首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
KefB and KefC are glutathione-gated K+ efflux systems in Escherichia coli, and the proteins exhibit strong similarity at the level of both primary sequence and domain organization. The proteins are maintained closed by glutathione and are activated by binding of adducts formed between glutathione and electrophiles. By construction of equivalent mutations in each protein, this study has analyzed the control over inactive state of the proteins. A UV-induced mutation in KefB, L75S, causes rapid spontaneous K+ efflux but has only a minor effect on K+ efflux via KefC. Similarly amino acid substitutions that cause increased spontaneous activity in KefC have only small effects in KefB. Exchange of an eight amino acid region from KefC (HALESDIE) with the equivalent sequence from KefB (HELETAID) has identified a role for a group of acidic residues in controlling KefC activity. The mutations HELETAID and L74S in KefC act synergistically, and the activity of the resultant protein resembles that of KefB. We conclude that, despite the high degree of sequence similarity, KefB and KefC exhibit different sensitivities to the same site-specific mutations.  相似文献   

2.
The role of the KefB and KefC potassium efflux systems in protecting Escherichia coli cells against the toxic effects of the electrophile N-ethylmaleimide has been investigated. Activation of KefB and KefC aids the survival of cells exposed to high concentrations (> 100 microM) of NEM. High potassium concentrations reduce the protection afforded by activation of KefB and KefC, but the possession of these systems is still important under these conditions. The Kdp system, which confers sensitivity to the electrophile methylglyoxal, did not affect the survival of cells exposed to NEM. Survival is correlated with the reduction of the cytoplasmic pH upon activation of the channels. In particular, the kinetics of the intracellular pH (pHi) change are crucial to the retention of viability of cells exposed to NEM; slow acidification does not protect cells as effectively as rapid lowering of pHi. Cells treated with low levels of NEM (10 microM) recover faster if they activate KefB and KefC, and this correlates with changes in pHi. The pHi does not significantly alter the rate of NEM metabolism. The possible mechanisms by which protection against the electrophile is mediated are discussed.  相似文献   

3.
A new subunit, YabF, for the KefC K(+) efflux system in Escherichia coli has been identified. The subunit is required for maximum activity of KefC. Deletion of yabF reduces KefC activity 10-fold, and supply of YabF in trans restores activity. IS2 and IS10R insertions in yabF can be isolated as suppressors of KefC activity consequent upon the V427A and D264A KefC mutations.  相似文献   

4.
The effect of the toxic metabolite methylglyoxal on the DNA of Escherichia coli cells has been investigated. Exposure of E. coli cells to methylglyoxal reduces the transformability of plasmid DNA and results in the degradation of genomic DNA. The activity of the KefB and KefC potassium channels protects E. coli cells against methylglyoxal and limits the amount of DNA damage. In mutants lacking KefB and KefC, methylglyoxal-induced DNA damage was reduced by incubation with a weak acid that lowers the pHi to the same extent as through KefB and KefC activation. This provides evidence that acidification of the cytoplasm protects E. coli DNA against methylglyoxal. By the analysis of cells lacking UvrA, we demonstrate that this repair protein is required for the degradation of the DNA upon methylglyoxal exposure. However, protection by KefB and KefC occurred independently of UvrA. Although we present evidence that exposure of E. coli cells to methylglyoxal results in DNA degradation, our results suggest this event is not essential for methylglyoxal-induced death. The implications of these findings will be discussed.  相似文献   

5.
Evidence for multiple K+ export systems in Escherichia coli.   总被引:8,自引:10,他引:8       下载免费PDF全文
The role of the K+ transport systems encoded by the kefB (formerly trkB) and kefC (formerly trkC) genes of Escherichia coli in K+ efflux has been investigated. The rate of efflux produced by N-ethylmaleimide (NEM), increased turgor pressure, alkalinization of the cytoplasm, or 2,4-dinitrophenol in a mutant with null mutations in both kef genes was compared with the rate of efflux in a wild-type strain for kef. The results show that these two genes encode the major paths for NEM-stimulated efflux. However, neither efflux system appears to be a significant path of K+ efflux produced by high turgor pressure, by alkalinization of the cytoplasm, or by addition of high concentrations of 2,4-dinitrophenol. Therefore, this species must have at least one other system, besides those encoded by kefB and kefC, capable of mediating a high rate of K+ efflux. The high, spontaneous rate of K+ efflux characteristic of the kefC121 mutation increases further when the strain is treated with NEM. Therefore, the mutational defect that leads to spontaneous efflux in this strain does not abolish the site(s) responsible for the action of NEM.  相似文献   

