首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The complete nucleotide sequence of the circular double-stranded DNA of the genital human papillomavirus type 6b (HPV6b) comprising 7902 bp was determined and compared with the DNA sequences of human papillomavirus type 1a (HPV1a) and bovine papillomavirus type 1 (BPV1). All major open reading frames are located on one DNA strand only. Their arrangement reveals that the genomic organization of HPV6b is similar to that of HPV1a and BPV1. The putative early region includes two large open reading frames E1 and E2 with marked amino acid sequence homologies to HPV1a and BPV1 which are flanked by several smaller frames. The internal part of E2 completely overlaps with another open reading frame E4. The putative late region contains two large open reading frames L1 and L2. The L1 amino acid sequences are highly conserved among analyzed papillomavirus types. By sequence comparison, potential promoter, splicing and polyadenylation signals can be localized in HPV6b DNA suggesting possible mechanisms of genital papillomavirus gene expression.  相似文献   

3.
4.
We investigated the transforming activity of human papillomavirus type 8 (HPV8) by expressing all early open reading frames from a heterologous promoter in different rodent fibroblast lines. Morphological transformation was observed only in G418-selected mouse C127 and Rat 1 cells containing an intact E6-coding region. E6 of HPV8 did not transform NIH 3T3 cells as did E6 of bovine papillomavirus type 1. C127 cells transformed by E6 were anchorage independent and had a reduced serum requirement but did not form tumors in nude mice. E7 of HPV8 showed no transforming potential, in contrast to E7 of HPV18 and HPV16. It was, however, able to complement an E7 mutant of bovine papillomavirus type 1 with a defect in high-copy-number DNA maintenance. The data indicate that the expression of the HPV8 E6 open reading frame is sufficient to induce morphological transformation in rodent fibroblasts, whereas E7 is involved in the replication of the viral DNA.  相似文献   

5.
Molecular cloning and nucleotide sequence of deer papillomavirus.   总被引:17,自引:10,他引:7       下载免费PDF全文
The genome of deer papillomavirus (DPV) isolated from American white-tailed deer was cloned into pBR322, and the entire nucleotide sequence of 8,374 base pairs was determined. The overall genetic organization of the DPV genome was similar to that of other papillomaviruses. All significant open reading frames were located on one strand, and the locations of putative promoters and polyadenylation signals were similar to those identified in the closely related bovine papillomavirus type 1 (BPV-1) genome. The DPV genome was approximately colinear with BPV-1 except for a noncoding region separating the early and late regions. The regions of highest nucleotide sequence homology between DPV and BPV-1 were found in the E1 open reading frame coding for BPV-1 DNA replication function and in the L1 open reading frame, which encodes the major capsid protein of BPV-1.  相似文献   

6.
Transient replication of human papillomavirus (HPV) type 18 DNA was shown to require the viral E1 and E2 proteins. A 108-bp sequence within the long control region (nucleotides 12 to 119) was sufficient to function as the origin, but maximal replication required a region of 177 bp from positions 7800 to 7857 and 1 to 119 of HPV-18. The E1 and E2 proteins of HPV-18 also supported transient replication of plasmids containing the origins of HPV-1a and bovine papillomavirus type 1 to low levels. Interestingly, the level of replication observed with the HPV-6b origin was higher than that obtained with the homologous HPV-18 origin.  相似文献   

7.
Bovine papillomavirus E1 protein was found to be as efficient as the simian virus 40 large T antigen in initiating DNA synthesis in a cell-free system derived from COS1 cells. Multiple rounds of DNA synthesis occur, initiated at the bovine papillomavirus type 1 origin. Therefore, E1 functions in vitro as a lytic virus initiator.  相似文献   

8.
Properties of intracellular bovine papillomavirus chromatin.   总被引:4,自引:2,他引:2       下载免费PDF全文
Episomal nucleoprotein complexes of bovine papillomavirus type 1 (BPV-1) in transformed cells were exposed to DNase I treatment to localize hypersensitive regions. Such regions, which are indicative for gene expression, were found within the noncoding part of the genome, coinciding with the origin of replication and the 5' ends of most of the early mRNAs. However, there were also regions of hypersensitivity within the structural genes. These intragenic perturbations of the chromatin structure coincide with regulatory sequences at the DNA level. One of these regions maps in close proximity to a Z-DNA antibody-binding site which is located near the putative BPV-1 enhancer sequence.  相似文献   

