首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing soybean (cv. Dare) cotyledons harvested at 30 days after flowering were pulse-labeled with [1-(14)C]oleoyl-CoA. The metabolic interrelation of radiolabeled unsaturated fatty acids between the major glycerolipid classes was determined at various time intervals. At chase time zero, [(14)C]oleic acid accounted for 99.2% of the total glycerolipid radioactivity, and phospholipids contained 92% of the total incorporated radioactivity. With time, phospholipids were metabolized in triacylglycerol biosynthesis and radioactivity was detected in polyunsaturated fatty acids. The hypothesis that phospholipids were metabolic intermediates in polyunsaturated fatty acid biosynthesis was tested by comparing the theoretical and the actual amount of radiolabeled oleic acid that was associated with triacylglycerol as a function of time. The radioactive oleic acid found in triacylglycerol at various intervals was derived from phospholipids via a diacylglycerol intermediate. Assuming no phospholipid desaturation, the potential or theoretical amounts of [(14)C]oleic acid that could be transferred to triacylglycerol from phospholipids was defined by a system of differential equations. The results demonstrated that the decline in [(14)C]oleic acid from phospholipid after long chase intervals was equal to the total amount of radioactive unsaturated fatty acids found in neutral lipids. The difference between the theoretical and actual amounts of [(14)C]oleic acid present in triacylglycerol after long time intervals was equal to the amount of radioactivity present in polyunsaturated fatty acids. Based upon those findings in soybeans, the desaturation of oleic acid associated with phospholipids was highly probable.  相似文献   

2.
Quiescent Swiss 3T3 cells stimulated to divide by human platelet-derived growth factor (PDGF) were used to investigate cell cycle-dependent changes in arachidonic acid, stearic acid, and glycerol metabolism. PDGF at 12 ng/ml stimulated incorporation of labeled arachidonic and stearic acid into phosphatidic acid and phosphatidylinositol within 60 min. With similar kinetics PDGF stimulated glycerol incorporation into phosphatidic acid and phosphatidylinositol indicating early growth factor-dependent stimulation of de novo phosphatidylinositol synthesis. This early effect of PDGF was specific for the phosphatidylinositol synthesis pathway since no comparable changes were noted in other glycerolipids. After a lag of 4-6 h, PDGF strongly stimulated arachidonic acid incorporation into triacylglycerol: at 6 h, arachidonate radioactivity in triacylglycerol exceeded that in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. This effect of PDGF was not associated with de novo triacylglycerol synthesis since no increase in the rate of glycerol incorporation into this lipid was noted. Finally, PDGF stimulated incorporation of glycerol into all major phospholipids and triacylglycerol during S-phase. These results disclose three novel effects of PDGF on glycerolipid metabolism in Swiss 3T3 cells: 1) early selective activation of the phosphatidylinositol synthesis pathway; 2) delayed strong stimulation of arachidonic acid incorporation into triacylglycerol; and 3) late induction of de novo phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol synthesis. These PDGF effects are likely to play important roles in phosphatidylinositol metabolism, membrane biosynthesis, and fatty acid turnover in rapidly growing cells.  相似文献   

3.
Long chain acyl-CoA synthetase (ACSL) catalyzes the initial step in long chain fatty acid metabolism. Of the five mammalian ACSL isoforms cloned and characterized, ACSL5 is the only isoform found to be located, in part, on mitochondria and thus was hypothesized to be involved in fatty acid oxidation. To elucidate the specific roles of ACSL5 in fatty acid metabolism, we used adenoviral-mediated overexpression of ACSL5 (Ad-ACSL5) in rat hepatoma McArdle-RH7777 cells. Confocal microscopy revealed that Ad-ACSL5 colocalized to both mitochondria and endoplasmic reticulum. When compared with cells infected with Ad-GFP, Ad-ACSL5-infected cells at 24 h after infection had 2-fold higher acyl-CoA synthetase activities and 30% higher rates of fatty acid uptake when incubated with 500 microM [1-(14)C]oleic acid. Metabolism of [1-(14)C]oleic acid to cellular triacylglycerol (TAG) increased 42% in Ad-ACSL5-infected cells, but when compared with control cells, metabolism to acid-soluble metabolites, phospholipids, and medium TAG did not differ substantially. The incorporation of [1-(14)C]oleate and [1,2,3-(3)H]glycerol into TAG was similar in Ad-ACSL5-infected cells, thus indicating that Ad-ACSL5 increased TAG synthesis through both de novo and reacylation pathways. However, [1-(14)C]acetic acid incorporation into cellular lipids showed that, when compared with control cells, Ad-ACSL5-infected cells did not increase the metabolism of fatty acids that were derived from de novo synthesis. These results suggest that uptake of fatty acids into cells is regulated by metabolism and that overexpressed ACSL5 partitions exogenously derived fatty acids toward TAG synthesis and storage.  相似文献   

