首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Conjugation of Nedd8 to a cullin protein, termed neddylation, is an evolutionarily conserved process that functions to activate the cullin-RING family E3 ubiquitin ligases, leading to increased proteasomal degradation of a wide range of substrate proteins. Recent emerging evidence demonstrates that cellular neddylation requires the action of Dcn1, which, in humans, consists of five homologues designated as hDCNL1-5. Here we revealed a previously unknown mechanism that regulates hDCNL1. In cultured mammalian cells ectopically expressed hDCNL1 was mono-ubiquitinated predominantly at K143, K149, and K171. Using a classical chromatographic purification strategy, we identified Nedd4-1 as an E3 ligase that can catalyze mono-ubiquitination of hDCNL1 in a reconstituted ubiquitination system. In addition, the hDCNL1 N-terminal ubiquitin-binding domain is necessary and sufficient to mediate mono-ubiquitination. Finally, fluorescence microscopic and subcellular fractionation analyses revealed a role for mono-ubiquitination in driving nuclear export of hDCNL1. Taken together, these results suggest a mono-ubiquitination-mediated mechanism that governs nuclear-cytoplasmic trafficking of hDCNL1, thereby regulating hDCNL1-dependent activation of the cullin-RING E3 ubiquitin ligases in selected cellular compartments.  相似文献   

3.
The expression of the ubiquitin related protein Nedd8/RUB is essential for growth in most organisms. Nedd8/RUB has been shown to modify the cullin subunit of culling-based ubiquitin protein ligases (E3). Neddylation acts to regulate the function of these E3s and organisms with lesions in the neddylation process exhibit severe growth defects. In this review we describe the proteins that participate in neddylation and discuss a model for Nedd8/RUB regulation of ubiquitin ligase function.  相似文献   

4.
Cullin RING ligases (CRLs) constitute the largest family of ubiquitin ligases with diverse cellular functions. Conjugation of the ubiquitin-like molecule Nedd8 to a conserved lysine residue on the cullin scaffold is essential for the activity of CRLs. Using structural studies and in vitro assays, it has been demonstrated that neddylation stimulates CRL activity through conformational rearrangement of the cullin C-terminal winged-helix B domain and Rbx1 RING subdomain from a closed architecture to an open and dynamic structure, thus promoting ubiquitin transfer onto the substrate. Here, we tested whether the proposed mechanism operates in vivo in intact cells and applies to other CRL family members. To inhibit cellular neddylation, we used a cell line with tetracycline-inducible expression of a dominant-negative form of the Nedd8 E2 enzyme or treatment of cells with the Nedd8 E1 inhibitor MLN4924. Using these cellular systems, we show that different mutants of Cul2 and Cul3 and of Rbx1 that confer increased Rbx1 flexibility mimic neddylation and rescue CRL activity in intact cells. Our findings indicate that in vivo neddylation functions by inducing conformational changes in the C-terminal domain of Cul2 and Cul3 that free the RING domain of Rbx1 and bridge the gap for ubiquitin transfer onto the substrate.  相似文献   

5.
Wu JT  Lin HC  Hu YC  Chien CT 《Nature cell biology》2005,7(10):1014-1020
Cullin family proteins organize ubiquitin ligase (E3) complexes to target numerous cellular proteins for proteasomal degradation. Neddylation, the process that conjugates the ubiquitin-like polypeptide Nedd8 to the conserved lysines of cullins, is essential for in vivo cullin-organized E3 activities. Deneddylation, which removes the Nedd8 moiety, requires the isopeptidase activity of the COP9 signalosome (CSN). Here we show that in cells deficient for CSN activity, cullin1 (Cul1) and cullin3 (Cul3) proteins are unstable, and that to preserve their normal cellular levels, CSN isopeptidase activity is required. We further show that neddylated Cul1 and Cul3 are unstable - as suggested by the evidence that Nedd8 promotes the instability of both cullins - and that the unneddylatable forms of cullins are stable. The protein stability of Nedd8 is also subject to CSN regulation and this regulation depends on its cullin-conjugating ability, suggesting that Nedd8-conjugated cullins are degraded en bloc. We propose that while Nedd8 promotes cullin activation through neddylation, neddylation also renders cullins unstable. Thus, CSN deneddylation recycles the unstable, neddylated cullins into stable, unneddylated ones, and promotes cullin-organized E3 activity in vivo.  相似文献   

