization in cultured smooth muscle cells in response to contractile activation; however, the role of vimentin in the physiological properties of smooth muscle has not been well elucidated. Tracheal smooth muscle strips were loaded with antisense oligonucleotides (ODNs) against vimentin and then cultured for 2 days to allow for protein degradation. Treatment with vimentin antisense, but not sense, ODNs suppressed vimentin protein expression; neither vimentin antisense nor sense ODNs affected protein levels of desmin and actin. Force development in response to ACh stimulation or KCl depolarization was lower in vimentin-deficient tissues than in vimentin sense ODN- or non-ODN-treated muscle strips. Passive tension was also depressed in vimentin-depleted muscle tissues. Vimentin downregulation did not attenuate increases in myosin light chain (MLC) phosphorylation in response to contractile stimulation or basal MLC phosphorylation. In vimentin sense ODN-treated or non-ODN-treated smooth muscle strips, the desmosomal protein plakoglobin was primarily localized in the cell periphery. The membrane-associated localization of plakoglobin was reduced in vimentin-depleted muscle tissues. These studies suggest that vimentin filaments play an important role in mediating active force development and passive tension, which are not regulated by MLC phosphorylation. Vimentin downregulation impairs the structural organization of desmosomes, which may be associated with the decrease in force development. intermediate filaments; cytoskeleton; contraction; desmin  相似文献   

5.
Calponin, a novel homologue of troponin T, purified from chicken gizzard was found to be one of the most susceptible proteins among smooth muscle contraction-associated proteins to hydrolysis by calpain I purified from human red blood cells. The high susceptibility of calponin was comparable to that reported for troponin T. The rate of degradation of calponin, unlike caldesmon and myosin light chain kinase, was accelerated when bound to calmodulin. When calponin existed as a bound form in both reconstituted actin filament and native thin filament, the rate of proteolysis was markedly retarded, indicating close association of calponin with actin filament. These observations are compatible with the view that calponin is an integral part of the actin-linked contractile machinery in smooth muscle.  相似文献   

6.
Expression of the regulatory contractile proteins, heavy caldesmon (h-caldesmon) and calponin was studied in human aortic smooth muscle cells (SMCs) during development and compared with the expression of alpha-SM-actin and smooth muscle-myosin heavy chain (SM-MHCs). For this study, novel monoclonal antibodies specific to SM-MHCs, h-caldesmon, and calponin were developed and characterized. Aortic SMCs from fetuses of 8-10 and 20-22 weeks of gestation express alpha-SM-actin and SM-MHCs, but neither h-caldesmon nor calponin were expressed as demonstrated by immunoblotting and immunofluorescence techniques. In the adult aortic tunica media, SMCs contain all four markers. Thus, the expression of calponin, similar to the expression of alpha-SM-actin, SM-MHCs, and h-caldesmon, is developmentally regulated in aortic SMCs. In the adult aortic subendothelial (preluminal) part of tunica intima, numerous cells containing SM-MHCs, but lacking h-caldesmon and calponin, were found. These results illustrate the similarity of SMCs from intimal thickenings and immature (fetal) SMCs. Expression of contractile proteins in the developing SMCs is coordinately regulated; however, distinct groups of proteins appear to exist whose expression is regulated differently. Actin and myosin, being major contractile proteins, also play a structural role and appear rather early in development, whereas caldesmon and calponin, being involved in regulation of contraction, can serve as markers of higher SMC differentiation steps. In contrast, h-caldesmon and calponin were already present in visceral SMCs (trachea, esophagus) of the 10-week-old fetus. These results demonstrate that the time course of maturation of visceral SMCs is different from that of vascular SMCs.  相似文献   

