首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Fermentation kinetics of Penicillium aculeatum ATCC 10409 demonstrated that fungal growth and dextranase release are decoupled. Inoculation by conidia or mycelia resulted in identical kinetics. Two new isoenzymes of the dextranase were characterized regarding their kinetic constants, pI, MW, activation energy and stabilities. The larger enzyme was 3-fold more active (turnover number: 2,230 ± 97 s−1). Pre-treatment of bentonite with H2O2 did not affect adsorption characteristics of dextranase. Enzyme to bentonite ratios above 0.5:1 (w/w) resulted in a high conservation of activity upon adsorption. Furthermore, dextranase could be used in co-immobilizates for the direct conversion of sucrose into isomalto-oligosaccharides (e.g. isomaltose). Yields of co-immobilizates were 2–20 times that of basic immobilizates, which consist of dextransucrase without dextranase.  相似文献   

2.
Dextransucrase from Leuconostoc mesenteroides B-512F was immobilized on epoxy-activated acrylic polymers with different textural properties (Eupergit C and Eupergit C 250L). Prior to immobilization, dextransucrase was treated with dextranase to remove the dextran layer covering the enzyme surface, thus increasing the accessibility of its reactive groups to the epoxide centers of the support. Elimination of 99% of the initial carbohydrate content was determined by the anthrone method. To prevent enzyme inactivation, the immobilization was carried out at pH 5.4, at which the coupling to the support took place through the carboxylic groups of the enzyme. The effects of the amount (mg) of dextransucrase added per gram of support (from 0.2:1 to 30:1), temperature and contact time were studied. Maximum activity recovery of 22% was achieved using Eupergit C 250L. Using this macroporous support, the maximum specific activity (710 U/g biocatalyst) was significantly higher than that obtained with the less porous Eupergit C (226 U/g biocatalyst). The dextransucrase immobilized on Eupergit C 250L showed similar optimal temperature (30 degrees C) and pH (5-6) compared with the native enzyme. In contrast, a notable stabilization effect at 30 degrees C was observed as a consequence of immobilization. After a fast partial inactivation, the dextransucrase immobilized on Eupergit C 250L maintained more than 40% of the initial activity over the following 2 days. The features of this immobilized system are very attractive for its application in batch and fixed-bed bioreactors.  相似文献   

3.
Chlorophyllase extract from Phaeodactylum tricornutum was immobilized by physical adsorption on DEAE-cellulose and silica gel as well as by covalent binding on Eupergit C, Eupergit C250L, Eupergit C/ethylenediamine (EDA) and Eupergit C250L/EDA. Although the highest immobilization yield (83-93%) and efficiency (51-53%) were obtained when chlorophyllase extract was immobilized on DEAE-cellulose and silica gel, there was no improvement in the thermal stability of chlorophyllase as compared to that of the free one. The immobilization of chlorophyllase extract on Eupergit C250L/EDA resulted by a high recovery of enzymatic activity, with an immobilization efficiency of 44%, and promoted a higher stabilization of chlorophyllase (four times) in the aqueous/miscible organic solvent medium. On the other hand, the inhibitory effect of refined bleached deodorized (RBD) canola oil was reduced by immobilization of chlorophyllase extract onto silica gel as compared to those obtained with other enzyme preparations. However, the re-cycled chlorophyllase extract immobilized on Eupergit C250L/EDA retained more than 75% of its initial enzyme activity after 6 cycles, whereas that immobilized on silica gel was completely inactivated. The highest catalytic efficiency, for both free and immobilized chlorophyllase on Eupergit C250L/EDA, was obtained in the ternary micellar system as compared to the aqueous/miscible organic solvent and biphasic media.  相似文献   