6.
Substrate-mediated regulation of cullin neddylation   总被引:1,自引:0,他引:1  
  相似文献   

7.
BACKGROUND: SCF (Skp1-Cullin-F-box) complexes are a major class of E3 ligases that are required to selectively target substrates for ubiquitin-dependent degradation by the 26S proteasome. Conjugation of the ubiquitin-like protein Nedd8 to the cullin subunit (neddylation) positively regulates activity of SCF complexes, most likely by increasing their affinity for the E2 conjugated to ubiquitin. The Nedd8 conjugation pathway is required in C. elegans embryos for the ubiquitin-mediated degradation of the microtubule-severing protein MEI-1/Katanin at the meiosis-to-mitosis transition. Genetic experiments suggest that this pathway controls the activity of a CUL-3-based E3 ligase. Counteracting the Nedd8 pathway, the COP9/signalosome has been shown to promote deneddylation of the cullin subunit. However, little is known about the role of neddylation and deneddylation for E3 ligase activity in vivo. RESULTS: Here, we identified and characterized the COP9/signalosome in C. elegans and showed that it promotes deneddylation of CUL-3, a critical target of the Nedd8 conjugation pathway. As in other species, the C. elegans signalosome is a macromolecular complex containing at least six subunits that localizes in the nucleus and the cytoplasm. Reducing COP9/signalosome function by RNAi results in a failure to degrade MEI-1, leading to severe defects in microtubule-dependent processes during the first mitotic division. Intriguingly, reducing COP9/signalosome function suppresses a partial defect in the neddylation pathway; this suppression suggests that deneddylation and neddylation antagonize each other. CONCLUSIONS: We conclude that both neddylation and deneddylation of CUL-3 is required for MEI-1 degradation and propose that cycles of CUL-3 neddylation and deneddylation are necessary for its ligase activity in vivo.  相似文献   

8.
Cullin‐based E3 ubiquitin ligases are activated through covalent modification of the cullin subunit by the ubiquitin‐like protein Nedd8. Cullin neddylation dissociates the ligase assembly inhibitor Cand1, and promotes E2 recruitment and ubiquitin transfer by inducing a conformational change. Here, we have identified and characterized Lag2 as a likely Saccharomyces cerevisiae orthologue of mammalian Cand1. Similar to Cand1, Lag2 directly interacts with non‐neddylated yeast cullin Cdc53 and prevents its neddylation in vivo and in vitro. Binding occurs through a conserved C‐terminal β‐hairpin structure that inserts into the Skp1‐binding pocket on the cullin, and an N‐terminal motif that covers the neddylation lysine. Interestingly, Lag2 is itself neddylated in vivo on a lysine adjacent to this N‐terminal‐binding site. Overexpression of Lag2 inhibits Cdc53 activity in strains defective for Skp1 or neddylation functions, implying that these activities are important to counteract Lag2 in vivo. Our results favour a model in which binding of substrate‐specific adaptors triggers release of Cand1/Lag2, whereas subsequent neddylation of the cullin facilitates the removal and prevents re‐association of Lag2/Cand1.  相似文献   

9.
The bacterial effector protein cycle inhibiting factor (CIF) converts glutamine 40 of NEDD8 to glutamate (Q40E), causing cytopathic effects and inhibiting cell proliferation. Although these have been attributed to blocking the functions of cullin-RING ubiquitin ligases, how CIF modulates NEDD8-dependent signaling is unclear. Here we use conditional NEDD8-dependent yeast to explore the effects of CIF on cullin neddylation. Although CIF causes cullin deneddylation and the generation of free NEDD8 Q40E, inhibiting the COP9 signalosome (CSN) allows Q40E to form only on NEDD8 attached to cullins. In the presence of the CSN, NEDD8 Q40E is removed from cullins more rapidly than NEDD8, leading to a decrease in steady-state cullin neddylation. As NEDD8 Q40E is competent for cullin conjugation in the absence of functional CSN and with overexpression of the NEDD8 ligase Dcn1, our data are consistent with NEDD8 deamidation causing enhanced deneddylation of cullins by the CSN. This leads to a dramatic change in the extent of activated cullin-RING ubiquitin ligases.  相似文献   