4.
The deacylation and reacylation process of phospholipids is the major pathway of turnover and repair in erythrocyte membranes. In this paper, we have investigated the role of carnitine palmitoyltransferase in erythrocyte membrane phospholipid fatty acid turnover. The role of acyl-L-carnitine as a reservoir of activated acyl groups, the buffer function of carnitine, and the importance of the acyl-CoA/free CoA ratio in the reacylation process of erythrocyte membrane phospholipids have also been addressed. In intact erythrocytes, the incorporation of [1-14C]palmitic acid into acyl-L-carnitine, phosphatidylcholine, and phosphatidylethanolamine was linear with time for at least 3 h. The greatest proportion of the radioactivity was found in acyl-L-carnitine. Competition experiments using [1-14C]palmitic and [9,10-3H]oleic acid demonstrated that [9,10-3H]oleic acid was incorporated preferentially into the phospholipids and less into acyl-L-carnitine. When an erythrocyte suspension was incubated with [1-14C]palmitoyl-L-carnitine, radiolabeled palmitate was recovered in the phospholipid fraction, and the carnitine palmitoyltransferase inhibitor, 2-tetradecylglycidic acid, completely abolished the incorporation. ATP depletion decreased incorporation of [1-14C]palmitic and/or [9,10-3H]oleic acid into acyl-L-carnitine, but the incorporation into phosphatidylcholine and phosphatidylethanolamine was unaffected. In contrast, ATP depletion enhanced the incorporation into phosphatidylcholine and phosphatidylethanolamine of the radiolabeled fatty acid from [1-14C]palmitoyl-L-carnitine. These data are suggestive of the existence of an acyl-L-carnitine pool, in equilibrium with the acyl-CoA pool, which serves as a reservoir of activated acyl groups. The carnitine palmitoyltransferase inhibition by 2-tetradecylglycidic acid or palmitoyl-D-carnitine caused a significant reduction of radiolabeled fatty acid incorporation into membrane phospholipids, only when intact erythrocytes were incubated with [9,10-3H]oleic acid. These latter data may be explained by the differences in rates and substrates specificities between acyl-CoA synthetase and the reacylating enzymes for palmitate and oleate, which support the importance of carnitine palmitoyltransferase in modulating the optimal acyl-CoA/free CoA ratio for the physiological expression of the membrane phospholipids fatty acid turnover.  相似文献   

5.
The liver is a major source of the plasma lipoproteins; however, direct studies of the regulation of lipoprotein synthesis and secretion by human liver are lacking. Dense monolayers of Hep-G2 cells incorporated radiolabeled precursors into protein ([35S]methionine), cholesterol ([3H]mevalonate and [14C]acetate), triacylglycerol, and phospholipid ([3H]glycerol), and secreted them as lipoproteins. In the absence of free fatty acid in the media, the principal lipoprotein secretory product that accumulated had a density maximum of 1.039 g/ml, similar to serum low density lipoprotein (LDL). ApoB-100 represented greater than 95% of the radiolabeled apoprotein of these particles, with only traces of apoproteins A and E present. Inclusion of 0.8 mM oleic acid in the media resulted in a 54% reduction in radiolabeled triacylglycerol in the LDL fraction and a 324% increase in triacylglycerol in the very low density lipoprotein (VLDL) fraction. Similar changes occurred in the secretion of newly synthesized apoB-100. The VLDL contained apoB-100 as well as apoE. In the absence of exogenous free fatty acid, the radiolabeled cholesterol was recovered in both the LDL and the high density lipoprotein (HDL) regions. Oleic acid caused a 50% decrease in HDL radiolabeled cholesterol and increases of radiolabeled cholesterol in VLDL and LDL. In general, less than 15% of the radiolabeled cholesterol was esterified, despite the presence of cholesteryl ester in the cell. Incubation with oleic acid did not cause an increase in the total amount of radiolabeled lipid or protein secreted. We conclude that human liver-derived cells can secrete distinct VLDL and LDL-like particles, and the relative amounts of these lipoproteins are determined, at least in part, by the availability of free fatty acid.  相似文献   