4.
Lipase B from Candida antarctica (CALB) has been modified using succinic polyethyleneglycol via the carbodiimide route. Immobilized enzyme (on octyl Sepharose or Eupergit C) has been used, to take advantage of the solid phase. Modification of immobilized CALB's native amino groups did not produce a significant alteration of CALB. However, if the enzyme was previously aminated, around 14–15 PEG molecules could be introduced per enzyme molecule. Also, it has been found that succinic groups are far more reactive than acetic acid following this strategy.Even after this drastic double modification, the functional properties of the enzyme have not been impoverished to a large extent: stability decreased only to some extent (by a 5–6 fold factor), activity versus some substrates even increased (e.g., around 60% using p-nitrophenyl butyrate). It has been found that both modifications (amination and pegylation) have very different effects on enzyme properties when performed on CALB immobilized on Eupergit C or octyl Sepharose. For example, activity versus pNPP increased using CALB-octyl Sepharose while it decreased when using Eupergit C following amination and PEGylation. The effects also depend on the reaction and substrate, for example in hydrolysis of methyl mandelate, the activity decreased by 50% using CALB-octyl Sepharose after PEGylation of the aminated enzyme, while using CALB-Eupergit C had no effect. In this last case, enantioselecitvity in this hydrolysis significantly improved after both chemical modifications (from 7.5 to 20), while using CALB-octyl Sepharose almost had no effect.  相似文献   

5.
《Process Biochemistry》1999,34(4):391-398
The production of dextranase was investigated in static cultures of Penicillium funiculosum 258. Maximal enzyme productivity was attained at pH 8.0, with 3.5% (w/v) dextran (MW, 260 000) as carbon source, NaNO3 (1%, w/v) and yeast extract (0.2%, w/v) as nitrogen source, 0.4% (w/v) K2HPO4 and 0.06% (w/v) MgSO4. It was possible to increase the productivity of dextranase to 41.8 units ml−1 in the modified medium. The enzyme was immobilized on different carriers by different techniques of immobilization. The enzyme prepared by covalent binding on chitosan using glutaraldehyde had the highest activity, the immobilized enzyme retaining 63% of its original specific activity. Compared with the free dextranase, the immobilized enzyme exhibited: a higher pH optimum, a higher optimal reaction temperature and energy of activation, a higher Michaelis constant, improved thermal stability and higher values of deactivation rate constant. The immobilized enzyme retained about 80% of the initial catalytic activity even after being used for 12 cycles.  相似文献   

6.
Recombinant hyperthermostable beta-glycosidases from the archaea Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) were covalently attached onto the insoluble carriers chitosan, controlled pore glass (CPG), and Eupergit C. For each enzyme/carrier pair, the protein-binding capacity, the immobilization yield, the pH profiles for activity and stability, the activity/temperature profile, and the kinetic constants for lactose hydrolysis at 70 degrees C were determined. Eupergit C was best among the carriers in regard to retention of native-like activity and stability of Ss beta Gly and CelB over the pH range 3.0-7.5. Its protein binding capacity of approximately 0.003 (on a mass basis) was one-third times that of CPG, while immobilization yields were typically 80% in each case. Activation energies for lactose conversion by the immobilized enzymes at pH 5.5 were in the range 50-60 kJ/mol. This is compared to values of approximately 75 kJ/mol for the free enzymes. Immobilization expands the useful pH range for CelB and Ss beta Gly by approximately 1.5 pH units toward pH 3.5 and pH 4.5, respectively. A packed-bed enzyme reactor was developed for the continuous conversion of lactose in different media, including whey and milk, and operated over extended reaction times of up to 14 days. The productivities of the Eupergit C-immobilized enzyme reactor were determined at dilution rates between 1 and 12 h(-1), and using 45 and 170 g/L initial lactose. Results of kinetic modeling for the same reactor, assuming plug flow and steady state, suggest the presence of mass-transfer limitation of the reaction rate under the conditions used. Formation of galacto-oligosaccharides in the continuous packed-bed reactor and in the batch reactor using free enzyme was closely similar in regard to yield and individual saccharide components produced.  相似文献   

