首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic initiation factor 4F (eIF-4F) is a three-subunit complex that binds the 5' cap structure (m7GpppX, where X is any nucleotide) of eukaryotic mRNAs. This factor facilitates ribosome binding by unwinding the secondary structure in the mRNA 5' noncoding region. The limiting component of the 4F complex is believed to be the 24-kDa cap-binding phosphoprotein, eIF-4E. In this report, we describe the phosphorylation of eIF-4E in response to expression of the tyrosine kinase oncoproteins pp60v-src and pp60c-src527F. The results suggest that eIF-4E functions as a downstream target of the phosphorylation cascade induced by tyrosine-specific protein kinases as well as by effectors of the mitogenic response.  相似文献   

2.
During eukaryotic translation initiation, the 43 S ribosomal pre-initiation complex is recruited to the 5'-end of an mRNA through its interaction with the 7-methylguanosine cap, and it subsequently scans along the mRNA to locate the start codon. Both mRNA recruitment and scanning require the removal of secondary structure within the mRNA. Eukaryotic translation initiation factor 4A is an essential component of the translational machinery thought to participate in the clearing of secondary structural elements in the 5'-untranslated regions of mRNAs. eIF4A is part of the 5'-7-methylguanosine cap-binding complex, eIF4F, along with eIF4E, the cap-binding protein, and the scaffolding protein eIF4G. Here, we show that Saccharomyces cerevisiae eIF4F has a strong preference for unwinding an RNA duplex with a single-stranded 5'-overhang versus the same duplex with a 3'-overhang or without an overhang. In contrast, eIF4A on its own has little RNA substrate specificity. Using a series of deletion constructs of eIF4G, we demonstrate that its three previously elucidated RNA binding domains work together to provide eIF4F with its 5'-end specificity, both by promoting unwinding of substrates with 5'-overhangs and inhibiting unwinding of substrates with 3'-overhangs. Our data suggest that the RNA binding domains of eIF4G provide the S. cerevisiae eIF4F complex with a second mechanism, in addition to the eIF4E-cap interaction, for directing the binding of pre-initiation complexes to the 5'-ends of mRNAs and for biasing scanning in the 5' to 3' direction.  相似文献   

3.
The translation initiation step in eukaryotes is highly regulated and rate-limiting. During this process, the 40S ribosomal subunit is usually recruited to the 5' terminus of the mRNA. It then migrates towards the initiation codon, where it is joined by the 60S ribosomal subunit to form the 80S initiation complex. Secondary structures in the 5' untranslated region (UTR) can impede binding and movement of the 40S ribosome. The canonical eukaryotic translation initiation factor eIF4A (also known as DDX2), together with its accessory proteins eIF4B and eIF4H, is thought to act as a helicase that unwinds secondary structures in the mRNA 5' UTR. Growing evidence suggests that other helicases are also important for translation initiation and may promote the scanning processivity of the 40S subunit, synergize with eIF4A to 'melt' secondary structures or facilitate translation of a subset of mRNAs.  相似文献   

4.
Kozak M 《Gene》2004,343(1):41-54
The belief that initiation of translation requires communication between the 5' and 3' ends of the mRNA guides--or misguides--the interpretation of many experiments. The closed-loop model for initiation creates the expectation that sequences at the 3' end of eukaryotic mRNAs should regulate translation. This review looks closely at the evidence in three prominent cases where such regulation is claimed. The mRNAs in question encode 15-lipoxygenase, ceruloplasmin, and histones. Vertebrate histone mRNAs lack a poly(A) tail, instead of which a 3' stem-loop structure is said to promote translation by binding a protein which purportedly binds initiation factors. The proffered evidence for this hypothesis has many flaws. Temporal control of 15-lipoxygenase production in reticulocytes is often cited as another well-documented example of translational regulation via the 3' untranslated region, but inspection of the evidence reveals significant gaps and contradictions. Solid evidence is lacking also for the idea that a ribosomal protein binds to and shuts off translation of ceruloplasmin mRNA. Some viral RNAs that lack a poly(A) tail have alternative 3' structures which are said to promote translation via circularization of the mRNA, but in no case has this been shown convincingly. Interpretation of many experiments is compromised by possible effects of the 3' structures on mRNA stability rather than translation. The functional-half-life assay, which is often employed to rule out effects on mRNA stability, might not be adequate to settle the question. Other issues, such as the possibility of artifacts caused by overexpression of RNA-binding proteins, can complicate studies of translational regulation. There is no doubt that elements at the 3' end of eukaryotic mRNAs can regulate gene expression in a variety of ways. It has not been shown unequivocally that one of these ways involves direct participation of the 3' untranslated region in the initiation step of translation.  相似文献   