6.
Smooth muscle cells (SMC) isolated from bovine aorta or human saphenous vein were cultured and used to study the putative effect of recombinant human tumor necrosis factor (TNF) on lipid metabolism in vascular cells. Addition of TNF to the culture medium for 24-48 h resulted in an increase of [3H]oleic acid uptake and esterification into lipids. The effect could be seen already with 0.3 ng/ml and was maximal with 30 ng/ml. The effect of TNF was mainly on the incorporation of [3H]oleic acid into triacylglycerol which increased by 140% in the bovine cells. There was also a significant increase in [3H]cholesteryl ester. In the human SMC there was a 40% increase in [3H]oleic acid into total lipids, while the rise in [3H]triacylglycerol ranged between 60-90%. TNF did not modulate cellular triacyglycerol synthesis in cultured mouse peritoneal macrophages. Since TNF was shown to be synthesized and secreted not only by macrophages but also by smooth muscle cells, it could play an autocrine role in lipid metabolism during development of atherosclerotic lesions. The cellular population of the lesions, i.e., predominance of macrophages or smooth muscle cells, could determine the relative proportion of triacylglycerol accumulation.  相似文献   

7.
Summary

Isolated oocytes of Perinereis cultrifera have been incubated in culture media with added [3H]glycerol, [14C]butyric acid or [14C]oleic acid. The principal neutral lipid synthesized was triacylglycerol, although incorporation of radioactivity into other lipid categories (sterol, fatty acid, wax ester) was also observed. A more significant percentage of triacylglycerol was labelled after incubation with [3H]glycerol and [14C]oleic acid than with [14C]butyric acid. With this precursor, monoacylglycerol appears to be the class of lipid compartment which initially show the most radioactivity. Electron microscopic autoradiography has revealed that labelling after incorporation of glycerol was mainly localized on the lipid droplets but not on the yolk granules. A second metabolic pathway is represented by phospholipid membrane synthesis.  相似文献   

8.
The diacylglycerol (DAG) signal generated from membrane phospholipids by hormone-activated phospholipases is attenuated by mechanisms that include lipolysis or phospholipid resynthesis. To determine whether the DAG signal might also be terminated by incorporation of DAG into triacylglycerol (TAG), we studied the direct formation of TAG from endogenous DAG generated by bacterial phospholipase C (PLC). When Chinese hamster ovary (CHO) cells prelabeled with [(14)C]oleate were treated with PLC from Clostridium perfringens for 6 h, [(14)C]phospholipid decreased 15% and labeled TAG increased 60%. This transfer of (14)C label was even greater when the cells were simultaneously exposed to PLC and 100 microM oleic acid. PLC as well as oleate treatment concomitantly increased the TAG mass within the cell. Moreover, when phospholipids were prelabeled with [(3)H]glycerol, a subsequent increase in [(3)H]TAG indicated that an intact DAG moiety was channeled into the TAG structure. Incubating CHO cells with the diacylglycerol kinase inhibitor R59022 enhanced the formation of TAG from phospholipids hydrolyzed by PLC or by PLC in the presence of 100 microM oleate, but not by incubation with oleate alone, indicating that the DAG released from plasma membrane phospholipids does not require the formation of a phosphatidic acid precursor for TAG synthesis. Similarly, the diacylglycerol lipase inhibitor RHC 80267 did not alter TAG synthesis from plasma membrane DAG, further supporting direct incorporation of DAG into TAG.These studies indicate that DAG derived from plasma membrane phospholipid is largely used for TAG formation, and support the view that this mechanism can terminate DAG signals. The studies also suggest that a transport mechanism exists to move plasma membrane-derived DAG to the endoplasmic reticulum.-Igal, R. A., J. M. Caviglia, I. N. T. de Gómez Dumm, and R. A. Coleman. Diacylglycerol generated in CHO cell plasma membrane by phospholipase C is used for triacylglycerol synthesis. J. Lipid Res. 2001. 42: 88;-95.  相似文献   