6.
The kinetics of K+ efflux across the membranes of i) wild-type Escherichia coli poisoned by the thiol reagent N-ethylmaleimide, ii) K+ retention mutants and iii) glutathione-deficient mutants, have revealed a common K+ leaky phenotype; it is characterized by a very high rate of K+ efflux. The results suggest that the products of kefB and kefC genes could encode two K+ channels, both gated by glutathione. The possible function of these K+ channels seems to be a K+ exit controlled by the redox state of the cell; indeed, it can be inferred from the effects of several oxidants and reductants that turning on and off of the K+ efflux mediated by the channels can be correlated with the redox state of glutathione.  相似文献   

7.
Energetics of calcium efflux from cells of Escherichia coli.   总被引:1,自引:1,他引:0       下载免费PDF全文
Intact cells of a H+-translocating ATPase-deficient strain of Escherichia coli were starved of endogenous energy reserves and passively loaded with 45CaCl2. Energy-dependent efflux of calcium was observed upon addition of glucose or respiratory substrates. Addition of cyanide or uncouplers prevented efflux. It is concluded that calcium efflux in intact cells is coupled to the proton motive force via secondary calcium-proton exchange.  相似文献   

8.
9.
Abstract The fate of an auxotrophic Escherichia coli K12 strain (NF1830) in coastal water was investigated. The E. coli K12 were enumerated after incubation for varying times in seawater. Incubated in raw seawater at 15 and 20°C, the NF1830 decreased from 106 cfu/ml to below detection within six days of incubation, but when incubated at 7°C it persisted longer. The NF1830 was capable of cell division in sterile seawater. Growth was also shown to occur in raw seawater in the presence of autoclaved sediment. The E. coli K12 decreased in number at a much lower rate when incubated in seawater treated with eukaryotic inhibitors. These findings suggest that the die-off of the auxotrophic E. coli K12 strain seen in the raw seawater was caused by grazing of bacterial predators in the seawater.  相似文献   

10.
Discrimination between Rb+ and K+ by Escherichia coli.   总被引:1,自引:0,他引:1  
1. The K+ requirment of Escherichia coli is only partially fulfilled by Rb+. The molar growth yield on Rb+ was about 5% of that on K+ and the growth rate in Rb+-supplemented media is lower thatn in K+ influx by any of the four K+ transport systems of E. coli. The high-affinity Kdp system (Km = 2 micron) is poorly traced by 86Rb+. It discriminates against a 86Rb+ tracer at least 1000-fold. The two moderate affinity systems, the high-rate TrkA system (Km = 1.5 mM) and the moderate rate TrkD system (Km = 0.5 mM), discriminate against a 86Rb+ tracer by approximately 10-fold and 25-fold, respectively. 86Rb+ is preferred by the low-rate TrkF system and overestimates its K+ influx by 40%.  相似文献   

11.
Using a variety of techniques the distribution of the glutathione-regulated KefC K(+)-transport system among bacterial species was investigated. The presence of similar systems in a number of Gram-negative bacteria was demonstrated. In contrast, the system appeared to be absent from most Gram-positive bacteria tested with the exception of Staphylococcus aureus. Using the cloned Escherichia coli kefC gene as a probe for Southern hybridization it was shown that only limited DNA sequence homology exists with other bacteria, even when closely related members of the enteric group were examined.  相似文献   