7.
Bacillus licheniformis L-arabinose isomerase (BLAI) with a broad pH range, high substrate specificity, and high catalytic efficiency for L-arabinose was immobilized on various supports. Eupergit C, activated-carboxymethylcellulose, CNBr-activated agarose, chitosan, and alginate were tested as supports, and Eupergit C was selected as the most effective. After determination of the optimum enzyme concentration, the effects of pH and temperature were investigated using a response surface methodology. The immobilized BLAI enzyme retained 86.4% of the activity of the free enzyme. The optimal pH for the immobilized BLAI was 8.0, and immobilization improved the optimal temperature from 50 °C (free enzyme) to a range between 55 and 65 °C. The half life improved from 2 at 50 °C to 212 h at 55 °C following immobilization. The immobilized BLAI was used for semi-continuous production of L-ribulose. After 8 batch cycles, 95.1% of the BLAI activity was retained. This simple immobilization procedure and the high stability of the final immobilized BLAI on Eupergit C provide a promising solution for large-scale production of L-ribulose from an inexpensive L-arabinose precursor.  相似文献   

8.
Glucanohydrolases, especially mutanase [alpha-(1-->3) glucanase; EC 3.2.1.59] and dextranase [alpha-(1-->6) glucanase; EC 3.2.1.11], which are present in the biofilm known as dental plaque, may affect the synthesis and structure of glucans formed by glucosyltransferases (GTFs) from sucrose within dental plaque. We examined the production and the structure of glucans synthesized by GTFs B (synthesis of alpha-(1-->3)-linked glucans) or C [synthesis of alpha-(1-->6)- and alpha-(1-->3)-linked glucans] in the presence of mutanase and dextranase, alone or in combination, in solution phase and on saliva-coated hydroxyapatite beads (surface phase). The ability of Streptococcus sobrinus 6715 to adhere to the glucan, which was formed in the presence of the glucanohydrolases was also explored. The presence of mutanase and/or dextranase during the synthesis of glucans by GTF B and C altered the proportions of soluble to insoluble glucan. The presence of either dextranase or mutanase alone had a modest effect on total amount of glucan formed, especially in the surface phase; the glucanohydrolases in combination reduced the total amount of glucan. The amount of (1-->6)-linked glucan was reduced in presence of dextranase. In contrast, mutanase enhanced the formation of soluble glucan, and reduced the percentage of 3-linked glucose of GTF B and C glucans whereas dextranase was mostly without effect. Glucan formed in the presence of dextranase provided fewer binding sites for S. sobrinus; mutanase was devoid of any effect. We also noted that the GTFs bind to dextranase and mutanase. Glucanohydrolases, even in the presence of GTFs, influence glucan synthesis, linkage remodeling, and branching, which may have an impact on the formation, maturation, physical properties, and bacterial binding sites of the polysaccharide matrix in dental plaque. Our data have relevance for the formation of polysaccharide matrix of other biofilms.  相似文献   

9.
Summary Using a photometric test, two immobilization matrices Eupergit C and controlled pore glass CPG-10 have been investigated with regard to their binding capacity for glucose oxidase (GOD). The results of these investigations show that Eupergit C has a specific binding capacity three times higher than CPG-10. A long-run test was carried out with an ezyme thermistor to detect the immobilized enzyme activity of the Eupergit C preparation. After three weeks, enzyme activity had declined to 52% of original value, however no additional loss GOD activity was observed between three and six weeks.  相似文献   

10.
An extracellular dextranase (EC 3.2.1.11) was purified approximately 75-fold from cell-free culture filtrates of Fusarium moniliforme. The purified dextranase was of the endo type, and isomaltose was identified as the primary end product of dextran hydrolysis. The molecular weight of the dextranase was determined to be 39,000 by gel permeation chromatography. The enzyme was most active at pH 5.5, and the temperature optimum was near 55 C. Activity was not inhibited by either ethylenediaminetetraacetic acid or iodoacetate. The Km for dextran with an average molecular weight of 10,000 was estimated to be 1.1 X 10(-4) M. The electrophoretic mobility of the dextranase was distinctly different from that of a Penicillium-derived commercial dextranase. The F. moniliforme dextranase was also found to differ from the commercial preparation by its greater relative activity against glucans isolated from Streptococcus mutans.  相似文献   

