首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The role of cytochrome b 562, a fragile constituent of the respiratory terminal oxidase supercomplex of the thermoacidophilic archaeon, Sulfolobus sp. strain 7, was investigated spectroscopically in the membrane-bound state. Cytochrome b 562 did not react with CO or cyanide in the membrane-bound state, while it was irreversibly modified to a CO-reactive form ( b 562) upon solubilization in the presence of cholate and LiCl. Cyanide titration analyses with the succinate-reduced membrane suggested that cytochrome b 562 was upstream of both the ' g y= 1.89' Rieske FeS cluster and the a -type cytochromes. These results show that the b -type cytochrome functions as an intermediate electron transmitter in the terminal oxidase supercomplex.  相似文献   

2.
Light-induced lumenal acidification controls the efficiency of light harvesting by inducing thermal dissipation of excess absorbed light energy in photosystem II. We isolated an Arabidopsis mutant, pgr1 (proton gradient regulation), entirely lacking thermal dissipation, which was observed as little non-photochemical quenching of chlorophyll fluorescence. Map-based cloning showed that pgr1 had a point mutation in petC encoding the Rieske subunit of the cytochrome b(6)f complex. Although the electron transport rate was not affected at low light intensity, it was significantly restricted at high light intensity in pgr1, indicating that the lumenal acidification was not sufficient to induce thermal dissipation. This view was supported by (i) slow de-epoxidation of violaXanthin, which is closely related to lumenal acidification, and (ii) reduced 9-aminoacridine fluorescence quenching. Although lumenal acidification was insufficient to induce thermal dissipation, growth rate was not affected under low light growth conditions in pgr1. These results suggest that thermal dissipation is precisely regulated by lumenal pH to maintain maximum photosynthetic activity. We showed that pgr1 was sensitive to changes in light conditions, demonstrating that maximum activity of the cytochrome b(6)f complex is indispensable for short-term acclimation.  相似文献   

3.
Abstract The cybB gene on a plasmid encoding cytochrome b 561 in Escherichia coli was disrupted by insertion of Kmrl determinant DNA. The cromosomal cybB gene was replaced by the inactivated cybB gene on the plasmid by homologous recombination using λ phage lysogenization and heat-induction. The replacement was confirmed by Southern and Western blotting analyses. Deficiency on the cybB gene product did not affect the growth properties of the cells, and the oxidase activities of the cells dependent on various substrates were similar to those of the parental strain. Cytochrome b 561 is concluded to be expressed in E. coli , but may not play a major role in cell growth. In the genetic map of E. coli , the cybB gene was determined by conjugational and transductional crosses to be at 31 min between trg and terC .  相似文献   

4.
用调制叶绿素荧光研究了对苯醌(1,4-benzoquinone,BQ)和二溴百里香醌(2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone,DBMIB)对蓝细菌Synechocystissp.PCC6803状态转换的作用。BQ和DBMIB是质体醌(PQ)的类似物,两者均可充当PQ的电子受体。其中,DBMIB能够和细胞色素b6f的Qo位点特异结合。在没有作用光的情况下,BQ诱导暗适应的蓝细菌进入状态Ⅰ;相反,DBMIB诱导Syne鄄chocystis6803向状态Ⅱ转换。据此提出,在生理状态下蓝细菌根据PQ库的氧化还原状态调节状态转换;细胞色素b6f参与此调控过程。  相似文献   

5.
Abstract Cytochromes d and b 595 were studied by low temperature photodissociation of CO-ligated Azotobacter vinelandii membranes. White light or He-Ne laser irradiation revealed 436 and 594–597 nm absorption bands to be due to Fe11 cytochrome b 595. Oxy-cytochrome d (648 nm) was formed when the CO adduct was photolysed in the presence of oxygen. This was followed by ligand recombination (presumably oxygen) to the high-spin cytochrome b 595, with a distinctive shift to shorter wavelengths of the α-band of the cytochrome, and a decrease in the oxygenated form. All spectral changes were light-reversible. We demonstrate the light-reversible binding of CO to both cytochromes b 595 and d , and suggest migration of oxygen from cytochrome d to cytochrome b 595 at a haem-haem binuclear centre during the oxidase reaction.  相似文献   