9.
The human intestinal cell line, CaCo-2, was used to study the effect of the n-3 fatty acid, eicosapentaenoic acid, on triacylglycerol secretion. In cells incubated with 250 microM eicosapentaenoic acid, the incorporation of [3H]glycerol into triacylglycerols secreted into the medium was decreased by 58% compared to cells incubated with 250 microM oleic acid. The incorporation of [3H]glycerol into cellular triacylglycerols was decreased 32% in cells incubated with eicosapentaenoic acid. In cells preincubated with [3H]glycerol to label existing triacylglycerols, the rates of secretion of preformed triacylglycerols were similar in response to the addition of either fatty acid. Initial uptake rates of the n-3 fatty acid were higher than for oleic acid. Both eicosapentaenoic acid and oleic acid were minimally oxidized to CO2. Oleic acid was predominantly incorporated into cellular triacylglycerols (62% vs. 47%), whereas more eicosapentaenoic acid was incorporated into cellular phospholipids (46% vs. 30%). Phospholipids of microsomes prepared from cells incubated with eicosapentaenoic acid were enriched in this fatty acid. The rate of synthesis of triacylglycerol and diacylglycerol acyltransferase activities were significantly less in microsomes prepared from cells incubated with eicosapentaenoic acid. Triacylglycerol mass secreted by CaCo-2 cells incubated with either fatty acid was similar. In CaCo-2 cells, eicosapentaenoic acid decreases the synthesis and secretion of newly synthesized triacylglycerol without decreasing the secretion of triacylglycerol mass. Modification of microsomal membrane phospholipid fatty acid composition is associated with a decrease in microsomal triacylglycerol synthesis and diacylglycerol acyltransferase activities.  相似文献   

10.
A principal metabolic function of adipocytes is to synthesize triacylglycerol (TG) from exogenous fatty acids. The level of fatty acids has to be tightly controlled in the adipocyte, as they can act as detergents that rapidly dissolve the plasma membrane, causing cell lysis if allowed to accumulate. Fatty acids therefore have to be efficiently converted to TG and stored in the central lipid droplet. We report that in intact primary adipocytes exogenous oleic acid was taken up and directly converted to TG in the plasma membrane, in a novel subclass of caveolae that specifically contains the protein perilipin. Isolated caveolae catalyzed de novo TG synthesis from oleic acid and glycerol 3-phosphate. Electron microscopy revealed the presence of caveolin and perilipin in caveolae and in lipid-laden bulbs in the plasma membrane, and fluorescence microscopy demonstrated colocalization of fatty acids/TG with caveolin and perilipin at the plasma membrane. A second caveolae fraction was isolated, which lacked perilipin and the triacylglycerol synthesizing enzymes. Both caveolae fractions contained caveolin-1 and the insulin receptor. The findings demonstrate that specific subclasses of caveolae carry out specific functions in cell metabolism. In particular, triacylglycerol is synthesized at the site of fatty acid entry in one of these caveolae classes.  相似文献   

11.
To clarify divergent views concerning the mechanism of fatty acid translocation across biomembranes this issue was now investigated in human erythrocytes. Translocation rates of exogenously inserted radioactive oleic acid across the membrane of native cells were derived from the time-dependent increase of the fraction of radioactivity becoming non-extractable by albumin. No accumulation of non-extractable unesterified oleic acid occurred. The rate of transfer was markedly suppressed by SH-reagents and by ATP-depletion. The suppression, however, resulted from a mere decrease of incorporation of oleic acid into phospholipids and was not accompanied by an increase of non-extractable unesterified oleic acid. These findings were reconcilable with the concept of a slow, possibly carrier-mediated fatty acid transfer as well as a very fast presumably, diffusional process not resolvable by the albumin extraction procedure. This ambiguity was resolved by using resealed ghosts, which are unable to incorporate oleic acid into phospholipids. In such ghosts all of the oleic acid inserted into the membrane remains extractable by albumin even after prolonged incubation. On the other hand, ghosts containing albumin accumulated non-extractable oleic acid. The rate of accumulation was beyond the time resolution of the albumin extraction procedure at 4 degrees C. Oleic acid uptake into albumin-containing ghosts became kinetically resolvable when the fatty acid was added as a complex with albumin. Correspondingly, time-resolvable release of oleic acid, originally complexed to internal albumin, into an albumin-containing medium was demonstrated at 4 degrees C. Rate and extent of these redistributions of oleic acid were dependent on the concentrations of internal and external albumin. This indicates limitation by the dissociation of oleic acid from albumin and not its translocation across the membrane. Translocation of oleic acid, which is probably a simple diffusive flip-flop process, must therefore occur with a half-time of less than 15 s. These findings raise doubts on the physiological role of presently discussed concepts of a carrier-mediated translocation of fatty acids across plasma membranes.  相似文献   