11.
S Y Wanda  R Curtiss  rd 《Journal of bacteriology》1994,176(13):3839-3850
The plasmid (pYA902) with the dextranase (dex) gene of Streptococcus sobrinus UAB66 (serotype g) produces a C-terminal truncated dextranase enzyme (Dex) with a multicomplex mass form which ranges from 80 to 130 kDa. The Escherichia coli-produced enzyme was purified and characterized, and antibodies were raised in rabbits. Purified dextranase has a native-form molecular mass of 160 to 260 kDa and specific activity of 4,000 U/mg of protein. Potential immunological cross-reactivity between dextranase and the SpaA protein specified by various recombinant clones was studied by using various antisera and Western blot (immunoblot) analysis. No cross-reactivity was observed. Optimal pH (5.3) and temperature (39 degrees C) and the isoelectric points (3.56, 3.6, and 3.7) were determined and found to be similar to those for dextranase purified from S. sobrinus. The dex DNA restriction map was determined, and several subclones were obtained. The nucleotide sequence of the dex gene was determined by using subclones pYA993 and pYA3009 and UAB66 chromosomal DNA. The open reading frame for dex was 4,011 bp, ending with a stop codon TAA. A ribosome-binding site and putative promoter preceding the start codon were identified. The deduced amino acid sequence of Dex revealed the presence of a signal peptide of 30 amino acids. The cleavage site for the signal sequence was determined by N-terminal amino acid sequence analysis for Dex produced in E. coli chi 2831(pYA902). The C terminus consists of a serine- and threonine-rich region followed by the peptide LPKTGD, 3 charged amino acids, 19 amino acids with a strongly hydrophobic character, and a charged pentapeptide tail, which are proposed to correspond to the cell wall-spanning region, the LPXTGX consensus sequence, and the membrane-anchoring domains of surface-associated proteins of gram-positive cocci.  相似文献   

12.
Sucrose phosphorylase catalyzes the reversible conversion of sucrose (alpha-D-glucopyranosyl-1,2-beta-D-fructofuranoside) and phosphate into D-fructose and alpha-D-glucose 1-phosphate. We report on the molecular cloning and expression of the structural gene encoding sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase) in Escherichia coli DH10B. The recombinant enzyme, containing an 11 amino acid-long N-terminal metal affinity fusion peptide, was overproduced 60-fold in comparison with the natural enzyme. It was purified to apparent homogeneity using copper-loaded Chelating Sepharose and obtained in 20% yield with a specific activity of 190 Umg(-1). LmSPase was covalently attached onto Eupergit C with a binding efficiency of 50% and used for the continuous production of alpha-D-glucose 1-phosphate from sucrose and phosphate (600 mM each) in a packed-bed immobilised enzyme reactor (30 degrees C, pH 7.0). The reactor was operated at a stable conversion of 91% (550 mM product) and productivity of approximately 11 gl(-1)h(-1) for up to 600 h. A kinetic study of transglucosylation by soluble LmSPase was performed using alpha-d-glucose 1-phosphate as the donor substrate and various alcohols as acceptors. D- and L-arabitol were found to be good glucosyl acceptors.  相似文献   