7.
Bandopadhyay  R.  Orte  C.  Lawrenson  J.G.  Reid  A.R.  De Silva  S.  Allt  G. 《Brain Cell Biology》2001,30(1):35-44
Evidence from a variety of sources suggests that pericytes have contractile properties and may therefore function in the regulation of capillary blood flow. However, it has been suggested that contractility is not a ubiquitous function of pericytes, and that pericytes surrounding true capillaries apparently lack the machinery for contraction. The present study used a variety of techniques to investigate the expression of contractile proteins in the pericytes of the CNS. The results of immunocytochemistry on cryosections of brain and retina, retinal whole-mounts and immunoblotting of isolated brain capillaries indicate strong expression of the smooth muscle isoform of actin (α-SM actin) in a significant number of mid-capillary pericytes. Immunogold labelling at the ultrastructural level showed that α-SM actin expression in capillaries was exclusive to pericytes, and endothelial cells were negative. Compared to α-SM actin, non-muscle myosin was present in lower concentrations. By contrast, smooth muscle myosin isoforms, were absent. Pericytes were strongly positive for the intermediate filament protein vimentin, but lacked desmin which was consistently found in vascular smooth muscle cells. These results add support for a contractile role in pericytes of the CNS microvasculature, similar to that of vascular smooth muscle cells.  相似文献   

8.
The ultrastructure and immunocytochemistry of interstitial cells (ICs) in the canine proximal colon were investigated. Three types of ICs were found within the tunica muscularis. (1) ICs were located along the submucosal surface of the circular muscle (IC-SM). These cells shared many features of smooth muscle cells, including myosin thick filaments and immunoreactivity to smooth muscle gamma actin, myosin light chain, and calponin antibodies. IC-SM were clearly different from smooth muscle cells in that contractile filaments were less abundant and intermediate filaments consisted of vimentin instead of desmin. (2) ICs in the region of the myenteric plexus (IC-MY) were similar to IC-SM, but these cells had no thick filaments or immunoreactivity to smooth muscle gamma actin or calponin antibodies. (3) The fine structures and immunoreactivity of ICs within the muscle layers (IC-BU) were similar to IC-MY, but IC-BU lacked a definite basal lamina and membrane caveolae. IC-BU and IC-MY were both immunopositive for vimentin. Since all ICs were immunopositive for vimentin, vimentin antibodies may be a useful tool for distinguishing between ICs and smooth muscle cells. Each class of ICs was closely associated with nerve fibers, made specialized contacts with smooth muscle cells, and formed multicellular networks. A combination of ultrastructural and immunocytochemical techniques helps the identification and classification of ICs by revealing the fine structures and determining the chemical coding of each class of ICs.  相似文献   

9.
10.
The contractile state of smooth muscle is regulated primarily by the sarcoplasmic (cytosolic) free Ca2+ concentration. A variety of stimuli that induce smooth muscle contraction (e.g., membrane depolarization, alpha-adrenergic and muscarinic agonists) trigger an increase in sarcoplasmic free [Ca2+] from resting levels of 120-270 to 500-700 nM. At the elevated [Ca2+], Ca2+ binds to calmodulin, the ubiquitous and multifunctional Ca(2+)-binding protein. The interaction of Ca2+ with CaM induces a conformational change in the Ca(2+)-binding protein with exposure of a site(s) of interaction with target proteins, the most important of which in the context of smooth muscle contraction is the enzyme myosin light chain kinase. The interaction of calmodulin with myosin light chain kinase results in activation of the kinase that catalyzes phosphorylation of myosin at serine-19 of each of the two 20-kDa light chains (native myosin is a hexamer composed of two heavy chains (230 kDa each) and two pairs of light chains (one pair of 20 kDa each and the other pair of 17 kDa each)). This simple phosphorylation reaction triggers cycling of myosin cross-bridges along actin filaments and the development of force. Relaxation of the muscle follows removal of Ca2+ from the sarcoplasm, whereupon calmodulin dissociates from myosin light chain kinase regenerating the inactive kinase; myosin is dephosphorylated by myosin light chain phosphatase(s), whereupon it dissociates and remains detached from the actin filament and the muscle relaxes. A substantial body of evidence has been accumulated in support of this central role of myosin phosphorylation-dephosphorylation in the regulation of smooth muscle contraction. However, a wide range of physiological and biochemical studies supports the existence of additional, secondary Ca(2+)-dependent mechanisms that can modulate or fine-tune the contractile state of the smooth muscle cell. Three such mechanisms have emerged: (i) the actin-, tropomyosin-, and calmodulin-binding protein, calponin; (ii) the actin-, myosin-, tropomyosin-, and calmodulin-binding protein, caldesmon; and (iii) the Ca(2+)- and phospholipid-dependent protein kinase (protein kinase C).  相似文献   