6.
J. Whitmarsh  J.R. Bowyer  A.R. Crofts 《BBA》1982,682(3):404-412
We have investigated the role of cytochrome f and the Rieske FeS protein in spinach chloroplasts using the quinone analogue 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole (UHDBT). UHDBT inhibits electron transport at two different sites in spinach chloroplasts. Fluorescence yield measurements monitoring the redox state of Q, the first stable primary acceptor of Photosystem II, and polarographic measurements of electron transport show that at low concentrations UHDBT inhibits near Q. At higher concentrations UHDBT inhibits at a second site. Electron transfer from durohydroquinone to methyl viologen is inhibited (50% inhibition at 21 μM) but not the reaction dichlorophenolindophenol to methyl viologen. Spectroscopic measurements of the kinetics of cytochrome f show that UHDBT inhibits the dark reduction rate of the cytochrome following a 100 ms flash (50% inhibition at 15 μM). By contrast, the oxidation kinetics of cytochrome f following a single-turnover flash are altered little by UHDBT; the initial rates are indistinguishable, and the half-time increases from 220 μs in the control to 285 μs in the presence of 15 μM UHDBT, largely because the extent of the cytochrome f oxidation is enhanced 1.4-fold in the presence of the inhibitor. In a single-turnover flash in the absence of UHDBT, we observe 38–48% of the total cytochrome f turning over, while in the presence of UHDBT we observe 60–69% of the cytochrome turning over. We interpret these results in terms of a linear rapid donor pool to Photosystem I, FeS → cytochrome f → plastocyanin → P-700, in which UHDBT inhibits by interacting with the Rieske FeS center. We conclude that the enhanced extent of cytochrome f oxidation in the presence of UHDBT is due to the removal of the Rieske FeS center from the rapid donor pool. As a consequence, removal of a single electron from the pool results in a greater cytochrome f oxidation. These results indicate that the Rieske FeS center and cytochrome f equilibrate in a time period comparable to the oxidation time of the cytochrome.  相似文献   

7.
MT113, a nonphotosynthetic mutant of Rhodobacter capsulatus previously characterized as lacking cytochrome c2 is shown to lack also cytochrome c1, the Rieske iron-sulfur cluster and the antimycin sensitive semiquinone Qc, all components of the cytochrome bc1 complex. Although MT113 contained b-type cytochromes and other iron-sulfur clusters at nearly wild-type level, it lacks c-type cytochromes. Based on antibody detection, c2 apoprotein was absent in MT113, however the apoproteins corresponding to the cytochromes b and c1 and the Rieske iron-sulfur cluster were present in reduced amounts. Genetic analysis indicated that the lesion appears to be due to a single mutation which is not localized in the structural genes of cytochrome c2 or the bc1 complex. These data taken together suggest that the pleiotropic mutation in MT113 might be related to the biosynthesis of c-type cytochromes.  相似文献   

8.
The rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were determined. The M58C variant is an excellent low potential mimic of the wild type protein and was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to characterize the complex with cytochrome f. The interaction is highly dynamic and can be described as a pure encounter complex, with no dominant stereospecific complex. Ensemble docking calculations and Monte-Carlo simulations suggest a model in which charge–charge interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an ensemble of orientations with extensive contacts between the hydrophobic patches on both cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron transfer. This model of complex formation allows for a gradual increase and decrease of the hydrophobic interactions during association and dissociation, thus avoiding a high transition state barrier that would slow down the dissociation process.  相似文献   

9.
Abstract The in situ method for determination of reduction levels of cytochromes b and c pools during steady-state growth (Pronk et al., Anal. Biochem. 214, 149–155, 1993) was applied to chemostat cultures of the wild-type, a cytochrome aa3 single mutant and a cytochrome aa3/d double mutant of Azorhizobium caulinodans . For growth with NH4+ as the N source, the results indicate that (i) the aa3 mutant strains growing at a dissolved O2 tension of 0.5% possess an active alternative cytochrome c oxidase, which is hardly present during fully aerobic growth, and assuming that (i) also pertains to the wild-type, (ii) the wild-type uses cytochrome aa3 under fully aerobic conditions. For growth with N2 as the N source, it was found that the aa3 mutant strains growing at dissolved O2 tensions ranging from 0.5 to 3.0% also contain an active alternative cytochrome c oxidase.  相似文献   