5.
We demonstrate that a bacteriophage protein and a spliceosomal protein can be converted into eukaryotic translational repressor proteins. mRNAs with binding sites for the bacteriophage MS2 coat protein or the spliceosomal human U1A protein were expressed in human HeLa cells and yeast. The presence of the appropriate binding protein resulted in specific, dose-dependent translational repression when the binding sites were located in the 5' untranslated region (UTR) of the reporter mRNAs. Neither mRNA export from the nucleus to the cytoplasm nor mRNA stability was demonstrably affected by the binding proteins. The data thus reveal a general mechanism for translational regulation: formation of mRNA-protein complexes in the 5' UTR controls translation initiation by steric blockage of a sensitive step in the initiation pathway. Moreover, the findings establish the basis for novel strategies to study RNA-protein interactions in vivo and to clone RNA-binding proteins.  相似文献   

6.
The rate of protein synthesis in metaphase-arrested cells is reduced as compared to interphase cells. The reduction occurs at the translation initiation step. Here, we show that, whereas poliovirus RNA translation is not affected by the mitotic translational block, the translation of vesicular stomatitis virus mRNAs is. In an attempt to elucidate the mechanism by which initiation of protein synthesis is reduced in mitotic cells, we found that the interaction of the mRNA 24-kDa cap-binding protein (CBP) with the mRNA 5' cap structure is reduced in mitotic cell extracts, consistent with their lower translational efficiency. Addition of cap-binding protein complex stimulated the translation of endogenous mRNA in extracts from mitotic but not interphase cells. In addition, we found that the 24-kDa CBP from mitotic cells was metabolically labeled with 32P to a lesser extent than the protein purified from interphase cells. These results are consistent with a hypothesis that the 24-kDa CBP is implicated in the inhibition of protein synthesis in metaphase-arrested cells. Possible mechanisms for this inhibition are offered.  相似文献   

7.
Two simplified kinetic proofreading scanning (KPS) models were proposed to describe the 5' cap and 3' poly(A) tail dependency of eukaryotic translation initiation. In Model I, the initiation factor complex starts scanning and unwinding the secondary structure of the 5' untranslated region (UTR) from the 5' terminus of mRNA. In Model II, the initiation factor complex starts scanning from any binding site in the 5' UTR. In both models, following ATP hydrolysis, the initiation factor complex either dissociates from mRNA or continues to scan and unwind RNA secondary structure in the 5' UTR. This step repeats n times until the AUG codon is reached. These two models show very different cap and/or poly(A) tail dependency of translation initiation. The models predict that both cap and poly(A) tail dependencies of translation, and translatability of mRNAs are coupled with the structure of 5' UTR: the translation of mRNA with structured 5' UTR is strongly cap- and poly(A) tail-dependent; while translation of mRNA with unstructured 5' UTR is less cap- and poly(A) tail-dependent. We use these two models to explain: (1) the cap and poly(A) tail dependence of translation; (2) the effect of exogenous poly(A) on translation; (3) repression of host mRNA and translation of late adenovirus mRNA in the late phase of adenovirus infection; (4) repression of host mRNA and translation of Vaccinia virus mRNA in virus-infected cell; (5) heat shock repression of translation of normal mRNA and stimulation of translation of hsp mRNA; and (6) the synergistic effect of cap and poly(A) tail on stimulating translation. The kinetic proofreading scanning models provide a coherent interpretation of those phenomena.  相似文献   

8.
Cellular eukaryotic mRNAs (except organellar) contain at the 5' terminus the structure m7(5')Gppp(5')N (where N is any nucleotide), termed cap. Cap recognition by eukaryotic initiation factor eIF-4F plays an important role in regulating the overall rate of translation. eIF-4F is believed to mediate the melting of mRNA 5' end secondary structure and facilitate 43S ribosome binding to capped mRNAs. eIF-4E, the cap-binding subunit of eIF-4F, plays an important role in cell growth; its overexpression results in malignant transformation of rodent cells, and its phosphorylation is implicated in signal transduction pathways of mitogens and growth factors. The molecular mechanism by which eIF-4E transforms cells is not known. Here, we report that overexpression of eIF-4E facilitates the translation of mRNAs containing excessive secondary structure in their 5' non-coding region. This effect may represent one mechanism by which eIF-4E regulates cell growth and transforms cells in culture.  相似文献   