13.
The use of olive oil mill wastewaters (OMW) as an organic fertilizer is limited by their phytotoxic effect, due to the high concentration of phenolic compounds. As an alternative to physico-chemical methods for OMW detoxification, the laccase from Pycnoporus coccineus, a white-rot fungus with the ability to decrease the chemical oxygen demand (COD) and color of the industrial effluent, is being studied. In this work, the P. coccineus laccase was immobilized on two acrylic epoxy-activated resins, Eupergit C and Eupergit C 250L. The highest activity was obtained with the macroporous Eupergit C 250L, reaching 110 U g?1 biocatalyst. A substantial stabilization effect against pH and temperature was obtained upon immobilization. The soluble enzyme maintained ≥80% of its initial activity after 24 h at pH 7.0–10.0, whereas the immobilized laccase kept the activity in the pH range 3.0–10.0. The free enzyme was quickly inactivated at temperatures >50°C, whereas the immobilized enzyme was very stable up to 70°C. Gel filtration profiles of the OMW treated with the immobilized enzyme (for 8 h at room temperature) showed both degradation and polymerization of the phenolic compounds.  相似文献   

14.
An enzymic characteristic of Novo dextranase was presented. In addition to a high dextranolytic activity (7,200 U/ml), the crude enzyme also contained small amounts of protease, glucoamylase, polygalacturonase, carboxymethylcellulase, laminarinase and chitinase. A highly purified dextranase was then simply separated from a commercial preparation by column chromatographies on DEAE-Sepharose, CM-Sepharose, and by chromatofocussing on Polybuffer Exchanger PBE-94. The enzyme was recovered with an over 200-fold increase in specific activity and a yield of 84%. The final preparation was homogeneous, as observed during high performance liquid chromatography (HPLC). Size-exclusion HPLC indicated that dextranase had a molecular mass of 35 kDa and its isoelectric point, established by chromatofocussing, was 4.85. Analysis of the dextran break-down products indicated that purified dextranase represents an endolytic mode of action, and isomaltose and isomaltotriose were identified as the main reducing sugars of dextran hydrolysis. The enzyme was then covalently coupled to the silanized porous glass beads modified by glutaraldehyde (Carrier I) or carbodiimide (Carrier II). It was shown that immobilization of dextranase gave optimum pH and temperature ranges from 5.4 to 5.7 and from 50°C to 60°C, respectively. The affinity of the enzyme to the substrate decreased by a factor of more than 13 for dextranase immobilized on Carrier I and increased slightly (about 1.4-times) for the enzyme bound to Carrier II.  相似文献   

15.
淡紫拟青霉右旋糖酐酶的形成条件   总被引:1,自引:1,他引:0  
比较了各种碳水化合物对淡紫拟青霉(Paecilomyces lilacinus)右旋糖酐酶形成的影响,右旋糖酐是最好的碳源,也是最佳诱导物。不同分子量(17.2—1000kD)的右旋糖酐对酶形成的诱导作用不同,酶的产生随右旋糖酐分子量的增大而增加。用分子量为1000kD的右旋糖酐作碳源时比用17.2kD的右旋糖酐作碳源时的产酶量高40%以上。用右旋糖酐和其它糖的混合物作碳源时,酶的形成受到不同程度的抑制。右旋糖酐酶形成的其它适宜条件:氮源为牛肉蛋白胨,培养基初始pH6.0—7.0.种龄为48小时,在250ml三角瓶中装50ml培养基,于28℃在200r/min摇床上培养6天。  相似文献   

16.
TPDex, a putative dextranase from Thermoanaerobacter pseudethanolicus, was purified as a single 70 kDa band of 7.37 U/mg. Its optimum pH was 5.2 and the enzyme was stable between pH 3.1 and 8.5 at 70 degrees C. A half-life comparison showed that TPDex was stable for 7.4 h at 70 degrees C, whereas Chaetominum dextranase (CEDex), currently used as a dextranase for sugar milling, was stable at 55 degrees C. TPDex showed broad dextranase activity regardless of dextran types, including dextran T2000, 742CB dextran, and alternan. TPDex showed the highest thermostability among the characterized dextranases, and may be a suitable enzyme for use in sugar manufacture without decreased temperature.  相似文献   