9.
We have identified and purified to near homogeneity two specific single-stranded DNA-binding factors (SPSF I and II) with molecular masses of 42 and 39 kDa, respectively, from calf thymus. Gel retention analysis and competition experiments demonstrate that the ubiquitous proteins SPSF I and II specifically interact with single-stranded DNA derived from the minimal in vitro origin of replication of bovine papillomavirus type 1 and a region of the viral genome proposed to be involved in plasmid maintenance. Bovine papillomavirus type 1 proteins do not interfere with DNA binding of SPSF I and II. The exact location of the binding domains of SPSF I and II on the DNA has been determined by methylation interference and T4 DNA polymerase footprinting. A potential cellular binding site for SPSF I and II is the major promoter (P2) of the human c-myc gene.  相似文献   

10.
11.
The complete nucleotide sequence of human papillomavirus type 1a (7811 nucleotides) has been established. The overall organization of the viral genome is different from that of other related papovaviruses (SV40, BKV, polyoma). Firstly, genetic information seems to be coded by one strand. Secondly, no significant homology is found with SV40 or polyoma coding sequence for either DNA or deducted protein sequences. The relatedness of human and bovine papillomaviruses is revealed by a conserved coding sequence in the two species. Two regions can be defined on the viral genome: the putative early region contains two large open reading frames of 1446 and 966 nucleotides, together with several split ones, and corresponds to the transforming part of the bovine papillomavirus type 1 genome, and the remaining sequences, which include two open reading frames likely to encode structural polypeptide(s). The DNA sequence is analysed and putative signals for regulation of gene expression, and homologies with the Alu family of human ubiquitous repeats and the SV40 72-bp repeat are outlines.  相似文献   

12.
Papillomaviral DNA replicates as extrachromosomal plasmids in squamous epithelium. Viral DNA must segregate equitably into daughter cells to persist in dividing basal/parabasal cells. We have previously reported that the viral origin binding protein E2 of human papillomavirus types 11 (HPV-11), 16, and 18 colocalized with the mitotic spindles. In this study, we show the localization of the HPV-11 E2 protein to be dynamic. It colocalized with the mitotic spindles during prophase and metaphase. At anaphase, it began to migrate to the central spindle microtubules, where it remained through telophase and cytokinesis. It was additionally observed in the midbody at cytokinesis. A peptide spanning residues 285 to 308 in the carboxyl-terminal domain of HPV-11 E2 (E2C) is necessary and sufficient to confer localization on the mitotic spindles. This region is conserved in HPV-11, -16, and -18 and bovine papillomavirus type 4 (BPV-4) E2 and is also required for the respective E2C to colocalize with the mitotic spindles. The E2 protein of bovine papillomavirus type 1 is tethered to the mitotic chromosomes via the cellular protein Brd4. However, the HPV-11 E2 protein did not associate with Brd4 during mitosis. Lastly, a chimeric BPV-1 E2C containing the spindle localization domain from HPV-11 E2C gained the ability to localize to the mitotic spindles, whereas the reciprocal chimera lost the ability. We conclude that this region of HPV E2C is critical for localization with the mitotic apparatus, enabling the HPV DNA to sustain persistent infections.  相似文献   

13.
14.
M Remm  R Brain    J R Jenkins 《Nucleic acids research》1992,20(22):6015-6021
Human papillomaviruses (HPV-s) have been shown to possess transforming and immortalizing activity for many different, mainly keratinocyte cell lines and they have been detected in 90% of anogenital cancer tissues, which suggests a causative role in the induction of anogenital and other tumours. We have exploited a quantitative assay to identify and characterize the origin of replication of the human papillomavirus type 18 (HPV-18), one of the most prevalent types in the high-risk HPV group. Replication of HPV origin fragments was studied transiently by cotransfection with a protein expression vector providing replication proteins E1 and E2. We have localized the HPV-18 origin to nucleotides 7767-119. This region contains three E2 binding sites and an essential A/T rich DNA region (nucleotides 9-35) that is partly homologous to the E1 binding site found in bovine papillomavirus type 1 (BPV-1) genome. At least one of the three E2 binding sites was absolutely required for origin function; addition of other E2 sites had cooperative stimulating effect. This is the first quantitative analysis of the E2 binding sites for papillomavirus replication.  相似文献   