9.
10.
The structural features of mRNA molecules that determine their relative translational rates are at present poorly defined. An early and potentially rate-limiting step in this process is the assembly of an intact 80S ribosome at the translational initiation codon. It is generally assumed that the efficiency of this reaction is controlled by structures in the 5' nontranslated region and in the immediate proximity of the AUG initiation codon. In this paper, we present an assay of initial monosome formation and measure the effects of hybridizing mRNA to complementary DNA fragments on the efficiency of this reaction. This hybridization serves to block specific regions of the mRNA from sequence-specific and intramolecular (secondary structure) interactions. We find that cDNAs that block the 5' nontranslated region, the initiation codon, or regions immediately 3' to the initiation codon markedly inhibit 80S ribosome attachment. These results are consistent with previous studies by ourselves and others which suggest that the introduction of secondary structures into this region can result in decreased translational efficiency. In addition, however, we note that cDNAs that hybridize to segments of the coding region significant distances (as many as several hundred bases) 3' to the initiation codon can also inhibit initial ribosome binding. This effect appears to be limited to duplexes within the mRNA coding region since a cDNA hybridizing exclusively within the 3' nontranslated region does not inhibit, and may actually stimulate, monosome formation. The results of this monosome formation assay therefore suggest that mRNA structures remote from the 5' terminus and initiation codon may also be important in determining the efficiency of translational initiation.  相似文献   

11.
12.
13.
Translational control is a key step in eukaryotic gene expression. The majority of translational control occurs at the level of initiation, thus implicating the 5' untranslated region as a major site of translational regulation. Many growth-related mRNAs have atypical 5' UTRs, which are often long and GC-rich. Such features promote formation of stable secondary structure, and many mRNAs encoding proteins involved in cell growth, proliferation and apoptosis have structured 5' UTRs, which in many cases harbour internal ribosome entry sites (IRESs) and upstream open-reading frames (uORFs). In this review we discuss how secondary structural elements in the 5' UTR can regulate translation and how mutations that perturb these secondary structural elements can have implications for disease and tumourigenesis.  相似文献   

14.
15.
A number of eukaryotic proteins are already known to orchestrate key steps of mRNA metabolism and translation via interactions with the 5' m7GpppN cap. We have characterized a new type of histidine triad (HIT) motif protein (Nhm1) that co-purifies with the cap-binding complex eIF4F of Schizosaccharomyces pombe. Nhm1 is an RNA-binding protein that binds to m7GTP-Sepharose, albeit with lower specificity and affinity for methylated GTP than is typical for the cap-binding protein known as eukaryotic initiation factor 4E. Sequence searches have revealed that proteins with strong sequence similarity over all regions of the new protein exist in a wide range of eukaryotes, yet none has been characterized up to now. However, other proteins that share specific motifs with Nhm1 include the human Fhit tumour suppressor protein and the diadenosine 5', 5"'-P1, P4-tetraphosphate asymmetrical hydrolase of S. pombe. Our experimental work also reveals that Nhm1 inhibits translation in a cell-free extract prepared from S. pombe, and that it is therefore a putative translational modulator. On the other hand, purified Nhm1 manifests mRNA decapping activity, yet is physically distinct from the Saccharomyces cerevisiae decapping enzyme Dcp1. Moreover, fluorescence and immunofluorescence microscopy show that Nhm1 is predominantly, although not exclusively, nuclear. We conclude that Nhm1 has evolved as a special branch of the HIT motif superfamily that has the potential to influence both the metabolism and the translation of mRNA, and that its presence in S. pombe suggests the utilization of a novel decapping pathway.  相似文献   