17.
《Process Biochemistry》2010,45(10):1645-1651
Dextransucrase from Leuconostoc mesenteroides and dextranase from Penicillium lilacinum were co-immobilized and used to produce isomaltooligosaccharides from sucrose. The enzymes were co-immobilized by encapsulating soluble dextransucrase and dextranase covalently attached to Eupergit C in alginate (beads, fibers, and capsules). The alginate capsule co-immobilization was done in the presence of soluble starch and resulted in a high immobilization yield (71%), and the enzymes retained their activities during 20 repeated batch reactions and for a month in storage at 4 °C. The presence of starch was essential for the stability of dextransucrase in alginate capsules. Furthermore, it is important that the dextranase be pre-immobilized prior to alginate capsule co-immobilization to prevent dextranase leakage and inactivation of dextransucrase. The co-immobilized enzymes formed oligosaccharides from sucrose, which can be used as prebiotics. In addition, the oligosaccharides that were produced after the addition of sucrose reacted with the alginate fiber-encapsulted dextransucrase, thus increasing the amount of prebiotics. Co-immobilization in alginate fiber and beads also resulted in high yields (70 and 64%), but enzymatic activities decreased by 74 and 99%, respectively, after a month in storage at 4 °C. The newly developed alginate capsule method for co-immobilization of dextransucrase and dextranase is simple yet effective and has the potential for industrial-scale production of isomaltooligosaccharides.  相似文献   

18.
Co-Immobilization of dextransucrase (DS) and dextranase (DN) into calcium alginate includes the co-entrapment of soluble DS and adsorbed DN. DS converts sucrose into dextran, which is the substrate for DN, so that isomalto-oligosaccharides (IMOs) are follow-up products of dextran hydrolysis. The boundary conditions for the successful preparation are investigated with respect to choice of DN adsorbate, surface modifications using blotting agents and optimal enzyme activity ratios. Further, repetitive batch experiments suggest the selection of medium activity ratios for continuous use (0.3 U(DN)U(-1) (DS), e.g.). Product formation at various cosubstrate:substrate concentrations as well as at different DN:DS ratios are discussed. Moreover, the complexity of the bi-enzymatic system can be reduced considering the molar ratios of cosubstrate:substrate (glucose:sucrose). Based on these factors, a mechanistic kinetic model is developed, which distinguishes the corresponding contributions of the two enzymes upon overall product formation. In general, at low glucose:sucrose ratios isomaltose synthesis is featured primarily by DN action. Yet with increasing amounts of glucose both the quantity and quality of DN substrate changes, so that its contribution to product formation decreases in an exponential manner; still the overall product yield continuously increases due to enhanced DS contribution.  相似文献   

19.
Penicillin G acylase from Escherichia coli was immobilized on Eupergit C with different enzyme loading. The activity of the immobilized preparations was assayed in the hydrolysis of penicillin G and was found to be much lower than would be expected on the basis of the residual enzyme activity in the immobilization supernatant. Active-site titration demonstrated that the immobilized enzyme molecules on average had turnover rates much lower than that of the dissolved enzyme. This was attributed to diffusion limitations of substrate and product inhibition. Indeed, when the immobilized preparations were crushed, the activity increased from 587 U g-1 to up to 974 U g-1. The immobilized preparations exhibited up to 15% lower turnover rates than the dissolved enzyme in cephalexin synthesis from 7-ADCA and D-(-)-phenylglycine amide. The synthesis over hydrolysis ratios of the immobilized preparations were also much lower than that of the dissolved enzyme. This was partly due to diffusion limitations but also to an intrinsic property of the immobilized enzyme because the synthesis over hydrolysis ratio of the crushed preparations was much lower than that of the dissolved enzyme.  相似文献   

20.
In the present work, we obtained an immobilized phospholipase A(2) system through covalent coupling by using an acrylic polymer Eupergit C as support. The immobilized enzyme from cobra venom (Naja naja naja) showed good retention activity and excellent stability. Both properties are of great importance for biomedical applications such as hypercholesterolemia treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号