10.
The redox potential of the Rieske Fe-S protein has been investigated using circular dichroism (CD)-spectroscopy. The CD features characteristic of the purified bc1 complex and membranes of Rhodobacter sphaeroides were found in the region between 450 and 550 nm. The difference between reduced and oxidized CD-spectra shows a negative band at about 500 nm with a half of width 30 nm that corresponds to the specific dichroic absorption of the reduced Rieske protein (Fee, J.A. et al. (1984) J. Biol. Chem. 259, 124–133; Degli Esposti, M. et al. (1987) Biochem. J. 241, 285–290; Rich, P.R. and Wiggins, T.E. (1992) Biochem. Soc. Trans. 20, 241S). It was found that the redox potential at pH 7.0 for the Rieske center in the isolated bc1 complex and in chromatophore membranes from the R-26 strain of Rb. sphaeroides is 300±5 mV. In chromatophores from the BC17C strain of Rb. sphaeroides, the Em value measured for the Rieske iron-sulfur protein (ISP) was higher (315±5 mV), but the presence of carotenoids made measurement less accurate. The Em varied with pH in the range above pH 7, and the pH dependence was well fit either by one pK at 7.5 in the range of titration, or by two pK values, pK1=7.6 and pK2=9.8. Similar titrations and pK values were found for the Rieske Fe-S protein in the isolated bc1 complex and membranes from the R-26 strain of Rb. sphaeroides. The results are discussed in the context of the mechanism of quinol oxidation by the bc1 complex, and the role of the iron sulfur protein in formation of a reaction complex at the Qo-site.  相似文献   

11.
The spectroscopic measurements of the slow phase of the electrochromic effect and the redox kinetics of cytochrome b6 and f provide strong evidence that a Q cycle operates in chloroplasts under conditions of non-cyclic electron transport. The effect of HQNO and DBMIB on the extent and kinetics of these light-induced changes places several constraints on the mechanism of quinol oxidation by the cyt. b/f—FeS complex: for each electron removed from the cyt. b/f—FeS complex by P700 an additional charge is transferred across the membrane; the cyclic pathway of electrons involved in quinol oxidation by the cyt. b/f—FeS complex includes at least one of the two b6 cytochromes; the electrogenic step associated with quinol oxidation is subsequent to the reduction of at least one cytochrome b6 quinol oxidation may proceed in a stepwise manner, with the first electron going to cytochrome b6 and the second electron going to the FeS center and cytochrome f.  相似文献   

12.
13.
A mutant of Bacillus subtilis has been isolated that fails to grow on succinate as the source of carbon, yet grows on glucose. Intact cells of the mutant and cytoplasmic membranes derived therefrom lack cytochromes a and a3 but contain a cytochrome o-like pigment, which forms a photodissociable compound with CO and is reactive with oxygen. The mutation in the genome has been located and lies at about 130 degrees on the chromosomal map between the metC and pyrD loci. The designation cox is suggested for this gene.  相似文献   

14.
The genes encoding the Rieske iron-sulfur protein and cytochrome f from a unicellular, naturally transformable, photoheterotrophic cyanobacterium, Synechococcus sp. PCC 7002, formerly Agmenellum quadruplicatum, have been isolated and sequenced. The two genes were found to be on a single operon, petCA.The Synechococcus sp. PCC 7002 iron-sulfur protein contains 181 amino acids, the conserved putative iron-binding domains CTHLGCV, residues 108–114, and CPCHGS, residues 128–133, no presequence and has a 73% sequence identity to the Nostoc PCC 7906 iron-sulfur protein. The 325 amino acid apocytochrome f sequence contains a 42 amino acid presequence, a CANCH heme binding domain, residues 20–24 from the presumed start of the mature protein, and a predicted hydrophobic membrane-spanning domain, residues 250–269. The mature cytochrome f sequence has a 71.5% sequence identity with Nostoc PCC 7906 cytochrome f and possesses a large (-14) negative charge and low calculated pI of 4.47 compared to higher plant chloroplast sequences. Nine separate domains showing differences in charged residues among cyanobacteria and plants have been identified and the possibility that these domains are involved in the ionic interactions with plastocyanin or cytochrome c-553 is discussed.The sequences reported in this paper have been deposited in the EMBL/Genbank data base (IntelliGenetics, Mountain View, CA, and Eur. Mol. Biol. Lab., Heidelberg) (accession no. M74514).  相似文献   