12.
Various disinfectants were shown to influence the frequency dependence of Escherichia coli electro-orientation. Cell inactivation by different agents was found to decrease the effect at high frequencies (5 X 10(5)-5 X 10(6) Hz). The decrease should be attributed to the fact that the barrier properties of membranes are disorganized and the equivalent electric conductivity of cells drops down. The microbiological control of the bactericidal action produced by disinfectants fits in well with changes in the electro-orientation of bacterial cells at these frequencies.  相似文献   

13.
AcrD of Escherichia coli is an aminoglycoside efflux pump   总被引:7,自引:0,他引:7       下载免费PDF全文
AcrD, a transporter belonging to the resistance-nodulation-division family, was shown to participate in the efflux of aminoglycosides. Deletion of the acrD gene decreased the MICs of amikacin, gentamicin, neomycin, kanamycin, and tobramycin by a factor of two to eight, and DeltaacrD cells accumulated higher levels of [(3)H]dihydrostreptomycin and [(3)H]gentamicin than did the parent strain.  相似文献   

14.
Expression of the Kdp system sensitizes cells to methylglyoxal (MG) whether this electrophile is added externally or is synthesized endogenously. The basis of this enhanced sensitivity is the maintenance of a higher cytoplasmic pH (pHi) in cells expressing Kdp. In such cells, MG elicits rapid cytoplasmic acidification via KefB and KefC, but the steady-state pHi attained is still too high to confer protection Lowering pHi further by incubation with acetate increases the sensitivity of cells to MG.  相似文献   

15.
Ouabain inhibited 86RbCl uptake by 80% in rabbit gastric superficial epithelial cells (SEC), revealing the presence of a functional Na+,K+-ATPase [(Na+ + K+)-transporting ATPase] pump. Intact SEC were used to study the ouabain-sensitive Na+,K+-ATPase and K+-pNPPase (K+-stimulated p-nitrophenyl phosphatase) activities before and after lysis. Intact SEC showed no Na+,K+-ATPase and insignificant Mg2+-ATPase activity. However, appreciable K+-pNPPase activity sensitive to ouabain inhibition was demonstrated by localizing its activity to the cell-surface exterior. The lysed SEC, on the other hand, demonstrated both ouabain-sensitive Na+,K+-ATPase and K+-pNPPase activities. Thus the ATP-hydrolytic site of Na+,K+-ATPase faces exclusively the cytosol, whereas the associated K+-pNPPase is distributed equally across the plasma membrane. The study suggests that the cell-exterior-located K+-pNPPase can be used as a convenient and reliable 'in situ' marker for the functional Na+,K+-ATPase system of various isolated cells under noninvasive conditions.  相似文献   

16.
The glyoxalase I gene ( gloA ) of Escherichia coli has been cloned and used to create a null mutant. Cells overexpressing glyoxalase I exhibit enhanced tolerance of methylglyoxal (MG) and exhibit elevated rates of detoxification, although the increase is not stoichiometric with the change in enzyme activity. Potassium efflux via KefB is also enhanced in the overexpressing strain. Analysis of the physiology of the mutant has revealed that growth and viability are quite normal, unless the cell is challenged with MG either added exogenously or synthesized by the cells. The mutant strain has a low rate of detoxification of MG, and cells rapidly lose viability when exposed to this electrophile. Activation of KefB and KefC is diminished in the absence of functional glyoxalase I. These data suggest that the glutathione-dependent glyoxalase I is the dominant detoxification pathway for MG in E . coli and that the product of glyoxalase I activity, S-lactoylglutathione, is the activator of KefB and KefC.  相似文献   

17.
Neurotoxins which modify the gating system of the Na+ channel in neuroblastoma cells and increase the initial rate of 22Na+ influx through this channel also give rise to the efflux of 86Rb+ and 42K+. These effluxes are inhibited by tetrodotoxin and are dependent on the presence in the extracellular medium of cations permeable to the Na+ channel. These stimulated effluxes are not due to membrane depolarization or increases in the intracellular content of Na+ and Ca2+ which occur subsequent to the action of neurotoxins. The relationships of 22Na+ influx and 42K+ (or 86Rb+) effluxes to both the concentration of neurotoxins and the concentration of external permeant cations strongly suggest that the open form of the Na+ channel stabilized by neurotoxins permits an efflux of K+ ions. Our results indicate that for the efflux of each K+ ion there is a corresponding influx of two Na+ ions into the Na+ channel.  相似文献   