16.
The 3' noncoding region element (AUUUA)n specifically targets many short-lived mRNAs for degradation. Although the mechanism by which this sequence functions is not yet understood, a potential link between facilitated mRNA turnover and translation has been implied by the stabilization of cellular mRNAs in the presence of protein synthesis inhibitors. We therefore directly investigated the role of translation on mRNA stability. We demonstrate that mRNAs which are poorly translated through the introduction of stable secondary structure in the 5' noncoding region are not efficiently targeted for selective destabilization by the (AUUUA)n element. These results suggest that AUUUA-mediated degradation involves either a 5'-->3' exonuclease or is coupled to ongoing translation of the mRNA. To distinguish between these two possibilities, we inserted the poliovirus internal ribosome entry site, which promotes internal ribosome initiation, downstream of the 5' secondary structure. Translation directed by internal ribosome binding was found to fully restore targeted destabilization of AUUUA-containing mRNAs despite the presence of 5' secondary structure. This study therefore demonstrates that selective degradation mediated by the (AUUUA)n element is coupled to ribosome binding or ongoing translation of the mRNA and does not involve 5'-to-3' exonuclease activity.  相似文献   

17.
Translation initiation: adept at adapting.   总被引:15,自引:0,他引:15  
Initiation of protein synthesis requires both an mRNA and the initiator methionyl (Met)-tRNA to be bound to the ribosome. Most mRNAs are recruited to the ribosome through recognition of the 5' m7G cap by a group of proteins referred to as the cap-binding complex or eIF4F. Evidence is accumulating that eIF4G, the largest subunit of the cap-binding complex, serves as a central adapter by binding to various translation factors and regulators. Other translation factors also have modular structures that facilitate multiple protein-protein interactions, which suggests that adapter functions are common among the translation initiation factors. By linking different regulatory domains to a conserved eIF2-kinase domain, cells adapt to stress and changing growth conditions by altering the translational capacity through phosphorylation of eIF2, which mediates the binding of the initiator Met-tRNA to the ribosome.  相似文献   

18.
The effects of 5' proximal secondary structure in mRNA molecules on their translation and on their interaction with the eukaryotic initiation factors (eIF)-4F, eIF-4A, and eIF-4B have been examined. Secondary structures were generated in the 5' noncoding region of rabbit globin and reovirus mRNAs by means of hybridization with cDNA molecules. cDNAs hybridized to the first 15 bases downstream from the cap inhibited the translation of the mRNAs in both reticulocyte and wheat germ lysates. The degree of inhibition was directly related to the monovalent ion concentration and inversely related to reaction temperature. These hybrid structures also reduced the competitive ability of the messages. Hybrid structures beginning downstream from the first 15 bases did not inhibit the translation of beta-globin mRNA or reovirus s3 mRNA. None of the hybrid structures were detrimental to the interaction of the mRNAs with the 26-kDa cap binding protein of eIF-4F, as determined by chemical cross-linking assays. However, in the presence of ATP, hybrid structures immediately adjacent to the cap severely inhibited the cross-linking to the p46 subunit of eIF-4F or to additional eIF-4A or eIF-4B. In order to account for these observations, a two-step mechanism is proposed for the interaction of eIF-4F with the 5' end of an mRNA molecule. The first step involves a weak initial interaction of the p26 subunit with the cap. The second step requires the hydrolysis of ATP and results in the formation of a stable initiation factor-mRNA complex, which may involve eIF-4A and eIF-4B. This second step is inhibited by the presence of 5' proximal secondary structure. In any event, our results demonstrate that the effect of mRNA structure on translation rate depends strongly on its position with respect to the 5' end and that this effect is due at least in part to an inhibition of the action of initiation factors normally required for the unwinding of structure.  相似文献   

19.
Eukaryotic translation initiation involves recognition of the 5' end of cellular mRNA by the cap-binding complex known as eukaryotic initiation factor 4F (eIF4F). Initiation is a key point of regulation in gene expression in response to mechanisms mediated by signal transduction pathways. We have investigated the molecular interactions underlying inhibition of human eIF4E function by regulatable repressors called 4E-binding proteins (4E-BPs). Two essential components of eIF4F are the cap-binding protein eIF4E, and eIF4G, a multi-functional protein that binds both eIF4E and other essential eIFs. We show that the 4E-BPs 1 and 2 block the interaction between eIF4G and eIF4E by competing for binding to a dorsal site on eIF4E. Remarkably, binding of the 4E-BPs at this dorsal site enhances cap-binding via the ventral cap-binding slot, thus trapping eIF4E in inactive complexes with high affinity for capped mRNA. The binding contacts and affinities for the interactions between 4E-BP1/2 and eIF4E are distinct (estimated K(d) values of 10(-8) and 3x10(-9) for 4E-BP1 and 2, respectively), and the differences in these properties are determined by three amino acids within an otherwise conserved motif. These data provide a quantitative framework for a new molecular model of translational regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号