15.
Eduard Hurt  Günter Hauska   《BBA》1982,682(3):466-473
(1) Oxidant-induced reduction of cytochrome b6 is completely dependent on a reduced component within the isolated cytochrome b6-f complex. This component can be reduced by dithionite or by NADH/N-methylphenazonium methosulfate. It is a 2H+/2e carrier with a midpoint potential of 100 mV at pH 7.0, which is very similar to the midpoint potential of the plastoquinone pool in chloroplasts. (2) Oxidant-induced reduction of cytochrome b6 is stimulated by plastoquinol-1 as well as by plastoquinol-9. The midpoint potential of the transient reduction of cytochrome b6, however, was not shifted by added plastoquinol. (3) Quinone analysis of the purified cytochrome b6-f complex revealed about one plastoquinone per cytochrome f. The endogenous quinone is heterogeneous, a form more polar than plastoquinone-A, probably plastoquinone-C, dominating, This is different from the thylakoid membrane where plastoquinone-A is the main quinone. (4) The endogenous quinone can be extracted from the lyophilized cytochrome b6-f complex by acetone, but not by hydrocarbon solvents. Oxidant-induced reduction of cytochrome b6 was observed in the lyophilized and hexane-extracted complex, but was lost in the acetone-extracted complex. Reconstitution was achieved either with plastoquinol-1 or plastoquinol-9, suggesting that a plastoquinol molecule is involved in oxidant-induced reduction of cytochrome b6.  相似文献   

16.
The interaction of the inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) with the Rieske protein of the chloroplast b6f complex has been studied by EPR. All three redox states of DBMIB were found to interact with the iron-sulphur cluster. The presence of the oxidised form of DBMIB altered the equilibrium distribution of the Rieske protein’s conformational substates, strongly favouring the proximal position close to heme bL. In addition to this conformational effect, DBMIB shifted the pK-value of the redox-linked proton involved in the iron-sulphur cluster’s redox transition by about 1.5 pH units towards more acidic values. The implications of these results with respect to the interaction of the native quinone substrate and the Rieske cluster in cytochrome bc complexes are discussed.  相似文献   

17.
P. J. Shaw  J. A. Henwood 《Planta》1985,165(3):333-339
The proteins ribulose 1,5-bisphosphate carboxylase/oxygenase, ATP synthase, light-harvesting chlorophyll a/b protein, and cytochrome f, have been localized in mesophyll chloroplasts of barley (Hordeum vulgare L.) by electron microscopy of immunogold-labelled sections. The light-harvesting chlorophyll a/b protein and cytochrome f are shown to be present in the grana, both within the stacks and at the margins, and in the stromal membranes. Although the absolute amount of labelling for these proteins is greater in the grana than in the stromal membranes, when expressed as label/membrane length the partitioning appears approximately equal between appressed and non-appressed membranes for both the light-harvesting chlorophyll a/b protein and cytochrome f. ATP synthase is restricted to the non-appressed thylakoid membranes, and ribulose 1,5-bisphosphate carboxylase/oxygenase is uniformly distributed through the stromal contents.Abbreviations CF1 ATP synthase - LHCPII light-harvesting chlorophyll a/b protein - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