18.
proU expression has been proposed to form part of a general stress response that is regulated by increased negative DNA supercoiling brought about by environmental signals such as osmotic or anaerobic stress (N. Ni Bhriain, C. J. Dorman, and C. F. Higgins, Mol. Microbiol. 3:933-944, 1989). However, we find that although proU-containing plasmids derived from cells grown in media of elevated osmolarity were more supercoiled than plasmids from cells grown in standard media, they did not activate proU expression in vitro. The gyrA96 mutation and anaerobic conditions are known to affect DNA supercoiling but did not alter proU expression. Finally, the gyrase inhibitors coumermycin and novobiocin did not reduce in vitro proU expression. Therefore, this evidence rules out regulation by changes in DNA superhelicity for proU in Escherichia coli.  相似文献   

19.
Morozov II  Petin VG 《Tsitologiia》2002,44(5):450-454
The influence of media with different osmotic pressure (NaCl water solution) and chloramphenicol (10 micrograms/ml) on the survival, permeability, and survival curve shape of Escherichia coli B/r and E. coli Bs-1 cells, heated up to 50, 52, and 60 degrees C was investigated. As shown, the survival curve of cells heated up to 60 degrees C in isotonic conditions was characterized by exponential shape, while the survival curves of cells heated up to 50 and 52 degrees C consisted of two components characterizing thermosensitive and thermoresistant parts of cell population. Hypertonic conditions of heat at 52 degrees C decreased cell lethality and permeability. In this case, survival curves were characterized by exponential shape. Chloramphenicol was shown to protect against damaging action of heat at 50 degrees C and not to affect the viability of cells heated at 52 and 60 degrees C. It is proposed that the increase of cell thermoresistance with heat dose elevation at 50 and 52 degrees C in isotonic conditions, which is accompanied by the appearance of thermotolerant components on survival curves, may be associated with accommodational cell reactions. The essence of these reactions consists in stabilization of the osmotic cell homeostasis.  相似文献   

20.
Energy coupling to net K+ transport in Escherichia coli K-12.   总被引:24,自引:0,他引:24  
Energy coupling for three K+ transport systems of Escherichia coli K-12 was studied by examining effects of selected energy sources and inhibitors in strains with either a wild type or a defective (Ca2+, Mg2+)-stimulated ATPase. This approach allows discrimination between transport systems coupled to the proton motive force from those coupled to the hydrolysis of a high energy phosphate compound (ATP-driven). The three K+ transport systems here studied are: (a) the Kdp system, a repressible high affinity (Km=2 muM) system probably coded for by four linked Kdp genes; (b) the Trka system, a constitutive system with high rate and modest affinity (Km=1.5 mM) defined by mutations in the single trkA gene; and (c) the TrkF system, a nonsaturable system with a low rate of uptake (Rhoads, D.B., Waters, F.B., and Epstein, W. (1976) J. Gen. Physiol. 67, 325-341). Each of these systems has a different mode of energy coupling: (a) the Kdp system is ATP-driven and has a periplasmic protein component; (b) the TrkF system is proton motive force-driven; and (c) the TrkA system is unique among bacterial transport systems described to date in requiring both the proton motive force and ATP for activity. We suggest that this dual requirement represents energy fueling by ATP and regulation by the proton motive force. Absence of ATP-driven systems in membrane vesicles is usually attributed to the requirement of such systems for a periplasmic protein. This cannot explain the failure to demonstrate the TrkA system in vesicles, since this system does not require a periplasmic protein. Our findings indicate that membrane vesicles cannot couple energy to ATP-driven transport systems. Since vesicles can generate a proton motive force, the inability of vesicles to generate ATP or couple ATP to transport (or both) must be invoked to explain the absence of TrkA in vesicles. The TrkF system should function in vesicles, but its very low rate may make it difficult to identify.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号