11.
Caldesmon (CaD), a component of microfilaments in all cells and thin filaments in smooth muscle cells, is known to bind to actin, tropomyosin, calmodulin, and myosin and to inhibit actin-activated ATP hydrolysis by smooth muscle myosin. Thus, it is believed to regulate smooth muscle contraction, cell motility and the cytoskeletal structure. Using bladder smooth muscle cell cultures and RNA interference (RNAi) technique, we show that the organization of actin into microfilaments in the cytoskeleton is diminished by siRNA-mediated CaD silencing. CaD silencing significantly decreased the amount of polymerized actin (F-actin), but the expression of actin was not altered. Additionally, we find that CaD is associated with 10 nm intermediate-sized filaments (IF) and in vitro binding assay reveals that it binds to vimentin and desmin proteins. Assembly of vimentin and desmin into IF is also affected by CaD silencing, although their expression is not significantly altered when CaD is silenced. Electronmicroscopic analyses of the siRNA-treated cells showed the presence of myosin filaments and a few surrounding actin filaments, but the distribution of microfilament bundles was sparse. Interestingly, the decrease in CaD expression had no effect on tubulin expression and distribution of microtubules in these cells. These results demonstrate that CaD is necessary for the maintenance of actin microfilaments and intermediate-sized filaments in the cytoskeletal structure. This finding raises the possibility that the cytoskeletal structure in smooth muscle is affected when CaD expression is altered, as in smooth muscle de-differentiation and hypertrophy seen in certain pathological conditions.  相似文献   

12.
The basis of tonic vs. phasic contractile phenotypes of visceralsmooth muscles is poorly understood. We used gel electrophoresis andquantitative scanning densitometry to measure the content and isoformcomposition of contractile proteins in opossum lower esophagealsphincter (LES), to represent tonic muscle, and circular muscle of theesophageal body (EB), to represent phasic smooth muscle. The amount ofprotein in these two types of muscles is similar: ~27 mg/g of frozentissue. There is no difference in the relative proportion of myosin,actin, calponin, and tropomyosin in the two muscle types. However, theEB contains ~2.4-times more caldesmon than the LES. The relativeratios of - to -contractile isoforms of actin are 0.9 in the LESand 0.3 in EB. The ratio between acidic (LC17a) and basic (LC17b)isoforms of the 17-kDa essential light chain of myosin is 0.7:1 in theLES, compared with 2.7:1 in the EB. There is no significant differencein the ratios of smooth muscle myosin SM1 and SM2 isoforms in the two muscle types. The level of the myosin heavy chain isoform, which contains the seven-amino acid insert in the myosin head, is about threefold higher in the EB compared with LES. In conclusion, the esophageal phasic muscle in contrast to the tonic LES contains proportionally more caldesmon, LC17a, and seven-amino acid-inserted myosin and proportionally less -actin. These differences may providea basis for functional differences between tonic and phasic smoothmuscles.

  相似文献   

13.
Contractile activity of myosin II in smooth muscle and non-muscle cells requires phosphorylation of myosin by myosin light chain kinase. In addition, these cells have the potential for regulation at the thin filament level by caldesmon and calponin, both of which bind calmodulin. We have investigated this regulation using in vitro motility assays. Caldesmon completely inhibited the movement of actin filaments by either phosphorylated smooth muscle myosin or rabbit skeletal muscle heavy meromyosin. The amount of caldesmon required for inhibition was decreased when tropomyosin is present. Similarly, calponin binding to actin resulted in inhibition of actin filament movement by both smooth muscle myosin and skeletal muscle heavy meromyosin. Tropomyosin had no effect on the amount of calponin needed for inhibition. High concentrations of calmodulin (10 microM) in the presence of calcium completely reversed the inhibition. The nature of the inhibition by the two proteins was markedly different. Increasing caldesmon concentrations resulted in graded inhibition of the movement of actin filaments until complete inhibition of movement was obtained. Calponin inhibited actin sliding in a more "all or none" fashion. As the calponin concentration was increased the number of actin filaments moving was markedly decreased, but the velocity of movement remained near control values.  相似文献   