10.
Covalent modification by Nedd8 (neddylation) stimulates the ubiquitin-protein isopeptide ligase (E3) activities of Cullins. DCN-1, an evolutionarily conserved protein, promotes neddylation of Cullins in vivo, binds directly to Nedd8, and associates with Cdc53 in the budding yeast Saccharomyces cerevisiae. The 1.9A resolution structure of yeast DCN-1 shows that the region encompassing residues 66-269 has a rectangular parallelepiped-like all alpha-helical structures, consisting of an EF-hand motif N-terminal domain and a closely juxtaposed C-terminal domain with six alpha-helices. The EF-hand motif structure is highly similar to that of the c-Cbl ubiquitin E3 ligase. We also demonstrate that DCN-1 directly binds to Rbx-1, a factor important for protein neddylation. The structural and biochemical results are consistent with the role of DCN-1 as a scaffold protein in a multisubunit neddylation E3 ligase complex.  相似文献   

11.
Cullin-based E3 ligases are a large family of ubiquitin ligases with diverse cellular functions. They are composed of one of six mammalian cullin homologues, the Ring finger containing protein Roc1/Rbx1 and cullin homologue-specific adapter and substrate recognition subunits. To be active, cullin-based ligases require the covalent modification of a conserved lysine residue in the cullin protein with the ubiquitin-like protein Nedd8. To characterize this family of E3 ligases in intact cells, we generated a cell line with tetracycline-inducible expression of a dominant-negative mutant of the Nedd8-conjugating enzyme Ubc12, a reported inhibitor of cullin neddylation. Using this cell line, we demonstrate that the substrate recognition subunit Skp2 and the adaptor protein Skp1 are subject to Ubc12-dependent autoubiquitination and degradation. In contrast, cullin protein stability is not regulated by neddylation in mammalian cells. We also provide evidence that Cul1 and Cul3, as well as their associated substrate recognition subunits Skp2 and Keap1, respectively, homooligomerize in intact cells, suggesting that cullin-based ligases are dimeric. Cul3, but not Cul1 homooligomerization is dependent on substrate recognition subunit dimer formation. As shown for other E3 ubiquitin ligases, dimerization may play a role in regulating the activity of cullin-based E3 ligases.  相似文献   

12.
SCF is a ubiquitin ligase and is composed of Skp1, Cul1, F-box protein, and Roc1. The catalytic site of the SCF is the Cul1/Roc1 complex and RING-finger protein Roc1. It was shown earlier that when Cul1 was co-expressed with Roc1 in Sf-9 cells in a baculovirus protein expression system, Cul1 was highly neddylated in the cell, suggesting that Roc1 may function as a Nedd8-E3 ligase. However, there is no direct evidence that Roc1 is a Nedd8-E3 in an in vitro enzyme system. Here we have shown that Roc1 binds to Ubc12, E2 for Nedd8, but not to Ubc9, E2 for SUMO-1 and Roc1 RING-finger mutant, H77A, did not bind to Ubc12. In in vitro neddylation system using purified Cul1/Roc1 complex expressed in bacteria, Roc1 promotes neddylation of Cul1. These results demonstrate that Roc1 functions as a Nedd8-E3 ligase toward Cul1. Furthermore, Roc1 and Cul1 were ubiquitinylated in a manner dependent on the neddylation of Cul1 in vitro. In addition, Cul1 was degraded through the ubiquitin-proteasome pathway, and a non-neddylated mutant Cul1, K720R, was more stable than wild-type in intact cells. Thus, neddylation of Cul1 might regulate SCF function negatively via degradation of Cul1/Roc1 complex.  相似文献   

13.
Neddylation is a posttranslational modification that attaches ubiquitin-like protein Nedd8 to protein targets via Nedd8-specific E1-E2-E3 enzymes and modulates many important biological processes. Nedd8 attaches to a lysine residue of a substrate, not for degradation, but for modulation of substrate activity. We previously identified the HECT-type ubiquitin ligase Smurf1, which controls diverse cellular processes, is activated by Nedd8 through covalent neddylation. Smurf1 functions as a thioester bond-type Nedd8 ligase to catalyze its own neddylation. Numerous ubiquitination substrates of Smurf1 have been identified, but the neddylation substrates of Smurf1 remain unknown. Here, we show that Smurf1 interacts with RRP9, a core component of the U3 snoRNP complex, which is involved in pre-rRNA processing. Our in vivo and in vitro neddylation modification assays show that RRP9 is conjugated with Nedd8. RRP9 neddylation is catalyzed by Smurf1 and removed by the NEDP1 deneddylase. We identified Lys221 as a major neddylation site on RRP9. Deficiency of RRP9 neddylation inhibits pre-rRNA processing and leads to downregulation of ribosomal biogenesis. Consequently, functional studies suggest that ectopic expression of RRP9 promotes tumor cell proliferation, colony formation, and cell migration, whereas unneddylated RRP9, K221R mutant has no such effect. Furthermore, in human colorectal cancer, elevated expression of RRP9 and Smurf1 correlates with cancer progression. These results reveal that Smurf1 plays a multifaceted role in pre-rRNA processing by catalyzing RRP9 neddylation and shed new light on the oncogenic role of RRP9.  相似文献   