15.
The papillomavirus E1 protein is essential for viral DNA replication, and phosphorylation of E1 appears to regulate protein function and DNA replication. Serine 584 of bovine papillomavirus E1 is in a conserved motif resembling a CK2 consensus site, and is phosphorylated by CK2 in vitro. Mutation of serine 584 to alanine eliminates replication of the viral genome in transient replication assays. Wild-type and mutant E1 proteins were expressed from recombinant baculoviruses and used to assess biochemical functions of the amino acid 584 substitution. Helicase enzyme activity, E1 binding to the viral E2 protein and to cellular DNA polymerase alpha-primase were all unaffected in the mutant protein. Binding of E1 to viral replication origin DNA sequences was reduced in the mutant, but not eliminated. The carboxyl-terminal region of the protein appears to play a role in regulating E1 function, and adds to a complex picture emerging for papillomavirus DNA replication control.  相似文献   

16.
A papillomavirus was isolated from the epithelial layer of a cutaneous fibropapilloma on a Swedish reindeer (Rangifer tarandus). Reindeer papillomavirus (RPV) is morphologically indistinguishable from other papillomaviruses, but the restriction enzyme cleavage pattern of its genome is different. No sequence homology was detected between RPV DNA and the DNAs of bovine papillomavirus type 1 (BPV-1) and avian papillomavirus when hybridization was performed under stringent conditions. However, the RPV genome hybridized to the genome of the European elk papillomavirus and the deer papillomavirus under stringent conditions. A physical map of the RPV genome was constructed, and selected regions of the genome, covering the open translational reading frame (ORF) E5 and part of the E1 and L1 ORFs, were studied by nucleotide sequence analysis. The results made it possible to align the RPV genome with the genome of BPV-1. The E5 ORF of RPV has the potential to encode a 44-amino-acid, exceptionally hydrophobic polypeptide which is very similar to the E5 polypeptides of BPV-1 and deer and European elk papillomaviruses. RPV is oncogenic for hamsters and transforms C127 mouse cells in vitro. Several virus-specific mRNAs were detected in RPV-transformed C127 cells.  相似文献   

17.
Individuals in a colony of European harvest mice (Micromys minutus) were diagnosed with a variety of skin tumors including papillomas, trichoepitheliomas, and sebaceous carcinomas. Papillomavirus group-specific antigens and viruslike particles were detected in the papillomas. A 7.6-kilobase supercoiled circular DNA, which was cleaved once by EcoRI, was visualized in papilloma extracts by low-stringency Southern blot hybridization with a bovine papillomavirus type 2 probe. The molecule was cloned in pUC18, and a restriction map was generated. The molecule was shown to be colinear with the genome of human papillomavirus type 1a by partial sequence analysis. The DNA hybridized to human papillomavirus type 1a, rabbit oral papillomavirus, and the genome of Mastomys natalensis papillomavirus at Tm - 33 degrees C but not to the DNAs of 13 other papillomaviruses. Transformation of NIH 3T3 or C127I cells by tail papilloma extracts or transfected viral DNA was not observed. All 17 tumors examined contained large amounts of viral DNA in a supercoiled, unintegrated form as revealed by Southern blot hybridization. Furthermore, many extracts (25 of 35) from normal organs and skin of individuals with lesions elsewhere on their bodies contained viral DNA. This represents the first reported molecular cloning of a papillomavirus genome from a mouse species.  相似文献   

18.
The E1 open reading frame of bovine papillomavirus (BPV) was expressed as a RecA-E1 fusion protein in Escherichia coli. The bacterially expressed RecA-E1 protein exhibited sequence-specific DNA binding activity; strong binding to the region from nucleotides 7819 to 93 on the BPV genome (designated region A) and weak binding to the adjacent region from nucleotides 7457 to 7818 (region B) were observed. The interaction between the BPV-derived RecA-E1 protein and region A appeared to be highly specific for BPV DNA, as no comparable binding was detected with heterologous papillomavirus DNAs. Binding to region A was eliminated by digestion of region A at the unique HpaI site, which suggests that the RecA-E1 binding site(s) was at or near the HpaI recognition sequence. Binding to region B but not region A was observed when nuclear extracts from ID13 cells were used as a source of E1 proteins. The absence of region A binding by ID13 extracts may reflect a negative regulation of E1 DNA binding activity.  相似文献   

19.
A physical map was constructed for bovine papillomavirus type 2 DNA by the use of restriction endonucleases. A comparison between the genomes of bovine papillomavirus types I and 2 in regard to location and number of cleavage sites of seven enzymes is also presented. This comparison revealed similarities between the two genomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号