12.
V79-UF cells were isolated from Chinese hamster V79 cells as a cell line that requires exogenous unsaturated fatty acids for growth. V79-UF cells incorporated arachidonic acid into phospholipids. The molecular species of diacyl phosphatidylcholine and phosphatidylethanolamine containing arachidonic acid comprised 61.4 and 70.5% of the total phospholipid molecular species in total membranes and 58.1 and 64.7% in plasma membrane, respectively. Polyunsaturated molecular species were distributed in a higher amount in the intracellular membranes than in the plasma membrane. No significant difference was seen in the diffusion coefficient between the plasma membranes from cells supplemented with oleic and arachidonic acids in spite of a distinct difference in the degree of unsaturation between the molecular species of these plasma membranes. The amount of cholesterol in the plasma membrane was higher in the cells grown in the presence of arachidonic acid than in those grown in the presence of oleic acid.  相似文献   

13.
We report here studies of the synthesis of lyso(bis)phosphatidic acid [L(b)PA] by normal and BCG-elicited rabbit alveolar macrophages. This study was prompted by our earlier observations that 1) alveolar macrophages did not synthesize L(b)PA de novo despite its abundance in these cells, 2) BCG-elicited cells contained only one-quarter the amount of L(b)PA as normal cells, and 3) the turnover of arachidonate in L(b)PA led to hydroxyeicosatetraenoic acid and leukotriene synthesis. We found that exogenous phosphatidylglycerol (PG) was specifically converted to L(b)PA by both types of cells although BCG-elicited cells had only one-quarter the synthetic capacity of normal cells. Other phospholipids were found to become cell associated but were not significantly metabolized. Both glycerol moieties and the phosphate were incorporated into the product L(b)PA. However, substitution of the ester with an alkyl linkage in position 1 blocked the conversion of PG to L(b)PA. Most of the alkylphosphatidylglycerol was converted to phosphatidylcholine and phosphatidylethanolamine. This result implied that catabolism of the acyl group in position 1 was essential for L(b)PA synthesis. Because alveolar macrophages are present in a surfactant-rich milieu, we suggest that surfactant provides a source of PG for macrophage synthesis of L(b)PA in situ. It is interesting that the surfactants from rabbits challenged with BCG have a significant decrease in PG content.  相似文献   

14.
Rabbits were fed a diet containing 1% cholesterol, and lipoproteins were isolated from their plasma by sequential ultracentrifugation. Lipoprotein remnants (d = 1.019-1.063) were conditioned by incubation with bovine aortic smooth muscle cells for 24 h and then incubated for 4 h with J774 cells or mouse peritoneal macrophages. Conditioning of remnants and low-density lipoproteins resulted in enhancement of their uptake and metabolism by the macrophages in culture. The macrophages metabolized conditioned remnant lipoproteins more extensively than controls at all concentrations tested. Addition of 10% safflower oil or 10% butter to the 1% cholesterol diet resulted in a molar ratio of linoleic/oleic acid of 1.62 and 0.62 in plasma neutral lipids and of 5.7 and 2.5 in plasma phospholipids. Conditioned remnants, derived after safflower oil feeding, were metabolized more extensively by macrophages than those obtained after butter feeding. This was also true for control remnants (preincubated without cells). Thiobarbituric acid-reactive substances were higher in remnants from safflower oil-fed than butter-fed rabbit plasma prior to and after conditioning. Mouse peritoneal macrophages metabolized remnant lipoproteins more extensively than low-density lipoproteins. The present results indicate that modification of remnant lipoproteins, the major atherogenic fraction of cholesterol-fed rabbit plasma, results in their enhanced metabolism by macrophages, and that an increase in the linoleic/oleic acid ratio in these lipoproteins might enhance their susceptibility to peroxidative modification.  相似文献   