18.
Masaru Nanba  Sakae Katoh 《BBA》1983,725(2):272-279
Absorption changes invoked by short flashes in the Soret band region were measured in the thermophilic cyanobacterium Synechococcus sp. and photoresponses of P-700, cytochrome c-553 and cytochrome f were resolved with the aid of a microcomputer. Cytochrome c-553 was oxidized very rapidly with a half-time of less than 20 μs, while the half oxidation time of cytochrome f was 35–45 μs. The two cytochromes were reduced monophasically with half-time of 2 ms after a lag lasting a few milliseconds. The reduction kinetics of P-700 showed three exponential phases with half-times of 40 μs, 200 μs and 2 ms, which are ascribed to electron donation from cytochrome f, the Rieske iron-sulfur protein and plastoquinone, respectively. The results support the following sequence and rates of linear electron transport at the physiological temperature of the cyanobacterium: P-700
cytochrome c-553
cytochrome f
Rieske protein
plastoquinone.  相似文献   

19.
Kinetic parameters for NH4+ and NO3? uptake were measured in intact roots of Lolium perenne and actively N2-fixing Trifolium repens. Simultaneously, net H+ fluxes between the roots and the root medium were recorded, as were the net photosynthetic rate and transpiration of the leaves. A Michaelis–Menten-type high-affinity system operated in the concentration range up to about 500 mmol m?3 NO3? or NH4+. In L. perenne, the Vmax of this system was 9–11 and 13–14 μmol g?1 root FW h?1 for NO3? and NH4+, respectively. The corresponding values in T. repens were 5–7 and 2 μmol g?1 root FW h?1. The Km for NH4+ uptake was much lower in L. perenne than in T. repens (c. 40 compared with 170 mmol m?3), while Km values for NO3? absorption were roughly similar (around 130 mmol m?3) in the two species. There were no indications of a significant efflux component in the net uptake of the two ions. The translocation rate to the shoots of nitrogen derived from absorbed NO3?-N was higher in T. repens than in L. perenne, while the opposite was the case for nitrogen absorbed as NH4+. Trifolium repens had higher rates of transpiration and net photosynthesis than L. perenne. Measurements of net H+ fluxes between roots and nutrient solution showed that L. perenne absorbing NO3? had a net uptake of H+, while L. perenne with access to NH4+ and T. repens, with access to NO3? or NH4+, in all cases acidified the nutrient solution. Within the individual combinations of plant species and inorganic N form, the net H+ fluxes varied only a little with external N concentration and, hence, with the absorption rate of inorganic N. Based on assessment of the net H+ fluxes in T. repens, nitrogen absorption rate via N2 fixation was similar to that of inorganic N and was not down-regulated by exposure to inorganic N for 2 h. It is concluded that L. perenne will have a competitive advantage over T. repens with respect to inorganic N acquisition.  相似文献   

20.
Abstract: One of the pathological changes of Alzheimer's disease is the deposit of β/A4 protein, which is derived from Alzheimer amyloid precursor protein (APR). In the secretory pathway, APR is cleaved at an internal region of β/A4 protein by a hypothetical enzyme “secretase.” Our previous study showed that the site of cleavage of APR by secretase is determined by the length from the membrane-spanning region. To investigate the role of the transmem- brane region in APR secretion, we constructed the mutations of triplet lysine residues (Lys724-Lys725-Lys726), which are located just in the carboxyl region after the proposed membrane domain. The mutations were as follows: VVK, Val724-Val725-Lys726; LLI, Leu724-Leu725-lle726; and EEE, Glu724-Glu725-Glu726. Wild-type APR and mutant APPs were expressed transiently in COS-1 cells by cDNA trans-fection. The hydrophobic mutant VVK and LLI were processed and secreted in a way similar to that of the wild- type APR, although the rate of secretion was decreased. The acidic mutant EEE was not secreted into medium. Proteinase K treatment and cell surface biotinylation of the COS-1 cells expressing APR revealed that APR was located in the plasma membrane with a short intracellular carboxyl region. However, EEE was completely digested by proteinase K treatment, which suggested that the whole residues of this mutant are located at the outer surface of the cell, including its proposed membrane domain and carboxyl region. This mutant was not cleaved at all by secretase. These findings suggested that the triplet lysine residues of APR after the predicted membrane spanning domain play an important role in the membrane anchorage. In addition, the membrane anchorage was also important for the normal processing by secretase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号