14.
Cytoskeletal protein (CSP) interactions are critical to the contractile response in muscle and non-muscle cells. Current concepts suggest that activation of the contractile apparatus occurs through selective phosphorylation by specific cellular kinase systems. Because the Ca(2+)-phospholipid-dependent protein kinase C (PKC) is involved in the regulation of a number of key endothelial cell responses, the hypothesis that PKC modulates endothelial cell contraction and monolayer permeability was tested. Phorbol myristate acetate (PMA), a direct PKC activator, and alpha-thrombin, a receptor-mediated agonist known to increase endothelial cell permeability, both induced rapid, dose-dependent activation and translocation of PKC in bovine pulmonary artery endothelial cells (BPAEC), as assessed by gamma-[32P]ATP phosphorylation of H1 histone in cellular fractions. This activation was temporally associated with evidence of agonist-mediated endothelial cell contraction as demonstrated by characteristic changes in cellular morphology. Agonist-induced activation of the contractile apparatus was associated with increases in BPAEC monolayer permeability to albumin (approximately 200% increase with 10(-6) MPMA, approximately 400% increase with 10(-8) M alpha-thrombin). To more closely examine the role of PKC in activation of the contractile apparatus, PKC-mediated phosphorylation of two specific CSPs, the actin- and calmodulin-binding protein, caldesmon77, and the intermediate filament protein, vimentin, was assessed. In vitro phosphorylation of both caldesmon and vimentin was demonstrated by addition of exogenous, purified BPAEC PKC to unstimulated BPAEC homogenates, to purified bovine platelet caldesmon77, or to purified smooth muscle caldesmon150. Caldesmon77 and vimentin phosphorylation were observed in intact [32P]-labeled BPAEC monolayers stimulated with either PMA or alpha-thrombin, as detected by immunoprecipitation. In addition, BPAEC pretreatment with the PKC inhibitor, staurosporine, prevented alpha-thrombin- and PMA-induced phosphorylation of both cytoskeletal proteins, attenuated morphologic evidence of contraction, and abolished agonist-induced barrier dysfunction. These results demonstrate that agonist-stimulated PKC activity results in cytoskeletal protein phosphorylation in BPAEC monolayer, an event which occurs in concert with agonist-mediated endothelial cell contraction and resultant barrier dysfunction.  相似文献   

15.
Je HD  Sohn UD 《Molecules and cells》2007,23(2):175-181
The present study was undertaken to determine whether SM22alpha participates in the regulation of vascular smooth muscle contractility using SM22alpha knockout mice and, if so, to investigate the mechanisms involved. Aortic ring preparations were mounted and equilibrated in organ baths for 60 min before observing contractile responses to 50 mM KCl, and then exposed to contractile agents such as phenylephrine and phorbol ester. Measurement of isometric contractions using a computerized data acquisition system was combined with molecular or cellular experiments. Interestingly, the aortas from SM22alpha-deficient mice (SM22(-/-LacZ)) displayed an almost three-fold increase in the level of SM22beta protein compared to wild-type mice, but no change in the levels of caldesmon, actin, desmin or calponin. Ca2+-independent contraction in response to phenylephrine or phorbol ester was significantly decreased in the SM22alpha-deficient mice, whereas in the presence of Ca2+ neither contraction nor subcellular translocation of myosin light chain kinase (MLCK) in response to phenylephrine or 50 mM KCl was significantly affected. A decrease in phosphorylation of extracellular signal regulated kinase (ERK) 1/2 was observed in the SM22alpha-deficient mice and this may be related to the decreased vascular contractility. Taken together, this study provides evidence for a pivotal role of SM22alpha in the regulation of Ca2+-independent vascular contractility.  相似文献   