15.
Myristic acid utilization and processing in BC3H1 muscle cells.   总被引:1,自引:0,他引:1  
Because myristic acid (14:0) is important in regulating cell function, we have studied its utilization in BC3H1 muscle cells. Phosphatidylcholine contained 70-80% of the [9,10-3H]14:0 radioactivity incorporated into the cell phospholipids. In both myoblasts and myocytes, however, large amounts of radioactivity also accumulated in a labile neutral lipid pool consisting mostly of triacylglycerol. Therefore, radioactive lipid products formed when BC3H1 cells labeled with 14:0 are stimulated are not necessarily derived only from phosphatidylcholine. Elongation of [9,10-3H]14:0 occurred rapidly in the myoblasts and myocytes, and extensive desaturation also occurred in the myoblasts. Thus, even after short periods of labeling, substantial amounts of radioactivity are contained in fatty acids other than 14:0. The labeling of proteins with [9,10-3H]myristic acid was generally similar in the myoblasts and myocytes. A number of lipid-soluble, polar radioactive metabolites were released into the medium during incubation of [9,10-3H]14:0 with the cells. [1-14C] 14:0 was not converted to these compounds, indicating that they are chain-shortened 14:0 derivatives. Based on chemical analysis, two of the major products appear to be hydroxylated fatty acids. This oxidation process shows some specificity for 14:0 because similar compounds were not produced from palmitic, oleic, or linoleic acids. The myocytes formed larger amounts of the metabolites than the myoblasts, suggesting that differentiation may increase the activity of this 14:0 oxidative pathway.  相似文献   

16.
Human serum albumin (HSA) is the most abundant protein in plasma. It is known to transport drugs as well as endogenous ligands, like free fatty acids (FFA). A mass spectrometry based method was applied to analyze the albumin bound lipid ligands. HSA was isolated from a human plasma pool by cold ethanol fractionation and ion exchange chromatography. HSA was defatted using a solvent extraction method to release the copurified lipids bound to the protein. The extracts were then analyzed by matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS). Using this method, phospholipids and acylglycerols were detected. The phospholipids were identified to be lyso-phosphatidylcholine (lyso-PC) with distribution of different fatty acids (palmitic, stearic, oleic, and linoleic acids). An abundant species in the HSA lipid extract was found to be a diacylglycerol, composed of two linoleic and/or oleic acid chains. The identified motifs reflect structures that are known to be present in plasma. The binding of lysophospholipids has already been described but it is the first ever-reported evidence of native diacylglycerol ligands bound to HSA. Besides the native ligands from plasma a triacylglycerol was detected that has been added during the albumin preparation steps.  相似文献   

17.
Young adult rats, either control or essential fatty acid deficient, were administered either [3-H] oleic acid or [3-H] arachidonic acid by stomach tube. In addition, a group of control rats was given [3-H] palmitic acid. The rats were killed at various times therafter, and the radioactivity of the lipids of brain and plasma was examined. In confirmation of previous work, the blood lipid label was found to rise rapidly and then fall, wheras the activity of brain lipids increased slowly and did not show a decline through the 24-h period studied. Analysis of the brain uptake data according to first-order kinetics confirmed the impressions gained from visual inspection of the data. The initial rate of uptake of arachidonic acid was about 4.5 times that of oleic acid in control animals and in deficient animals. Essential fatty acid deficiency, however, did not induce an altered rate of uptake for either oleic acid or arachidonic acid. The rate of uptake of palmitic acid by control rats was not significantly different from that of oleic acid. Even though the initial rates of incorporation of oleic and arachidonic acids were not changed during essential fatty acid deficiency, the final levels of radioactivity obtained in brain lipids were higher in deficient rats with both fatty acids. The plateau value obtained with oleic acid was 1.5 times higher in deficient animals, while the plateau value for arachidonic acid was 1.7 times higher. An experiment in which deficient animals were allowed access to a control diet for 12 or 24 h prior to the labeling experiment suggested that the higher levels of radioactivity found in brain lipids of deficient animals was not due to an isotope dilution effect. Such animals still displayed the labeling pattern of deficient animals with arachidonic acid, while the results with oleic acid varied somewhat. Our results suggest that essential fatty acid deficiency does not alter the ability of the brain to take up the fatty acids studied. However, the fatty acids, especially arachidonic, are retained in the brain to a greater extent in the deficient animals.  相似文献   