14.
When appended to the epidermal growth factor receptor (EGFR), ubiquitin serves as a sorting signal for lysosomal degradation. Here we demonstrate that the ubiquitin ligase of EGFR, namely c-Cbl, also mediates receptor modification with the ubiquitin-like molecule Nedd8. EGF stimulates receptor neddylation, which enhances subsequent ubiquitylation, as well as sorting of EGFR for degradation. Multiple lysine residues, located within the tyrosine kinase domain of EGFR, serve as attachment sites for Nedd8. A set of clathrin coat-associated binders of ubiquitin also bind Nedd8, but they undergo ubiquitylation, not neddylation. We discuss the emerging versatility of the concerted action of ubiquitylation and neddylation in the process that desensitizes growth factor-activated receptor tyrosine kinases.  相似文献   

15.
Cullins are members of a family of scaffold proteins that assemble multisubunit ubiquitin ligase complexes to confer substrate specificity for the ubiquitination pathway. Cullin3 (Cul3) forms a catalytically inactive BTB-Cul3-Rbx1 (BCR) ubiquitin ligase, which becomes functional upon covalent attachment of the ubiquitin homologue neural-precursor-cell-expressed and developmentally down regulated 8 (Nedd8) near the C terminus of Cul3. Current models suggest that Nedd8 activates cullin complexes by providing a recognition site for a ubiquitin-conjugating enzyme. Based on the following evidence, we propose that Nedd8 activates the BCR ubiquitin ligase by mediating the dimerization of Cul3. First, Cul3 is found as a neddylated heterodimer bound to a BTB domain-containing protein in vivo. Second, the formation of a Cul3 heterodimer is mediated by a Nedd8 molecule, which covalently attaches itself to one Cul3 molecule and binds to the winged-helix B domain at the C terminus of the second Cul3 molecule. Third, complementation experiments revealed that coexpression of two distinct nonfunctional Cul3 mutants can rescue the ubiquitin ligase function of the BCR complex. Likewise, a substrate of the BCR complex binds heterodimeric Cul3, suggesting that the Cul3 complex is active as a dimer. These findings not only provide insight into the architecture of the active BCR complex but also suggest assembly as a regulatory mechanism for activation of all cullin-based ubiquitin ligases.  相似文献   

16.
YY Choo  T Hagen 《PloS one》2012,7(7):e41350
Cullin E3 ligases are the largest family of ubiquitin ligases with diverse cellular functions. One of seven cullin proteins serves as a scaffold protein for the assembly of the multisubunit ubiquitin ligase complex. Cullin binds the RING domain protein Rbx1/Rbx2 via its C-terminus and a cullin-specific substrate adaptor protein via its N-terminus. In the Cul3 ubiquitin ligase complex, Cul3 substrate receptors contain a BTB/POZ domain. Several studies have established that Cul3-based E3 ubiquitin ligases exist in a dimeric state which is required for binding of a number of substrates and has been suggested to promote ubiquitin transfer. In two different models, Cul3 has been proposed to dimerize either via BTB/POZ domain dependent substrate receptor homodimerization or via direct interaction between two Cul3 proteins that is mediated by Nedd8 modification of one of the dimerization partners. In this study, we show that the majority of the Cul3 proteins in cells exist as dimers or multimers and that Cul3 self-association is mediated via the Cul3 N-terminus while the Cul3 C-terminus is not required. Furthermore, we show that Cul3 self-association is independent of its modification with Nedd8. Our results provide evidence for BTB substrate receptor dependent Cul3 dimerization which is likely to play an important role in promoting substrate ubiquitination.  相似文献   