16.
A comparative model been designed to study a contribution of proteinkinase C-(PKC)-activated intracellular signaling pathways in generation of different contractile responses of vascular (tonic) and visceral (phasic) smooth muscles. We have determined that, in tonic smooth muscle, PKC mediates activation of MAP-kinases that phosphorylate key regulatory proteins of the contractile system, myosin light chain kinase and caldesmon, leading to upregulation of actomyosine motor activity. In contrast, the MAP-kinase activation is uncoupled from the contractile machinery in phasic smooth muscles, which also reveal high levels of myosin light chain kinase-related protein KRP that contributes to relaxation. Phosphorylation of KRP following activation of PKC or cyclic nucleotide-dependent protein kinases enhances the KRP activity and further contributes to relaxion in phasic smooth muscle. A possibility is discussed for exploitation of the comparative model described herein for investigation of specific role of other regulatory intracellular pathways in generation of vascular tonic contraction.  相似文献   

17.
Intermediate filaments in smooth muscle   总被引:1,自引:0,他引:1  
The intermediate filament (IF) network is one of the three cytoskeletal systems in smooth muscle. The type III IF proteins vimentin and desmin are major constituents of the network in smooth muscle cells and tissues. Lack of vimentin or desmin impairs contractile ability of various smooth muscle preparations, implying their important role for smooth muscle force development. The IF framework has long been viewed as a fixed cytostructure that solely provides mechanical integrity for the cell. However, recent studies suggest that the IF cytoskeleton is dynamic in mammalian cells in response to various external stimulation. In this review, the structure and biological properties of IF proteins in smooth muscle are summarized. The role of IF proteins in the modulation of smooth muscle force development and redistribution/translocation of signaling partners (such as p130 Crk-associated substrate, CAS) is depicted. This review also summarizes our latest understanding on how the IF network may be regulated in smooth muscle. cytoskeleton; force development; vimentin; desmin  相似文献   

18.
W Nishida  M Abe  K Takahashi  K Hiwada 《FEBS letters》1990,268(1):165-168
A new method for the preparation of smooth muscle thin filaments which include calponin was established. We found that calponin readily separated from thin filaments in the presence of 10 mM ATP. By preventing thin filament extract from exposing to ATP, we obtained thin filaments which contained actin, tropomyosin, caldesmon and calponin in molar ratios of 7:0.9:0.6:0.7. We studied myosin Mg-ATPase activity by using the thin filaments in comparison with classical thin filaments prepared by the method of Marston and Smith, which contained the same amounts of caldesmon and tropomyosin as our thin filaments but lost almost all calponin. The presence of calponin reduced the Vmax value for thin filament-activated myosin Mg-ATPase activity by 33% without a significant change in Km value. These findings suggest that calponin inhibits myosin Mg-ATPase activity by modulation of a kinetic step as an integral component of smooth muscle thin filaments.  相似文献   

19.
The patterns of expression of the smooth muscle regulatory proteins caldesmon and myosin light chain kinase were investigated in the developing chicken gizzard. Immunofluorescent studies revealed that both proteins were expressed as early as E5 throughout the mesodermal gizzard anlage, together with actin, -actinin and a small amount of nonmuscle myosin. These proteins appear to form the scaffold for smooth muscle development, defined by the onset of smooth muscle myosin expression. During E6, a period of extensive cell division, smooth muscle myosin begins to appear in the musculi laterales close to the serosal border and, later, also in the musculi intermedii. Until about E10, myosin reactivity expands into the pre-existing thin filament scaffold. Later in development, the contractile and regulatory proteins co-localize and show a regular uniform staining pattern comparable to that seen in adult tissue. By using immunoblotting techniques, the low-molecular mass form of caldesmon and myosin light chain kinase were detected as early as E5. During further development, the expression of caldesmon switched from the low-molecular mass to the high-molecular mass form; in neonatal and adult tissue, high-molecular mass caldesmon was the only isoform expressed. The level of expression of myosin light chain kinase increased continously during embryonic development, but no embryospecific isoform with a different molecular mass was detected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号