18.
Glyceride metabolism in cultured cells dissociated from rat cerebral cortex   总被引:5,自引:5,他引:0  
Abstract— [1-14C]stearic acid and [2-3H]glycerol were rapidly taken up and esterified into triacylglycerol and phospholipids by rat brain cells cultivated in monolayers. Expressed in terms of pool size, the incorporation of glycerol and stearate into triacylglycerol was 6- and 8-fold, respectively, higher than the incorporation into the choline phosphoglycerides. Tritium-labelled glycerol in both triacylglycerol and glycerophosphatides was diluted more rapidly than the [14C] labelled fatty acids. Chase experiments indicated a transfer of fatty acid from one lipid class to another, mainly from triacylglycerol to phospholipids, with no apparent loss of radioactivity. The accumulation of triacylglycerol in the brain cells was a function of both the presence of exogenous fatty acids in the culture medium and the metabolic needs of the cells; as long as the cells were involved in active formation of membranes the proportion of triacylglycerol was relatively small; its concentration increased while cell division slowed down in older, fully monolayered cultures.  相似文献   

19.

Background  

The phospholipids of the plant plasma membrane are synthesized in the endoplasmic reticulum (ER). The majority of these lipids reach the plasma membrane independently of the secretory vesicular pathway. Phospholipid delivery to the mitochondria and chloroplasts of plant cells also bypasses the secretory pathway and here it has been proposed that lysophospholipids are transported at contact sites between specific regions of the ER and the respective organelle, followed by lysophospholipid acylation in the target organelle. To test the hypothesis that a corresponding mechanism operates to transport phospholipids to the plasma membrane outside the secretory pathway, we investigated whether lysolipid acylation occurs also in the plant plasma membrane and whether this membrane, like the chloroplasts and mitochondria, is in close contact with the ER.  相似文献   

20.
The mechanism for the reduced hepatic production of triacylglycerol in the presence of eicosapentaenoic acid was explored in short-term experiments using cultured parenchymal cells and microsomes from rat liver. Oleic, palmitic, stearic, and linoleic acids were the most potent stimulators of triacyl[3H]glycerol synthesis and secretion by hepatocytes, whereas erucic, alpha-linolenic, gamma-linolenic, arachidonic, docosahexaenoic, and eicosapentaenoic acids (in decreasing order) were less stimulatory. There was a linear correlation (r = 0.85, P less than 0.01) between synthesis and secretion of triacyl[3H]glycerol for the fatty acids examined. The extreme and opposite effects of eicosapentaenoic and oleic acids on triacylglycerol metabolism were studied in more detail. With increasing number of free fatty acid molecules bound per molecule of albumin, the rate of synthesis and secretion of triacyl[3H]glycerol increased, most markedly for oleic acid. Cellular uptake of the two fatty acids was similar, but more free eicosapentaenoic acid accumulated intracellularly. Eicosapentaenoic acid caused higher incorporation of [3H]water into phospholipid and lower incorporation into triacylglycerol and cholesteryl ester as compared to oleic acid. No difference was observed between the fatty acids on incorporation into cellular free fatty acids, monoacylglycerol and diacylglycerol. The amount of some 16- and 18-carbon fatty acids in triacylglycerol was significantly higher in the presence of oleic acid compared with eicosapentaenoic acid. Rat liver microsomes in the presence of added 1,2-dioleoyl-glycerol incorporated eicosapentaenoic acid and eicosapentaenoyl-CoA into triacylglycerol to a lesser extent than oleic acid and its CoA derivative. Decreased formation of triacylglycerol was also observed when eicosapentaenoyl-CoA was given together with oleoyl-CoA, whereas palmitoyl-CoA, stearoyl-CoA, linoleoyl-CoA, linolenoyl-CoA, and arachi-donoyl-CoA had no inhibitory effect. In conclusion, inhibition of acyl-CoA:1,2-diacylglycerol O-acyltransferase (EC 2.3.1.20) by eicosapentaenoic acid may be important for reduced synthesis and secretion of triacylglycerol from the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号