17.
Hwang JW  Min KW  Tamura TA  Yoon JB 《FEBS letters》2003,541(1-3):102-108
The cullin-containing E3 ubiquitin ligases play an important role in regulating the abundance of key proteins involved in cellular processes such as cell cycle and cytokine signaling. We recently identified TIP120A as a cullin-interacting protein and found that TIP120A functions as a negative regulator of a ubiquitin ligase by interfering with the binding of Skp1 and an F box protein to CUL1. Here we show that TIP120A binds to the unneddylated CUL1 but not the neddylated one. The association of TIP120A with CUL1 requires both the N-terminal stalk and the C-terminal globular domain of CUL1. TIP120A efficiently inhibits neddylation of CUL1 but does not affect substrate-independent ubiquitination by CUL1/Rbx1, implying that it blocks the access of Nedd8 to the conjugation site but does not interfere with the interaction of the ubiquitin-conjugating enzyme with Rbx1. Our data suggest that the association/dissociation of TIP120A coupled to neddylation/deneddylation of CUL1 may play an important role in assembly and disassembly of Skp1-Cdc53/cullin-F box ubiquitin ligases.  相似文献   

18.
SCCRO/DCUN1D1/DCN1 (squamous cell carcinoma-related oncogene/defective in cullin neddylation 1 domain containing 1/defective in cullin neddylation) serves as an accessory E3 in neddylation by binding to cullin and Ubc12 to allow efficient transfer of Nedd8. In this work we show that SCCRO has broader, pleiotropic effects that are essential for cullin neddylation in vivo. Reduced primary nuclear localization of Cul1 accompanying decreased neddylation and proliferation in SCCRO(-/-) mouse embryonic fibroblasts led us to investigate whether compartmentalization plays a regulatory role. Decreased nuclear localization, neddylation, and defective proliferation in SCCRO(-/-) mouse embryonic fibroblasts were rescued by transgenic expression of SCCRO. Expression of reciprocal SCCRO and Cul1-binding mutants confirmed the requirement for SCCRO in nuclear translocation and neddylation of cullins in vivo. Nuclear translocation of Cul1 by tagging with a nuclear localization sequence allowed neddylation independent of SCCRO, but at a lower level. We found that in the nucleus, SCCRO enhances recruitment of Ubc12 to Cul1 to promote neddylation. These findings suggest that SCCRO has an essential role in neddylation in vivo involving nuclear localization of neddylation components and recruitment and proper positioning of Ubc12.  相似文献   

19.
The activity of cullin-RING type ubiquitination E3 ligases is regulated by neddylation, a process analogous to ubiquitination that culminates in covalent attachment of the ubiquitin-like protein Nedd8 to cullins. As a component of the E3 for neddylation, SCCRO/DCUN1D1 plays a key regulatory role in neddylation and, consequently, cullin-RING ligase activity. The essential contribution of SCCRO to neddylation is to promote nuclear translocation of the cullin-ROC1 complex. The presence of a myristoyl sequence in SCCRO3, one of four SCCRO paralogues present in humans that localizes to the membrane, raises questions about its function in neddylation. We found that although SCCRO3 binds to CAND1, cullins, and ROC1, it does not efficiently bind to Ubc12, promote cullin neddylation, or conform to the reaction processivity paradigms, suggesting that SCCRO3 does not have E3 activity. Expression of SCCRO3 inhibits SCCRO-promoted neddylation by sequestering cullins to the membrane, thereby blocking its nuclear translocation. Moreover, SCCRO3 inhibits SCCRO transforming activity. The inhibitory effects of SCCRO3 on SCCRO-promoted neddylation and transformation require both an intact myristoyl sequence and PONY domain, confirming that membrane localization and binding to cullins are required for in vivo functions. Taken together, our findings suggest that SCCRO3 functions as a tumor suppressor by antagonizing the neddylation activity of SCCRO.  相似文献   

20.
MLN4924 is a first-in-class cancer drug that inhibits the Nedd8-activating enzyme (NAE). Herein, we report that MLN4924 inhibits Vpx/Vpr-induced SAMHD1 degradation by inhibiting the neddylation of E3 ubiquitin ligase and blocks macaque simian immunodeficiency virus (SIVmac) replication in myeloid cells. SAMHD1 is required for MLN4924-mediated SIVmac inhibition. Our findings indicate the potential efficacy of inhibiting neddylation as an antiretroviral strategy and identify the readily available anticancer drug MLN4924 as a candidate agent for that purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号